考研数学备考技巧:知识点清单

合集下载

考研数学知识点汇总

考研数学知识点汇总

考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。

研究生数学分析基础知识点归纳总结

研究生数学分析基础知识点归纳总结

研究生数学分析基础知识点归纳总结数学分析是研究实数、函数、极限、导数、积分等数学概念和运算规则的基础学科。

作为研究生的基础课程之一,熟悉数学分析的基础知识点对于进一步深化数学研究和解决实际问题具有重要意义。

本文将对研究生数学分析的基础知识点进行归纳总结。

一、实数与数列实数是数学中最基本的概念之一,它包括有理数和无理数。

有理数可以表示为两个整数的比值,无理数则不能表示为有理数的比值。

数列是按照一定规律排列的数的集合。

常见的数列有等差数列和等比数列。

等差数列中,每个数与它的前一个数之差是一个常数,称为公差;等比数列中,每个数与它的前一个数之比是一个常数,称为公比。

二、函数与极限函数是描述两个变量之间关系的一种工具。

在数学分析中,我们常常研究的是实值函数,即定义域和值域都是实数集合。

极限是研究函数在某一点附近趋于无穷时的性质。

我们通常用函数在该点附近取值的情况来描述这种趋势。

常见的极限包括左极限、右极限和无穷极限。

三、导数与微分导数是描述函数变化率的重要概念。

它刻画了函数在某一点附近的局部性质。

导数的定义是函数在该点的极限,可以通过求导数来研究函数的变化情况。

微分是导数的一个应用,它描述了函数在某一点的线性逼近。

微分可以用来求解优化问题、近似计算等。

四、积分与函数的面积积分是对函数进行求和的过程,它可以用来求解曲线下面积、函数的平均值等。

积分的定义是将函数分成无穷小的小区间,然后对每个小区间的值进行求和并取极限。

函数的面积是积分的一个重要应用。

通过计算函数与坐标轴之间的面积,我们可以得到函数在一段区间上的积分值,进而研究函数的性质。

五、级数与收敛性级数是由无穷多个数相加而成的表达式。

级数的部分和是指级数的前n个数相加的结果。

级数的收敛性是研究级数求和是否存在有限结果的性质。

当级数的部分和趋于某个有限值时,我们称该级数收敛;当级数的部分和不趋于有限值时,我们称该级数发散。

六、泰勒展开与函数逼近泰勒展开是将函数表示为一系列无穷次多项式相加的形式。

高等数学知识点考研总结

高等数学知识点考研总结

高等数学知识点考研总结一、高等数学的知识点1.极限与微积分极限是微积分的基础,通过研究极限,可以建立微积分理论体系。

极限的概念是数学分析的核心,包括函数的极限、无穷小量、洛必达法则等内容。

微积分则是极限理论的应用,包括导数、积分、微分方程等内容。

2.多元函数微分学在高等数学中,多元函数微分学是一个重要的知识点。

它包括偏导数、全微分、多元函数极值、拉格朗日乘数法等内容。

多元函数微分学是微积分理论在多元空间中的拓展,对于理解多元函数的性质和求解实际问题中的应用具有重要意义。

3.级数与收敛性级数是数学分析中的一个重要概念,包括数项级数、函数项级数、幂级数、傅里叶级数等内容。

收敛性是级数理论的核心问题,包括级数收敛的判别法、柯西收敛判别法、绝对收敛和条件收敛等内容。

4.常微分方程常微分方程是现代数学中一个重要的研究方向,包括一阶微分方程、高阶微分方程、线性微分方程、非线性微分方程等内容。

常微分方程的理论和方法在科学与工程领域有着广泛的应用,对于建模和求解实际问题具有重要意义。

以上是高等数学中的一些重要知识点,它们构成了数学分析的基本理论体系,对于理解数学的基本概念、方法和技巧具有重要的意义。

二、高等数学的考试重点在高等数学的考研过程中,以下是一些较为重要的考试重点知识点。

1. 极限和微分极限和微分是高等数学的基本理论,对于研究生入学考试而言,它们是比较重要的考试重点。

在考试中,可能涉及到函数的极限、无穷小量、导数、微分等内容,考生需要熟练掌握相应的定义、定理和求解方法。

2. 积分和微分方程积分和微分方程是微积分的重要应用,也是研究生入学考试的考试重点。

在考试中,可能涉及到不定积分、定积分、导数与积分的关系、常微分方程的基本理论和方法等内容,考生需要对这些知识点有所掌握。

3. 级数与收敛性级数与收敛性是数学分析中的一个重要概念,也是研究生入学考试的考试重点。

在考试中,可能涉及到数项级数、函数项级数、级数收敛的判别法等内容,考生需要对级数理论有所了解。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。

考研数学高数知识点归纳

考研数学高数知识点归纳

考研数学高数知识点归纳考研数学是众多考研科目中的重要一环,高等数学作为数学基础课程,其知识点广泛且深入。

以下是对考研数学高数知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和求法- 无穷小的比较和等价无穷小替换- 函数的连续性、间断点及其分类- 连续函数的性质和应用二、导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数和隐函数的求导法则- 微分的概念、几何意义和应用- 导数的四则运算和复合函数的求导法则三、微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式和麦克劳林公式- 导数在几何上的应用,如曲线的切线、法线和弧长- 导数在物理上的应用,如速度、加速度和变力做功四、不定积分与定积分- 不定积分的定义和基本计算方法- 定积分的定义、性质和计算- 牛顿-莱布尼茨公式- 定积分在几何和物理上的应用,如面积、体积和功五、多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开六、重积分与曲线积分、曲面积分- 二重积分和三重积分的定义和计算方法- 曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理七、无穷级数- 常数项级数的收敛性判别- 幂级数和函数的泰勒级数展开- 函数项级数的一致收敛性- 傅里叶级数和傅里叶变换八、常微分方程- 一阶微分方程的求解方法,如分离变量法、变量替换法等- 高阶微分方程的求解,如常系数线性微分方程- 微分方程的物理背景和应用结束语:考研数学高数部分要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。

通过对上述知识点的系统学习和深入理解,考生可以为考研数学的高数部分打下坚实的基础。

希望每位考生都能在考研数学的征途上取得优异的成绩。

考研用到的高数基础知识

考研用到的高数基础知识

考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。

考研数学会考备考知识点汇总

考研数学会考备考知识点汇总

考研数学会考备考知识点汇总考研数学解答题主要考查综合运用知识的能力.逻辑推理能力.空间想象能力以及分析.解决实际问题的能力,包括计算题.证明题及应用题等,综合性较强,下面是小编为大家整理的有关考研数学会考备考知识点汇总,希望对你们有帮助!考研数学会考备考知识点汇总11.两个重要极限,未定式的极限.等价无穷小代换这些小的知识点在历年的考察中都比较高.而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题.2.处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法.比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点.数三的同学这儿结合经济类的一些试题进行考察.3.微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了.对于二阶常系数线性微分方程大家一定要理解解的结构.另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势.这一类问题就是逆问题.对于二阶常系数非齐次的线性方程大家要分类掌握.当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点.4.级数问题,主要针对数一和数三这部分的重点是:一.常数项级数的性质,包括敛散性;二.牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算.对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和.5.一维随机变量函数的分布这个要重点掌握连续性变量的这一块.这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的.另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性.6.随机变量的数字特征要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察.特别针对数一的同学来说,考察矩估计和似然估计的时候会考察无偏性.7.参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是似然估计,这两个集中出大题.数一的同学,咱们特别强调一点,考这个矩估计或者似然估计,极有可能结合无偏性或者有效性进行考察.考研数学会考备考知识点汇总21.函数.极限与连续:主要考查极限的计算或已知极限确定原式中的常数.讨论函数连续性和判断间断点类型.无穷小阶的比较.讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根.2.一元函数微分学:主要考查导数与微分的定义.各种函数导数与微分的计算.利用洛比达法则求不定式极限.函数极值.方程的的个数.证明函数不等式.与中值定理相关的证明.值.最小值在物理.经济等方面实际应用.用导数研究函数性态和描绘函数图形.求曲线渐近线.3.一元函数积分学:主要考查不定积分.定积分及广义积分的计算.变上限积分的求导.极限等.积分中值定理和积分性质的证明.定积分的应用,如计算旋转面面积.旋转体体积.变力作功等.4.多元函数微分学:主要考查偏导数存在.可微.连续的判断.多元函数和隐函数的一阶.二阶偏导数.多元函数极值或条件极值在与经济上的应用.二元连续函数在有界平面区域上的值和最小值.此外,数学一还要求会计算方向导数.梯度.曲线的切线与法平面.曲面的切平面与法线.5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序.数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式.6.微分方程及差分方程:主要考查一阶微分方程的通解或特解.二阶线性常系数齐次和非齐次方程的特解或通解.微分方程的建立与求解.差分方程的基本概念与一介常系数线形方程求解方法考研数学会考备考知识点汇总3一.理解并牢记导数定义导数定义是考研数学的出题点,大部分以选择题的形式出题,_年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:1)在某点的领域范围内.2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是_年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存在且相等的选项.3)导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导,请同学们记清楚了.4)掌握导数定义的不同书写形式.二.导数定义相关计算已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的.三.导数.可微与连续的关系函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导.这也常常应用在做题中.四.导数的计算导数的计算可以说在每一年的考研数学中都会涉及到,而且形式不一,考查的方法也不同.要能很好的掌握不同类型题,首先就需要我们把基本的导数计算弄1)基本的求导公式.指数函数.对数函数.幂函数.三角函数和反三角函数这些基本的初等函数导数都是需要记住的,这也告诉我们在对函数变形到什么形式的时候就可以直接代公式,也为后面学习不定积分和定积分打基础.2)求导法则.求导法则这里无非是四则运算,复合函数求导和反函数求导,要求四则运算记住求导公式;复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则,我们可求出很多函数的导数;反函数求导法则为我们开辟了一条新路,建立函数与其反函数之间的导数关系,从而也使我们得到反三角函数求导公式,这些公式都将要列为基本导数公式,也要很好的理解并掌握反函数的求导思路,在_年数二的考试中相应的考过,请同学们注意.3)常见考试类型的求导.通常在考研中出现四种类型:幂指函数.隐函数.参数方程和抽象函数.这四种类型的求导方法要熟悉,并且可以解决他们之间的综合题,有时候也会与变现积分求导结合,94年,96年,_年和_年都查了参数方程和变现积分综合的题目.五.高阶导数计算高阶导数的计算在历年考试出现过,比如_年,_年,_年,都以填空题考查的,_年是一道解答题.需要同学们记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的.这里还有一种题型就是结合莱布尼茨公式求高阶导数的,_年出的题目就是考察的这两个知识点.考研数学复习重难点归纳及备考指南考研数学试卷内容结构:卷种考试内容/分值比例数学一数学二数学三高等数学(或微积分)78%56%线性代数_%_%_%概率论与数理统计_%/_%高等数学部分:函数.极限.连续部分,两个重要极限,未定式的极限,主要的等价无穷小,,还有极限存在性的问题和间断点的判断以及它的分类,这些在历年真题当中出现的概率比较高,属于重点内容,但很基础,不是难点,因此这部分内容一定不要丢分. 微分学的部分我们主要还是要掌握一元函数微分学,多元函数微分学考也是考的,但是它的重点还是在一元函数微分学.一元函数微分学需要掌握这几个关系:连续性.可导性.可微性的关系,另外要掌握各种函数求导数的方法,特别注意一元函数的应用问题,这是一个考试的重点.一元函数微分学的涉及面很广,题型非常多,比如说中值定理部分,中值定理部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,零点问题,以及极值和凹凸性.对于多元函数微分学,要掌握几大性质之间的关系,连续性.偏导性和可微性以及一阶连续可偏导的关系,这几个关系一定要搞得很清楚.另外一个就是各种函数求偏导的方法,要分类.还有就是关于多元函数微分学的应用,主要是要注重条件极值,最值问题.积分学部分我们首先要掌握的第一个重点是不定积分和定积分的基本计算.基本计算类型.这个对有些同学来说可能不难,但是想要拿到满分的话还要有一定的基础,尤其要强调一定的计算能力.那么如何使用定积分性质去解决问题这里包含定积分的奇偶性.周期性.单调性以及在特定区间上三角函数定积分的性质.另外定积分的应用是一个重点,主要考虑面积问题.体积问题及跟微分方程相结合的问题.对于要考数学一的考生来说,这个曲线和曲面积分的部分主要掌握格林公式和高斯公式以及曲线积分与路径无关的条件.第四个部分就是微分方程与差分方程.差分方程只对数三考生要求,但不是重点.我们在这里讲两个重点,一个重点就是一阶线性微分方程;第二个就是二阶常系数齐次/ 非齐次线性微分方程.空间解析几何部分,这个只对考数一的同学要求,不是重点.级数问题要掌握两个重点:一.常数项级数性质问题,尤其是如何判断级数的敛散性,二.幂级数,大家要熟练掌握幂级数的收敛区间.收敛半径.和函数以及幂级数的展开问题.线性代数部分的重点有如下几个方面:一.矩阵的逆阵和矩阵的秩的问题二.向量组的线性相关性与向量的线性表示三.方程组的解的讨论.待定参数的解的讨论问题四.特征值.特征向量的性质以及矩阵的对角化五.正定二次型的判断概率统计部分(数二不考):一.概率的性质与概率的公式我们是需要掌握的,这个要需要去熟练地掌握,比方说加法公式.减法公式.乘法公式.条件概率公式.全概率公式以及 Bayes公式.二.一维随机变量函数的分布.这个重点要掌握连续性变量部分.三.多维随机变量的联合分布和边缘分布及其随机变量的独立性.这个是考试的重点.难点.四.随机变量的数字特征,这是一个很重点的内容.五.参数估计.参数估计的点估计法包含矩估计法和极大似然估计,这是一个重点内容.考研数学会考备考知识点汇总。

考研高数每章总结知识点

考研高数每章总结知识点

考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。

二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。

三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。

四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。

五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。

总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。

在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。

考研数一归纳知识点

考研数一归纳知识点

考研数一归纳知识点考研数学一(高等数学)是考研数学中难度较大的科目,它涵盖了高等数学的多个重要领域。

以下是考研数学一的归纳知识点:1. 函数、极限与连续性:- 函数的概念、性质和分类。

- 极限的定义、性质和求法。

- 函数的连续性及其判断方法。

2. 导数与微分:- 导数的定义、几何意义和物理意义。

- 基本导数公式和导数的运算法则。

- 高阶导数的概念和求法。

- 微分的概念和微分中值定理。

3. 积分学:- 不定积分和定积分的概念、性质和计算方法。

- 换元积分法和分部积分法。

- 定积分的应用,如面积、体积和物理量的计算。

4. 级数:- 级数的概念、收敛性判断。

- 正项级数的收敛性判断方法,如比较判别法和比值判别法。

- 幂级数和泰勒级数。

5. 多元函数微分学:- 多元函数的概念、偏导数和全微分。

- 多元函数的极值问题和条件极值问题。

6. 重积分与曲线积分:- 二重积分和三重积分的概念和计算方法。

- 对坐标的曲线积分和曲面积分。

7. 常微分方程:- 一阶微分方程的解法,如可分离变量方程、线性微分方程等。

- 高阶微分方程的解法,如常系数线性微分方程。

8. 解析几何:- 空间直线和平面的方程。

- 空间曲线和曲面的方程。

9. 线性代数:- 矩阵的运算、行列式、特征值和特征向量。

- 线性空间和线性变换的概念。

- 线性方程组的解法。

10. 概率论与数理统计:- 随机事件的概率、条件概率和独立性。

- 随机变量及其分布,包括离散型和连续型随机变量。

- 数理统计中的参数估计和假设检验。

结束语:考研数学一的知识点广泛且深入,要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。

因此,考生在复习过程中需要注重理解、练习和总结,以提高解题能力和应试技巧。

希望以上的归纳能够帮助考生更好地准备考研数学一的考试。

考研数学一详细知识点总结

考研数学一详细知识点总结

考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。

通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。

行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。

2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。

矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。

3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。

线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。

4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。

通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。

5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。

向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。

6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。

通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。

二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。

概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。

随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。

2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。

研究生数学复试知识点总结

研究生数学复试知识点总结

研究生数学复试知识点总结一、高等数学1. 极限与连续极限的定义、性质、极限存在与否、无穷大与无穷小、洛必达法则、泰勒公式、连续的定义、连续函数的性质2. 导数与微分导数与微分的定义、性质、求导法则、高阶导数、函数的微分、导数与微分的应用3. 积分学不定积分、定积分、积分性质、积分方法、定积分的应用、广义积分、变上限积分4. 多元函数微积分偏导数、全微分、多元函数的极值与最优化、隐函数与参数方程求导、重积分5. 线性代数行列式、矩阵与行列式、向量与矩阵、向量空间及其性质、线性变换二、概率论与数理统计1. 随机事件与概率概率的基本概念、古典概型与几何概型、事件的运算、条件概率、独立事件、重复独立实验、伯努利概型与二项分布2. 随机变量及其分布随机变量的定义、分布函数、密度函数、常见离散型、连续型随机变量及其分布、随机变量的函数的分布3. 多维随机变量及其分布二维随机变量的联合分布、边缘分布、条件分布、独立性、随机变量的函数的分布4. 数理统计样本与统计量、参数估计、区间估计、假设检验、方差分析、相关性与回归分析三、数学分析1. 数列的极限数列的概念、极限的定义、数列极限的性质、收敛子列、无穷小量、无穷大量2. 函数的极限函数极限的概念、极限存在性与运算法则、函数极限的性质、无穷小量、无穷大量3. 函数的连续性连续函数的概念、连续函数的性质、连续函数的运算、间断点与间断函数4. 导数与微分函数的导数与微分的定义、性质、求导法则、高阶导数、微分中值定理5. 积分学不定积分、定积分、积分性质、积分方法、变上限积分、定积分的应用、广义积分6. 一元函数积分学变限积分、牛顿-莱布尼茨公式、定积分的性质、反常积分、积分中值定理7. 函数级数函数项级数的概念、级数收敛性的判别法、幂级数及其收敛区间四、常微分方程1. 一阶微分方程一阶微分方程的基本概念、可分离变量方程、一阶线性微分方程、常系数齐次线性微分方程2. 高阶线性微分方程高阶线性微分方程的概念、线性齐次微分方程、非齐次微分方程、常系数齐次线性微分方程3. 变参数线性微分方程非齐次线性微分方程的特解、常数变易法、欧拉方程五、离散数学与组合数学1. 逻辑与命题命题的概念、命题的逻辑联结词、充分必要条件、充要条件、充分条件、等价命题2. 集合论集合及其运算、集合的基本关系、集合的基数3. 代数结构代数系统及其性质、子群、剩余类4. 图论图、连通性、欧拉图、哈密顿图、树、生成树5. 抽象代数群、环、域的概念、子群、同态映射、同态定理六、数学建模1. 数学建模基础数学建模的基本概念、建模方法2. 数学建模案例分析典型数学建模案例、建模过程与方法、模型的评价与改进七、其他1. 离散数学图论、逻辑、集合论、代数系统2. 函数分析度量空间、赋范空间、拓扑空间3. 实分析Lebesgue积分、实变函数、泛函分析4. 复分析复变函数、解析函数总结:以上是研究生数学复试的知识点总结,希望大家能够认真学习,掌握好这些知识点,取得优异的成绩!。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

考研数学常考知识点整理

考研数学常考知识点整理

考研数学常考知识点整理一、代数部分1.1 数学基础知识1.1.1 函数与方程1.1.1.1 基本函数与其性质1.1.1.2 方程与不等式1.1.2 数列与数列极限1.1.2.1 等差数列与等比数列1.1.2.2 数列极限的定义与性质1.1.3 概率与统计1.1.3.1 随机事件与概率计算1.1.3.2 排列组合与基本统计知识二、微积分部分2.1 极限与连续2.1.1 极限的定义与性质2.1.2 连续的概念与判定2.2 导数与微分2.2.1 导数的定义与性质2.2.2 微分的概念与计算2.3 积分2.3.1 不定积分与定积分的概念2.3.2 基本积分公式与常见积分方法2.3.3 几何应用与物理应用三、线性代数部分3.1 矩阵与行列式3.1.1 矩阵的基本运算与性质3.1.2 行列式的定义与计算3.2 向量空间与线性变换3.2.1 向量空间与子空间的概念3.2.2 线性变换的定义与性质四、概率论与数理统计部分4.1 随机变量与概率分布4.1.1 随机变量的定义与常见概率分布 4.1.2 期望与方差的计算4.2 参数估计与假设检验4.2.1 参数估计的方法与性质4.2.2 假设检验的基本原理与步骤五、常微分方程部分5.1 一阶常微分方程5.1.1 可分离变量与线性方程5.1.2 齐次方程与一阶线性方程 5.2 高阶常微分方程5.2.1 二阶常系数线性齐次方程5.2.2 二阶非齐次线性方程六、离散数学部分6.1 图论与树6.1.1 图的基本概念与性质6.1.2 树的定义与常见性质6.2 排列组合与离散概率6.2.1 排列与组合的基本计算6.2.2 离散概率的计算与应用以上是考研数学常考知识点的整理,希望对你的学习有所帮助。

记得多做练习题,夯实基础,理解概念及性质,注重对解题方法的掌握与应用。

加油!。

考研数学二必背公式及知识点

考研数学二必背公式及知识点

考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。

下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。

一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。

周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。

2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。

两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。

3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。

二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。

2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。

考研数学备考:数一的7个常考知识点

考研数学备考:数一的7个常考知识点

考研数学备考:数一的7个常考知识点1500字数学一是考研数学科目中的一部分,也是很多考生备考的重点。

在备考数学一时,有一些常考知识点是必须要掌握的,下面我将列举七个常考知识点,并详细介绍它们的相关内容。

1. 极限与连续:极限与连续是数学分析的基础,也是数学一考试中的重要内容。

要理解极限和连续的概念,并掌握基本定理和方法。

其中包括函数的极限存在性、无穷小与无穷大的比较、函数的连续性、连续函数的运算等。

2. 导数与微分:导数与微分是微积分研究的核心内容,考生需要熟悉导数的定义、导数的计算方法、高阶导数的概念和计算、隐函数求导、参数方程的导数等。

此外,还需要掌握微分的概念、微分中值定理、泰勒公式等重要内容。

3. 级数:级数是数学分析中的重要内容,也是考研数学一中的考察点。

要掌握级数的概念、级数的敛散性判别法、级数收敛的性质、级数的运算等。

此外,还需要会应用级数判断函数的连续性、可导性等。

4. 微分方程:微分方程是数学分析与实际问题联系的重要桥梁,也是考研数学一的考察内容。

要熟悉常微分方程的基本概念、常微分方程的解法、变量可分离方程、一阶线性微分方程、二阶线性常系数齐次与非齐次微分方程等。

5. 多元函数微分学:多元函数微分学是微积分的重要内容,也是考研数学一中的考察点。

要掌握多元函数的极限、偏导数、全微分、多元函数的极值、条件极值、隐函数与显函数的求导等。

同时,还需要会应用多元函数微分学解决实际问题。

6. 多元函数积分学:多元函数积分学是微积分的另一个重要内容,也是考研数学一中的考察点。

要熟悉多元函数的重积分、重积分的计算方法、曲线、曲面积分的概念和计算方法、格林公式、高斯公式等。

7. 线性代数:线性代数是考研数学一中的一部分,要掌握矩阵的基本概念、矩阵的运算、矩阵的特征值和特征向量、线性方程组及其解法、线性空间与子空间等。

此外,还需要会应用线性代数解决实际问题。

以上是数学一备考中的常考知识点,考生在备考过程中要注重理论知识的学习与掌握,并结合大量的练习题进行巩固和提高。

考研数一知识点总结大全

考研数一知识点总结大全

考研数一知识点总结大全一、极限与连续1. 函数极限:定义、性质、极限存在准则、无穷小与无穷大、夹逼定理、洛必达法则等。

2. 数列极限:定义、性质、单调有界数列的极限、无穷小与无穷大、柯西收敛准则等。

3. 连续性:函数连续的概念、常用函数的连续性、间断点的分类与性质、闭区间连续函数的性质等。

二、微分学1. 导数的定义:函数在一点处的导数、导数的几何意义、导数的物理意义等。

2. 导数的运算:常见函数的导数、高阶导数、导数的四则运算、高阶导数的Leibniz 公式等。

3. 微分中值定理:拉格朗日中值定理、柯西中值定理、洛必达法则等。

4. 隐函数与参数方程的求导:隐函数的导数、参数方程的求导、高阶导数的计算等。

三、积分学1. 不定积分:基本初等函数的不定积分、换元积分法、分部积分法等。

2. 定积分:定积分的定义、性质、牛顿-莱布尼茨公式、定积分中值定理等。

3. 积分中值定理:第一中值定理、第二中值定理等。

4. 微积分基本定理:微积分基本定理的两种形式、牛顿公式、柯西公式、Leibniz公式等。

四、级数1. 数项级数的收敛性:数项级数的概念、正项级数的收敛性判别法、一般项级数的审敛法、绝对收敛与条件收敛等。

2. 收敛级数的性质:收敛级数的四则运算、级数收敛性的不等式判别法、级数收敛的Cauchy准则等。

3. 函数项级数:函数项级数的概念、一致收敛性、函数项级数的积分法、逐项积分与微分等。

五、常微分方程1. 常微分方程的基本概念:常微分方程的定义、解的概念、初值问题、解的存在唯一性等。

2. 一阶常微分方程:可分离变量方程、一阶线性微分方程、齐次方程及一阶可降阶线性微分方程等。

3. 高阶常微分方程:高阶线性常微分方程、常系数齐次线性方程、常系数非齐次线性方程、欧拉方程等。

4. 线性常微分方程组:齐次线性常微分方程组、非齐次线性常微分方程组、解的结构等。

六、偏微分方程1. 偏微分方程的基本概念:偏微分方程的定义、分类、特征曲线、解的概念等。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

考研数学二专业知识点总结

考研数学二专业知识点总结

考研数学二专业知识点总结
一、线性代数
1.1 线性方程组及其解的表示
1.2 行列式及其应用
1.3 矩阵及其运算
1.4 线性空间
1.5 线性变换
1.6 特征值和特征向量
1.7 对称矩阵的对角化
1.8 正交矩阵的特征值与特征向量
二、概率与统计
2.1 随机变量及其分布
2.2 多元随机变量及其分布
2.3 随机变量的数字特征
2.4 多元随机变量的数字特征
2.5 大数定律与中心极限定理
2.6 统计推断
2.7 回归分析
2.8 方差分析
三、常微分方程
3.1 一阶常微分方程
3.2 高阶常微分方程
3.3 线性常系数微分方程
3.4 非齐次线性常系数微分方程及其应用
3.5 矩阵微分方程
3.6 非线性微分方程
3.7 特殊常微分方程
3.8 线性化与稳定性
四、偏微分方程
4.1 扩散方程
4.2 波动方程
4.3 热传导方程
4.4 边值问题
4.5 分离变量法
4.6 特征线法
4.7 变分法
4.8 黎曼问题
以上是数学二专业的知识点总结,这些知识点都是考研数学二专业的重要内容,希望同学们在备战考研数学二专业的时候,能够仔细复习这些知识点,掌握这些知识,提高数学二专业的成绩。

考研数学备考:数三中常考知识点

考研数学备考:数三中常考知识点

考研数学备考:数三中常考知识点1500字考研数学备考中,数学三是一个非常重要的科目。

它涵盖了较多的知识点,需要我们进行系统的学习和复习。

下面我将介绍一些数三中常考的知识点,供大家参考。

1. 极限与连续:- 函数极限的概念和性质,如极限存在准则、函数极限的四则运算、夹逼定理等。

- 数列极限的概念和性质,如数列极限的四则运算、夹逼定理等。

- 连续函数的定义和性质,如连续函数的四则运算、连续函数的复合、连续函数的保号性等。

2. 一元函数微分学:- 函数的导数和导数的基本运算法则,如常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数计算。

- 高阶导数的计算和应用,如泰勒公式、极值、凹凸性等。

- 隐函数的导数计算,如隐函数定理等。

3. 一元函数积分学:- 积分的基本概念和性质,如定积分的定义、定积分的性质、积分中值定理等。

- 基本积分公式和换元积分法、分部积分法的应用。

- 微积分基本定理,如牛顿—莱布尼茨公式等。

4. 多元函数微分学:- 多元函数的偏导数和偏导数的应用,如多元函数的全微分、多元函数的极值、隐函数偏导数计算等。

- 多元函数的方向导数和梯度,如方向导数的计算公式、梯度的计算公式等。

5. 多元函数积分学:- 二重积分和三重积分的概念和性质,如积分的可加性、积分的线性性质等。

- 二重积分和三重积分的计算方法,如极坐标法、累次积分法等。

- 曲线积分和曲面积分的概念和计算方法,如格林公式、斯托克斯公式等。

6. 常微分方程:- 常微分方程的基本概念和性质,如初值问题、解的存在唯一性等。

- 一阶常微分方程的求解方法,如分离变量法、齐次方程法、一阶线性常微分方程法等。

- 高阶常微分方程的求解方法,如常系数齐次线性方程、常系数非齐次线性方程等。

以上是考研数学三中常考的知识点的简单介绍。

备考过程中,我们需要系统地学习这些知识点,并进行大量的练习和习题训练,以提高自己的解题能力和应试水平。

同时,要善于总结归纳,将学过的知识点整理成思维导图或笔记,方便复习时查阅和回顾。

考研高等数学全面复习资料(电子版)

考研高等数学全面复习资料(电子版)

高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突破130分大关!目录一、函数与极限21、集合的概念22、常量与变量32、函数43、函数的简单性态44、反函数55、复合函数66、初等函数67、双曲函数及反双曲函数78、数列的极限89、函数的极限910、函数极限的运算规则11一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作∅,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学备考技巧:知识点清单
来源:智阅网
考研数学的基本考查模块分为:线性代数、概率和微积分,每个模块都有其考查侧重点,考生在备考之前最好列出一个类似目录的单子,将每个模块下面细分的知识点都清清楚楚的标识出来,这样对后面冲刺期的学习都是非常有好处的。

例如下面这种格式的“线性代数必考知识点汇总”:
一、行列式
二、矩阵:矩阵、矩阵的逆矩阵、矩阵的秩
三、向量:向量的基本概念及相关性理论、向量组的秩与向量组等价、向量空间、基及向量的坐标
四、线性方程组
五、特征值与特征向量:概念与性质、矩阵对角化
六、二次型及其标准形:概念与性质原理、正定矩阵与正定二次型
这样列出后,考生在学习时遇到任何问题都可以快捷的找到对应的知识点,并了解其重要性,按照轻重缓急来安排自己的备考计划,更重要的是,这些知识点所对应的常考题型要多做一些,学会深度理解这些知识点并运用它拿到高分。

比如《考研数学15年真题解析与方法指导》,里面将历年真题按照知识点的不同来安排并进行详解,非常有利于考生深度理解并学习举一反三,方法还是蛮科学的。

相关文档
最新文档