2018年普通高等学校招生全国统一考试模拟试题(数学理)

合集下载

2018全国1-3数学试题理

2018全国1-3数学试题理

2018年普通高等学校招生全国统一考试理科数学 (全国 Ⅰ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0B .12C .1D . 22.(2018·高考全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}3.(2018·高考全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .125.(2018·高考全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x6.(2018·高考全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →7.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .28.(2018·高考全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C交于M ,N 两点,则FM →·FN →=( )A .5B .6C .7D .89.(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x , x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)10.(2018·高考全国卷Ⅰ)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.(2018·高考全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .32B .3C .2 3D .412.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0x -y +1≥0y ≤0,则z =3x +2y 的最大值为________.14.(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 15.(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.(2018·高考全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(2018·高考全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB ; (2)若DC =22,求BC .18.(2018·高考全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.19.(2018·高考全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .20.(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 21.(2018·高考全国卷Ⅰ)已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.22.(2018·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程. 23.(2018·高考全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.2018年普通高等学校招生全国统一考试理科数学 (全国 Ⅱ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅱ)1+2i 1-2i=( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i2.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5D .43.(2018·高考全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )4.(2018·高考全国卷Ⅱ)已知向量a ,b 满足|a|=1,a·b =-1,则a·(2a -b )=( ) A .4 B .3 C .2D .05.(2018·高考全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x6.(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30C .29D .2 57.(2018·高考全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了右侧的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +48.(2018·高考全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112B .114C .115D .1189.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .2210.(2018·高考全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π11.(2018·高考全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .5012.(2018·高考全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________.14.(2018·高考全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0x -2y +3≥0x -5≤0,则z =x +y 的最大值为________.15.(2018·高考全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 16.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.18.(2018·高考全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5 t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.20.(2018·高考全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值.21.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .22.(2018·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 23.(2018·高考全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.2018年普通高等学校招生全国统一考试理科数学 (全国 Ⅲ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2} D .{0,1,2} 2.(2018·高考全国卷Ⅲ)(1+i)(2-i)=( ) A .-3-i B .-3+i C .3-iD .3+i3.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.(2018·高考全国卷Ⅲ)若sin α=13,则cos 2α=( )A .89B .79C .-79D .-895.(2018·高考全国卷Ⅲ)(x 2+2x )5的展开式中x 4的系数为( )A .10B .20C .40D .806.(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]7.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )8.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A .0.7B .0.6C .0.4D .0.39.(2018·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( ) A .π2B .π3C .π4D .π610.(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 311.(2018·高考全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A . 5B .2C . 3D . 212.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.14.(2018·高考全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. 15.(2018·高考全国卷Ⅲ)函数f (x )=cos(3x +π6)在[0,π]的零点个数为________.16.(2018·高考全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .18.(2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超不超过m过m第一种生产方式第二种生产方式(3)根据(2) 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2≥k )0.0500.0100.001 k3.8416.63510.82819.(2018·高考全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.20.(2018·高考全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差.21.(2018·高考全国卷Ⅲ)已知函数f (x )=(2+x +ax 2)ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .22.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.(2018·高考全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.。

2018年普通高等学校招生全国统一考试仿真卷 理科数学

2018年普通高等学校招生全国统一考试仿真卷 理科数学

绝密★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(一)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N = ()A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0M N = .选D .2.[2018·台州期末](i 为虚数单位)班级姓名准考证号 考场号 座位号此卷只装订不密封A .2B .1C .12D.2【答案】C11i 22z ∴=-=,选C . 3.[2018·德州期末]如图所示的阴影部分是由x 轴及曲线sin y x =围成,在矩形区域OABC 内随机取一点,则该点取自阴影部分的概率是()A .2πB .12C .1πD .3π【答案】A【解析】由题意,得矩形区域OABC 的面积为1π1πS =⨯=,阴影部分的面积为OABC 内随机取一点,则该点取自阴影部分的概率为212πS P S ==.故选A . 4.[2018·滁州期末]A .4-B .4C.13-D .13【答案】C【解析】sin 2costan 2ααα-=-⇒=,C .5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2 B.4+ C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三2,且侧棱与底面垂直,侧棱长是2,∴几C .6.[2018·天津期末]已知实数x ,y 满足2210x y x y +-⎧⎪⎨⎪⎩≥≤≥,若z x my =+的最大值为10,则m =() A .1 B .2 C .3 D .4【答案】B【解析】作出可行域,如图ABC △内部(含边界),其中()2,4A ,()2,1B ,()1,1C -,若A 是最优解,则2410m +=,2m =,检验符合题意;若B 是最优解,则210m +=,8m =,检验不符合题意,若8m =,则z 最大值为34;若C 是最优解,则110m -+=,11m =,检验不符合题意;所以2m =,故选B .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是()A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++ ,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为() A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 当P ,A ,B 不共线时,PAB △面积的最大值是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A.BC.3D.3【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·郴州一中]双曲线2222:1(0,0)xy C a b a b -=>>的离心率3e =,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,AOFOAF ∠=∠,AOF △的面积为,则双曲线C 的方程为()A .2213612x y -= B .221186x y -= C .22193x y -= D .2213x y -=【答案】C【解析】由点A 所在的渐近线为0,bx ay -=三个该渐近线的倾斜角为α,则,AOF OAF ∠=∠ ,所以直线AF 的倾斜角为2α,2222tan 2tan21tan aba bααα==--, 与0bx ay -=联立解得122AOFab S cab c ∴=⨯⨯==△,因为双曲线的离心率3e =b a ∴=,与ab =联立得3a =,b =22193x y -=.故选C .11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为() A.(0,2 B.(0,3C.(2+ D.(2+【答案】C【解析】因为ABC △为锐角三角形,所以cos 2C <<;又因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则(,22t ∈⎭,又因为函数242y t t =+在( ,22⎭上单调递增,所以函数值域为(2,故选:C .12.[2018·济南期末]若关于x 的方程e 0e e xx xx m x ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,e 2.71828= 为自然对数的底数,则3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为() A .1 B .e C .1m - D .1m +【答案】A【解析】101t m t ++=+,()()2110t m t m ∴++++=,由韦达定理可得()1a b t t m +=-+,1a b t t m ⋅=+,()()3131131111x x x x t t e e ⎛⎫⎛⎫∴++=++ ⎪⎪⎝⎭⎝⎭()()1313=+1=11+1=1t t t t m m ++-+++,可得:31223121111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为1,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。

2018年普通高等学校招生全国统一考试模拟试题二 数学(理科)含答案

2018年普通高等学校招生全国统一考试模拟试题二 数学(理科)含答案

2018年普通高等学校招生全国统一考试模拟试题二数学(理科)本试卷共5页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则{}R 12,1,0,1,2,{|0}2x A B x x -=--=≥+ðA B ⋂=A. B. C . D. {}1,0,1-{}1,0-{}2,1,0--{}0,1,22.已知,αβ是相异两平面,,m n 是相异两直线,则下列命题中错误的是A.若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβC.若,//m m αβ⊥,则αβ⊥ D .若//,m n ααβ= ,则//m n 3.变量服从正态分布,,则直线X ()()210,,12X N P X a σ>= ()810P X b ≤≤=过定点1ax by +=A . B . C . D .(1,1)(1,2)(2,1)(2,2)4.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“”aMODb 表示除以的余数),若输入的分别为675,125,a b ,a b 则输出的( )a =A. 0 B . 25 C. 50 D. 755.记不等式组表示的平面区域为,点的坐标为.222 20x y x y y +≤⎧⎪+≥⎨⎪+≥⎩ΩM (),x y 已知命题: , 的最小值为6;p M ∀∈Ωx y -命题: ,; 则下列命题中的真命题是q M ∀∈Ω224205x y ≤+≤A. B . C. D .都是假命p q ∨p q ∧q ⌝p q p q q ∨∧⌝、、题6.设为椭圆的两个焦点,若点在圆上,21,F F 22:1C x my +=1F 2221:(2F x y n m++=则椭圆的方程为C A . B .C. D .2212y x +=2221x y +=2212x y +=2221x y +=7.若,则的展开式中含项的系数为20cos a xdx π=⎰6(2)ax x+-5x A . B . C . D .24-12-12248.已知定义在上的奇函数满足,当时,R ()f x ()()2f x f x +=-[]0,1x ∈,则()21x f x =-A. B. ()()11672f f f ⎛⎫<-<⎪⎝⎭()()11762f f f ⎛⎫<-< ⎪⎝⎭C. D . ()()11762f f f ⎛⎫-<<⎪⎝⎭()()11672f f f ⎛⎫<<- ⎪⎝⎭9.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以,,,,为A B C D E顶点的多边形为正五边形,且.下列关系中正确的是512PT AT -=A . B .512BP TS RS +-= 512CQ TP ++= C .D . 512ES AP BQ --= 512AT BQ -+= 10.已知函数在上的最大值为,最小值为,则()2sin(26f x x π=+[,]()4a a a R π-∈1y 2y 的取值范围是1y 2y -A .B .C .D .[22][2,2][211.对于任一实数序列,定义为序列,它的{} ,,,321a a a A =A ∆{} ,,,342312a a a a a a ---第项是,假定序列的所有项都是,且,则n n n a a -+1)(A ∆∆10201718==a a =2018a A . B .1000C. 1009 D .2018012.已知,,若存在,,使得}0)(|{==ααf M {|()0}N g ββ==M ∈αN ∈β,则称函数与互为“和谐函数”.若与1||<-βα)(x f )(x g 2()23x f x x -=+-互为“和谐函数”则实数的取值范围为3)(2+--=a ax x x g a A.B.C .D.),2(+∞),2[+∞)3,2(),3(+∞二、填空题:本大题共4小题,每题5分,满分20分.把答案填在题中的横线上.13.设复数(其中为虚数单位),则复数的实部为_____,虚部为_____.23z i=-i z 14.点为双曲线的右焦点,点为双曲线上位于第二象限的F 2222:1(0,0)x y E a b a b-=>>P 点,点关于原点的对称点为,且,,则双曲线的离心P Q 2PF FQ =5OP a =E 率为_____.15.在数列中,如果存在非零常数,使得对于任意的正整数均成立,那么就{}n a T n T n a a +=n 称数列为周期数列,其中叫数列的周期.已知数列满足:{}n a T {}n a {}n b ,21(*)n n n b b b n N ++=-∈若,当数列的周期最小时,该数列的前2018项的和是11b =,2(,0)b a a R a =∈≠{}n b _____.16.一个正八面体的外接球的体积与其内切球的体积之比的比值为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. (本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,M 为AC 的中点,且.44cos 3sin a b C c B =+(Ⅰ)求的大小;cos B (Ⅱ)若求的面积.45,52ABM a ∠==ABC ∆18. (本小题满分12分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()AQI (指数越小,空气质量越好)统计表.根据表中数据回答下列问题:AQIB 1(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统AQI 抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随AQI 机抽样抽取到的样本的编号是19号,写出抽出的样本数据;(2)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为AQI (含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的0~50数据,空气质量级别为一级的天数为,求的分布列及数学期望;ξξ(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?19.(本小题满分12分)如图,底面为直角三角形的三棱柱中,111ABC A B C -AB AC =,点在棱上,且平面01160A AB A AC ∠=∠=D BC 1//A C 1ADB (Ⅰ)求二面角的余弦值;11--A B C D(Ⅱ)求与平面所成角的正弦值.1AB ABC 20.(本小题满分12分)已知点为轴上的动点,以为边作菱形,使其对角线的交点恰好落01,AB (,)y AB ABCD 在轴上.x (Ⅰ)求动点的轨迹的方程;D E (Ⅱ)过点的直线交轨迹于两点,分别过点作轨迹的切线,A l E M N 、M N 、E 12l l 、且与交于点.1l 2l P (ⅰ)证明:点在定直线上,并写出定直线的方程;P (ⅱ)求的面积的最小值.OMN ∆21.(本小题满分12分)已知函数.()()ln 1axf x x a R x =-∈+(Ⅰ)讨论函数的单调性;()f x (Ⅱ)若有两个极值点,证明: .()f x 12,x x ()()121222f x f x x x f ++⎛⎫<⎪⎝⎭(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线,曲线21cos :(sin x C y θθθ=+⎧⎨=⎩为参数),以xOy 1:4C x y +=坐标原点为极点,轴的正半轴为极轴建立极坐标系.O x (I )求曲线的极坐标方程;12,C C (II )若射线与曲线的公共点分别为,求OBOA的最大值.)0(≥=ραθ12,C C ,A B 23. (本小题满分10分)选修4-5:不等式选讲已知, , ,函数.0a >0b >0c >()f x c a x x b =+-++(I )当时,求不等式的解集;1a b c ===()3f x >(II )当的最小值为时,求的值,并求的最小值.()f x 3a b c ++111a b c++2018年普通高等学校招生全国统一考试模拟试题(二)参考答案一、选择题: 二、填空题:15.16. 1,21346三、解答题17. (Ⅰ) 由题设知:4sin()4sin 4sin cos 3sin sin B C A B C C B+==+题号123456789101112答案CDDBAABDADBC4cos 3sin 0B B ∴=>即.………………4分29cos ,25B ∴=3cos 5B =(II )取的中点,连,则且AB N MN //MN BC MN =,……………7分4sin sin 5BNM B ∴∠==由知: sin sin sin BM MN MN BNM NBM ABM ==∠∠∠0452145sin 45BM =⨯⨯=……………9分 (120243)2sin(45)4524255ABC MBC S S BM BC B ∆∆∴==-=⨯-= 分18.解:(1)系统抽样,分段间隔, 抽出的样本的编号依次是4号、9号、143056k ==号、19号、24号、29号, 对应的样本数据依次是、2856、94、48、40、221.……………3分(2)随机变量所有可能的取值为0,1,2,3,且ξ33336()(0,1,2,3)k kC C P k k C ξ-===,,,,1(0)20P ξ∴==9(1)20P ξ==9(2)20P ξ==1(3)20P ξ==随机变量的分布列为:ξξ0123P120920920120所以.……………9分 1991()0123 1.520202020E ξ=⨯+⨯+⨯+⨯=(3)2016年11月指数为一级的概率,2017年11月指数为一级的概率AQI 1730P =AQI ,21730P =,说明这些措施是有效的.……………12分21P P >19.(Ⅰ)解:连,得连;1A B 11,A B AB O = OD 则平面平面,且为的中点OD =1ADB 1A CB O 1A B ∵平面1//A C 1ADB ∴,且为的中点……………2分1//A C OD D BC ,1AB AC AA == 01160A AB A AC ∠=∠=∴111,A B AC A A ==1,A D BC AD BC ⊥⊥设,又底面为直角三角形得2BC a =11,2A D AD a AB AC AA a=====∴,即,得平面……………4分0190A DA ∠=1A D AD ⊥1A D ⊥ABC 以为原点,分别为轴建立空间直角坐标系,D 1,,DA DB DA ,,x y z 则,1(,0,0),(0,,0),(0,,0),(0,0,)A a B a C a A a -由知:,得,111////AA BB CC 111(,0,)AA BB CC a a ===-1(,,)B a a a -;1(,,)C a a a --∴,……11111(0,2,0),(2,,),(,,),(0,0,)B C a AB a a a DB a a a DA a =-=-=-=…6分设且平面,则1(,,)n x y z =1n ⊥11AB C 1112020n B C ay n AB ax ay az ⎧=-=⎪⎨=-+-=⎪⎩取得;设平面,同理:1x =1(1,0,2)n =2n ⊥11DB C 且……………8分2(1,0,1)n =∴,故二面角;12cos ,n n ==11--A B C D …10分又为平面的法向量,且,1DA ABC 11cos ,DA AB ==∴与平面分1AB ABC 20.解:(Ⅰ)设,则由题设知:, 由知(,)D x y (0,)B y -AB AD =,222(1)(1)x y y +-=+得为动点的轨迹的方程;……………4分24(0)x y y =≠D E (Ⅱ) (ⅰ)由(Ⅰ)知:,设,则'2x y =1122()()M x y N x y ,、,221212,;44x x y y == 由题设知:,得221212(1)(1)44x x AM x AN x =-=- ,、,222112(1)(1)44x x x x -=-;124x x =-切线的方程为 切线的方程为∴1111:()2x l y y x x -=-211;24x x y x =-2l 222;24x x y x =-两者联立得:;即点在定直线上;1212124x x x x x y ===-+,P 1y =-……………9分 (ⅱ)由(Ⅰ)及(ⅰ)知:2212121212111()4()162;222OMN S OA x x x x x x x x ∆=-=+-=++≥即点时,.……………12分 (0,1)P -min ()2OMN S ∆=21.解:(Ⅰ),2221(1)(2)1'()(0)(1)(1)a x ax x a x f x x x x x x +-+-+=-=>++;2(2)4(4)a a a ∆=--=-当时,,在上单调递增;4a ≤'()0f x >()f x (0,)+∞当时,在上单调递增,在4a >()f x上单调递减,在上)+∞单调递增;……………6分(Ⅱ)由(Ⅰ)知:,且,4a >12122,1x x a x x +=-=,1221121212(1)(1)()()ln (1)(1)ax x ax x f x f x x x a x x +++∴+=-=-++而,12122222()()ln ln (2)2222212a a x x a a a f f a a -+---==-=---+ 1212()()2()ln 2()2222x x f x f x a a f h a ++-∴-=-+=,得在上为减函数,又,214'()(1)0222(2)a h a a a -∴=-=<--()h a (4,)+∞(4)0h =即;则.……………12分()0h a <1212()()(22x x f x f x f ++<22.解:(I )曲线的极坐标方程为,1C 4)sin (cos =+θθρ曲线的普通方程为,所以曲线的极坐标方程为. 2C 1)1(22=+-y x 2C θρcos 2=…………4分(II )设,,因为是射线与曲线的公共点,所以不妨),(1αρA ),(2αρB ,A B αθ=12,C C 设,则,,24παπ≤<-ααρsin cos 41+=αρcos 22=21||12cos (cos sin )||4OB OA ραααρ∴==⨯+, ⎥⎦⎤⎢⎣⎡+-=++=1)42cos(241)12sin 2(cos 41πααα所以当时,取得最大值. ……………10分 8πα=||||OA OB 412+23.解:(I )()111f x x x =-+++B1A1C C1A或或,解得1{ 123x x ≤-∴->11{ 33x -<<>1{ 213x x ≥+>或.……………5分{|1x x <-1}x >(II )()3f x c a x x b a x x b c a b c a b c =+-++≥-+++=++=++=,()11111111333b a c a c b a b c a b c a b c a b a c b c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++=++++=++++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.当且仅当时取得最小值.……………10分()1322233≥+++=1a b c ===319.如图,在三棱柱体,平面平面,.111ABC A B C -11A B C ⊥11AA C C 090BAC ∠=(I )证明:;1AC CA ⊥(II )若是正三角形,,求二面角的大小.11A B C 22AB AC ==1A AB C --3π。

2018年普通高等学校招生全国统一考试模拟试卷理科数学无答案

2018年普通高等学校招生全国统一考试模拟试卷理科数学无答案

2018年普通高等学校招生全国统一考试模拟试卷(一)理科数学第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合()(){}的解的个数方程232412+-=-=x x A ,{}2,1,0=B ,则B A =( )A. ∅B. {}0C. {}1 D. {}2 2. 若复数()()2321a a a i-++-是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .1-3. 直线1l :0742=--y x 与直线2l :052=-+y x 的位置关系为( ) A. 相交但不垂直 B.平行 C.相交且垂直 D.不确定4. 在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S =5. 一个正方体内切球的表面积为π8,则该正方体外接球的表面积为( ) A. π4 B. π12 C. π21 D. π246. 在ABC ∆,已知30,10,6===B c b ,则解此三角形的结果是( )A. 无解B. 一解C. 两解D. 不能确定 7. 已知函数)(x f 为奇函数,当0>x 时,)1()(x x x f +=;当0<x 时,=)(x f ( ) A. )1(x x -- B. )1(x x - C. )1(x x +- D. )1(x x + 8. 执行右侧的程序框图,输出的S =( )A .14B .20C .30D .559. 某同学用计算器产生了两个[0,1]之间的均匀随机数,分别记作,x y ,当y<x 时,12x >的概率是( )A. 43B. 21C. 83D. 10310. 右侧图中的几何体由7个小的立方体堆叠而成,如果用表示一个立方体,用表示两个立方体叠加,用表示三个立方体叠加,其主视图是( )A .B .C .D .11. 已知直线l 与椭圆141622=+y x 交于A 、B 两点,)1,2(M 是弦AB 的中点,则直线l 的方程为( )A. 024=+-y xB. 042=-+y xC. 062=-+y xD. 0132=--y x12. 已知实系数一元二次方程2(1)10x a x a b +++++=的两个实根为1x 、2x ,并且102x <<,22x >.则1ba -的取值范围是( )A.(-1,-第II 卷本卷包括必考题和选考题两部分。

2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。

2018年普通高等学校招生全国统一考试模拟试题理科数学(二)Word版含解析

2018年普通高等学校招生全国统一考试模拟试题理科数学(二)Word版含解析

2018年普通高等学校招生全国统一考试模拟试题理科数学(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】先解指数不等式得到集合,然后再求出即可.【详解】由题意得,∴.故选D.【点睛】本题考查指数函数单调性的应用以及集合交集的求法,解题的关键是正确求出集合,属于容易题.2.设为虚数单位,复数满足,则共轭复数的虚部为()A. B. C. D.【答案】C【解析】【分析】根据条件求出复数,然后再求出共轭复数,从而可得其虚部.【详解】∵,∴,∴,∴复数的虚部为.故选C.【点睛】本题考查复数的乘除法的运算及共轭复数的概念,其中正确求出复数是解题的关键,对于复数的运算,解题时一定要按照相关的运算法则求解,特别是在乘除运算中一定不要忘了.3.学生李明上学要经过个路口,前三个路口遇到红灯的概率均为,第四个路口遇到红灯的概率为,设在各个路口是否遇到红灯互不影响,则李明从家到学校恰好遇到一次红灯的概率为()A. B. C. D.【答案】A【解析】【分析】分两种情况求解:①前三个路口恰有一次红灯,第四个路口为绿灯;②前三个路口都是绿灯,第四个路口为红灯.分别求出概率后再根据互斥事件的概率求解即可.【详解】分两种情况求解:①前三个路口恰有一次红灯,且第四个路口为绿灯的概率为;②前三个路口都是绿灯,第四个路口为红灯的概率为.由互斥事件的概率加法公式可得所求概率为.故选A.【点睛】求解概率问题时,首先要分清所求概率的类型,然后再根据每种类型的概率公式求解.对于一些比较复杂的事件的概率,可根据条件将其分解为简单事件的概率求解,再结合互斥事件的概率加法公式求解即可.4.已知双曲线方程为,为双曲线的左、右焦点,为渐近线上一点且在第一象限,且满足,若,则双曲线的离心率为()A. B. C. D.【答案】B【解析】【分析】由可得为直角三角形,又得;由于,所以,故得为正三角形,所以得到直线的倾斜角为,即,由此可得离心率.【详解】设为坐标原点,∵,∴为直角三角形.又的中点,∴.∵,∴,∴为正三角形,∴直线的倾斜角为,∴.∴离心率.故选B.【点睛】求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.5.已知为锐角,,则的值为()A. B. C. D.【答案】D【解析】【分析】由题意可求得,进而可得,然后再根据两角和的正弦公式求解即可.【详解】∵,又为锐角,∴.∴,∴.故选D.【点睛】对于给值求值的三角变换问题,在解题时要注意根据条件及所求灵活应用公式,将所给的条件进行变形,逐步达到求解的目的,同时在解题过程中还要注意三角函数值符号的处理,避免出现错误.6.执行如图所示的程序框图,则输出的的值为()A. B. C. D.【答案】B【解析】【分析】逐次运行框图中的程序可得所求的结果.【详解】逐步运行程序框图中的程序,可得:第一次:,不满足条件,继续运行;第二次:,不满足条件,继续运行;第三次:,不满足条件,继续运行;第四次:,不满足条件,继续运行;第五次:,不满足条件,继续运行;第六次:,不满足条件,继续运行;第七次:,不满足条件,继续运行;所以输出的的值周期出现,且周期为6,因此当时,.故选B.【点睛】解答程序框图输出结果的问题时要注意两点:一是要搞清程序框图能实现的功能;二是要搞清程序框图的结构,若是条件结构,则要分清条件及程序的流向;若是循环结构,则要分清循环体以及终止条件.然后依次运行程序框图中的程序,逐步得到输出的结果.7.,则的值为()A. B. C. D.【答案】C【解析】【分析】运用赋值法求解,令和令即可.【详解】在展开式中,令,得,令,得,∴.故选C.【点睛】因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.8.某几何体三视图如图所示,则该几何体的表面积为()A. B.C. D.【答案】C【解析】【分析】由三视图得到几何体,然后根据几何体的特征求出其表面积即可.【详解】由三视图可得几何体如下,可得该几何体是正方体被切去了个球.故几何体的表面积为.故选C.【点睛】以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系,然后再根据所求进行解题即可.9.已知,则不可能满足的关系是()A. B.C. D.【答案】D【解析】【分析】由可得,从而可得,故,然后对给出的四个选项分别进行判断即可得到结论.【详解】∵,∴,∴,整理得.对于A,由于,解得,所以A成立.对于B,由于,解得,所以B成立.对于C,,所以C成立.对于D,由于,所以,因此D不成立.。

2018年普通高等学校招生全国统一考试模拟试题理数试题(解析版)

2018年普通高等学校招生全国统一考试模拟试题理数试题(解析版)

2018年普通高等学校招生全国统一考试模拟试题理数试题(解析版)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知虚数单位,复数对应的点在复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】因为=所对应的点为,在第四项限.故答案为:D.2. 已知集合,,若,则实数的取值范围为()A. B. C. D.【答案】D【解析】},若,则故答案为:D.3. 设,,,,为实数,且,,下列不等式正确的是()A. B. C. D.【答案】D【解析】取a=2,b=4,c=3,d=2,d-a=0,c-b=-1,此时d-a>c-b,A错误;取a=2,b=3,小,则,,此时,B错误;取b=3,a=,c=1,d=-3,,C错误;对于D ,D 正确.故选D.4. 设随机变量,则使得成立的一个必要不充分条件为()A. 或B.C.D. 或【答案】A【解析】由,得到=,故3m=3,得到m=1,则使得成立的充要条件为m=1,故B 错误;因为是的真子集,故原题的必要不充分条件为或.故答案为:A.5. 执行如图所示的程序框图,若输出的结果,则判断框内实数应填入的整数值为( )A. 998B. 999C. 1000D. 1001 【答案】A【解析】因为令则故当根据题意此时退出循环,满足题意,则实数M 应填入的整数值为998, 故答案为:A.6. 已知公差不为0的等差数列的前项和为,若,则下列选项中结果为0的是( )A. B. C. D.【答案】C【解析】由得到,因为公差不为0,故=0,由等差数列的性质得到,故答案为:C.7. 设,分别为双曲线(,)的左、右顶点,过左顶点的直线交双曲线右支于点,连接,设直线与直线的斜率分别为,,若,互为倒数,则双曲线的离心率为( )A. B. C.D.【答案】B【解析】由圆锥曲线的结论知道故答案为:B.8. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是几何体的三视图,则该几何体的体积为()A. B. C. 16 D.【答案】A【解析】由已知中的三视图得到该几何体是一个半圆柱挖去了一个三棱锥,底面面积为,高为4,该几何体的体积为故答案为:A .9. 已知曲线和直线所围成图形的面积是,则的展开式中项的系数为()A. 480B. 160C. 1280D. 640【答案】D【解析】由题意得到两曲线围成的面积为=故答案为:D.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.10. 在平面直角坐标系中,为坐标原点,,,,,设,,若,,且,则的最大值为()A. 7B. 10C. 8D. 12【答案】B【解析】已知,,,得到因为,,故有不等式组表示出平面区域,是封闭的三角形区域,当目标函数过点(2,4)时取得最大值,为10. 故答案为:B.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值;注意解答本题时不要忽视斜率不存在的情形.11. 如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则( )A. B. C. D.【答案】C【解析】由椭圆的光学性质得到直线平分角,因为由,得到,故 .故答案为:C.12. 将给定的一个数列:,,,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将作为第一组,将,作为第二组,将,,作为第三组,…,依次类推,第组有个元素(),即可得到以组为单位的序列:,,,…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第个括号称为第群,从而数列称为这个分群数列的原数列.如果某一个元素在分群数列的第个群众,且从第个括号的左端起是第个,则称这个元素为第群众的第个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,),…,以此类推.设该数列前项和,若使得成立的最小位于第个群,则()A. 11 B. 10 C. 9 D. 8【答案】B【解析】由题意得到该数列的前r组共有个元素,其和为则r=9时,故使得N>14900成立的最小值a位于第十个群.故答案为:B.点睛:这个题目考查的是新定义题型,属于数列中的归纳推理求和问题;对于这类题目,可以先找一些特殊情况,总结一下规律,再进行推广,得到递推关系,或者直接从变量较小的情况开始归纳得到递推关系.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若函数为偶函数,则__________.【答案】-1【解析】由偶函数的定义得到,即=即恒成立,k=-1.故答案为:-1.14. 已知,,则__________.【答案】【解析】=,故=,因为,故=,故,故.故答案为:.15. 中华民族具有五千多年连绵不断的文明历史,创造了博大精深的中华文化,为人类文明进步作出了不可磨灭的贡献.为弘扬传统文化,某校组织了国学知识大赛,该校最终有四名选手、、、参加了总决赛,总决赛设置了一、二、三等奖各一个,无并列.比赛结束后,对说:“你没有获得一等奖”,对说:“你获得了二等奖”;对大家说:“我未获得三等奖”,对、、说:“你们三人中有一人未获奖”,四位选手中仅有一人撒谎,则选手获奖情形共计__________种.(用数字作答)【答案】12【解析】设选手ABCD获得一等奖,二等奖,三等奖,分别用表示获得的奖次,其中i=0时,表示为获奖,若C说谎,则若B说谎则等九种情况,若A说谎则若D说谎则,公12种情况.故答案为:12.16. 已知为的重心,点、分别在边,上,且存在实数,使得.若,则__________.【答案】3【解析】设连接AG并延长交BC于M,此时M为BC的中点,故故存在实数t使得,得到故答案为:3.点睛:本题考查了向量共线定理、平面向量基本定理、考查了推理能力与计算能力,属于中档题.在解决多元的范围或最值问题时,常用的解决方法有:多元化一元,线性规划的应用,均值不等式的应用,“乘1法”与基本不等式的性质,等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,所对的边分别为,,,已知.(1)求角的大小;(2)若的面积,为边的中点,,求.【答案】(1);(2)5.【解析】试题分析:(1)由正弦定理,得,又,进而得到;(2)的面积,得,两边平方得到,结合两个方程得到结果. 解析:(1)因为,由正弦定理,得.又,所以,即.因为,故.所以.(2)由的面积,得.又为边的中点,故,因此,故,即,故.所以.18. 市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占领了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:月份市场份额请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额.如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元;当时,企业平均每天收入约为400万元;当时,企业平均每天收入约为700万元.①设该企业在六月份每天收入为,求的数学期望;②如果将频率视为概率,求该企业在未来连续三天总收入不低于1200万元的概率.附:回归直线的方程是,其中,,【答案】(1);预测该企业2017年7月份的市场份额为23%.(2) ①;②.【解析】试题分析:(1)根据题中数据得到,,,,代入样本中心值得到,进而得到方程,将x=7代入方程即可;(2)由题干知设该企业每天亏损约为200万元为事件,平均每天收入约达到400万元为事件,平均每天收入约达到700万元为事件,则,,,进而得到分布列和均值;由第一小问得到未来连续三天该企业收入不低于1200万元包含五种情况,求概率之和即可.解析:(1)由题意,,,故,,由得,则.当时,,所以预测该企业2017年7月的市场份额为23%.(2)①设该企业每天亏损约为200万元为事件,平均每天收入约达到400万元为事件,平均每天收入约达到700万元为事件,则,,.故的分布列为所以(万元).②由①知,未来连续三天该企业收入不低于1200万元包含五种情况.则.所以该企业在未来三天总收入不低于1200万元的概率为0.876.19. 如图,在三棱柱中,侧面为矩形,,,为棱的中点,与交于点,侧面,为的中点.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)取中点为,连接,,,可证明四边形为平行四边形,进而得到线面平行;(2)建立坐标系得到直线的方向向量和面的法向量,由向量的夹角公式得到要求的线面角.解析:(1)取中点为,连接,,,由,,,,得,且,所以四边形为平行四边形.所以,又因为平面,平面,所以平面.(2)由已知.又平面,所以,,两两垂直.以为坐标原点,,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,则经计算得,,,,因为,所以,所以,,.设平面一个法向量为,由令,得.设直线与平面所成的角为,则.20. 已知焦点为的的抛物线:()与圆心在坐标原点,半径为的交于,两点,且,,其中,,均为正实数.(1)求抛物线及的方程;(2)设点为劣弧上任意一点,过作的切线交抛物线于,两点,过,的直线,均于抛物线相切,且两直线交于点,求点的轨迹方程.【答案】(1)答案见解析;(2).【解析】试题分析:(1)由题意可得到将点A坐标代入方程可得到m=2,进而得到点A的坐标,由点点距得到半径;(2)设,,,,由直线和曲线相切得到,:,同理:,联立两直线得,根据点在圆上可消参得到轨迹.解析:(1)由题意,,故。

2018年全国普通高等学校高考数学模拟试卷理科一参考答案与试题解析

2018年全国普通高等学校高考数学模拟试卷理科一参考答案与试题解析

2018年全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣116.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF 的位置,并使PF⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i【解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣63【解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.【解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣1【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,所以:b n=a2n﹣1﹣a2n==﹣22n﹣4,则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD 上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【解答】解:∵PF ⊥AF ,PF ⊥EF ,AF ∩EF=F , ∴PF ⊥平面ABCD .设PF=x ,则0<x <1,且EF=DF=x .∴五边形ABCEF 的面积为S=S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2). ∴五棱锥P ﹣ABCEF 的体积V=(3﹣x 2)x=(3x ﹣x 3),设f (x )=(3x ﹣x 3),则f′(x )=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x )>0,∴f (x )在(0,1)上单调递增,又f (0)=0,f (1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A ,B ,C 的对边a ,b ,c 分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O ﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.【解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z服从正态分布N(μ,σ2),且μ=,σ≈,∴P(<Z<)=P(﹣<Z<+)=,∴Z落在(,)内的概率是.②根据题意得X~B(4,),;;;;.∴X的分布列为X01234P∴.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f (1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n ≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。

2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案

2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案

2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案2018年普通高等学校招生全国统一考试理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则AB =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos2α=( ) A .89B .79C .79- D .89- 5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数422y xx =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC∆为等边三角形且其面积为93则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设12F F ,是双曲线22221xy C ab-=:(00a b >>,)的左,右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若16PFOP=,则C 的离心率为( )A 5B .2C 3D 212.设0.2log0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1xy ax e =+在点()01,处的切线的斜率为2-,则a =________.第二种生产方式⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc Ka b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.⑴证明:12k <-; ⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.⑴若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;⑵若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答。

2018届普通高等学校招生全国统一模拟考试数学(理)试卷(扫描版)

2018届普通高等学校招生全国统一模拟考试数学(理)试卷(扫描版)

2017—2018学年度高三年级第三次模拟考试理科数学参考答案一.选择题:A 卷:CDDBB BBACD DA B 卷:CADBB BBDCDDA二.填空题: (13)4(14)0.8185(15)(-∞,-1)∪(0,1)(16)[32,1)三.解答题: 17.解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 依题意有,⎩⎨⎧1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2, …4分 故a n =2n -1,b n =2n,…6分(2)由已知c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n, 所以数列{c n }的前2n 项和为S 2n =(a 1+a 3+…a 2n -1)+(b 2+b 4+…b 2n )=n (1+4n -3)2+4(1-4n )1-4=2n 2-n + 4 3(4n -1). …12分18.解:(1)两队所得分数的茎叶图如下A 球队所得分数比较集中,B 球队所得分数比较分散.…6分(2)记C A 1表示事件:“A 球队攻击能力等级为较强”,C A 2表示事件:“A 球队攻击能力等级为很强”; C B 1表示事件:“B 球队攻击能力等级为较弱”,C B 2表示事件:“B 球队攻击能力等级为较弱或较强”,则C A 1与C B 1独立,C A 2与C B 2独立,C A 1与C A 2互斥,C =(C A 1C B 1)∪(C A 2C B 2).P (C )=P (C A 1C B 1)+ P (C A 2C B 2)=P (C A 1)P (C B 1)+P (C A 2)P (C B 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1420,320,520,1820,故P (C A 1)=1420,P (C A 2)=320,P (C B 1)=520,P (C B 2)=1820, P (C )=1420×520+320×1820=0.31.…12分19.解:(1)∵AB ∥CD ,PC ⊥CD ,∴AB ⊥PC , ∵AB ⊥AC ,AC ∩PC =C ,∴AB ⊥平面PAC ,∴AB ⊥PA ,又∵PA ⊥AD ,AB ∩AD =A , ∴PA ⊥平面ABCD ,PA 平面PAB , ∴平面PAB ⊥平面ABCD . …5分 (2)连接BD 交AE 于点O ,连接OF , ∵E 为BC 的中点,BC ∥AD , ∴BO OD = BE AD = 12, ∵PD ∥平面AEF ,PD 平面PBD , 平面AEF ∩平面PBD =OF , ∴PD ∥OF , ∴BF FP = BO OD = 12, …7分以AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz , 则A (0,0,0),B (3,0,0),C (0,3,0),D (-3,3,0),P (0,0,3),E (3 2, 32,0),F (2,0,1), 设平面ADF 的法向量m =(x 1,y 1,z 1), ∵AF →=(2,0,1),AD →=(-3,3,0),由AF →·m =0,AD →·m =0得⎩⎨⎧2x 1+z 1=0,-3x 1+3y 1=0,取m =(1,1,-2).…9分设平面DEF 的法向量n =(x 2,y 2,z 2),∵DE →=( 9 2,- 3 2,0),EF →=( 1 2,- 32,1),由DE →·n =0,EF →·n =0得⎩⎨⎧ 9 2x 2- 32y 2=0, 1 2x 2- 32y 2+z 2=0,取n =(1,3,4). …11分cos m ,n=m ·n |m ||n |=-23939, ∵二面角A -DF -E 为钝二面角,∴二面角A -DF -E 的余弦值为-23939.…12分20.解:(1)由已知可得|PD |=|PE |,|BA |=|BD |,|CE |=|CA |, 所以|PB |+|PC |=|PD |+|DB |+|PC |=|PE |+|PC |+|AB | =|CE |+|AB |=|AC |+|AB |=4>|BC |所以点P 的轨迹是以B ,C 为焦点的椭圆(去掉与x 轴的交点),可求的方程为x 24+y 23=1(y ≠0). …5分(2)由O ,D ,C 三点共线及圆的几何性质,可知PB ⊥CD , 又由直线CE ,CA 为圆O 的切线,可知CE =CA ,O A =O E , 所以△OAC ≌△O EC ,进而有∠ACO =∠ECO ,所以|PC |=|BC |=2,又由椭圆的定义,|PB |+|PC |=4,得|PB |=2,所以△PBC 为等边三角形,即点P 在y 轴上,点P 的坐标为(0,±3) …7分 (i)当点P 的坐标为(0,3)时,∠PBC =60,∠BCD =30, 此时直线l 1的方程为y =3(x +1),直线CD 的方程为y =-33(x -1), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =3(x +1)整理得5x 2+8x =0,得Q (- 8 5,-335),所以|PQ |=165,由⎩⎪⎨⎪⎧x 24+y 23=1,y =-33(x -1)整理得13x 2-8x -32=0,设M (x 1,y 1),N (x 2,y 2),x 1+x 2=813,x 1x 2=-3213,|MN |=1+ 1 3|x 1-x 2|=4813,所以四边形MPNQ 的面积S =1 2|PQ |·|MN |=38465.…11分(ii)当点P 的坐标为(0,-3)时,由椭圆的对称性,四边形MPNQ 的面积为38465.综上,四边形MPNQ 的面积为38465.…12分21.解:(1)g (a )=ln a 2+4a a 2+a 2-2=2(ln a +1a-1), …1分g (a )=2(1a-1a2)=2(a -1)a2,…2分所以0<a <1时,g (a )<0,g (a )单调递减;a >1时,g (a )>0,g (a )单调递增,所以g (a )的最小值为g (1)=0.…5分(2)f(x )= 1x -4a (x +a 2)2=x 2+(2a 2-4a )x +a4x (x +a 2)2,x >0.因为y =f (x )有三个不同的零点,所以f (x )至少有三个单调区间, 而方程x 2+(2a 2-4a )x +a 4=0至多有两个不同正根,所以,有⎩⎨⎧2a 2-4a <0,Δ=16a 2(1-a )>0,解得,0<a <1. …8分由(1)得,当x ≠1时,g (x )>0,即ln x +1x-1>0,所以ln x >-1x,则x >e -1x (x >0),令x =a 22,得a 22>e - 2a 2.因为f (e - 2a 2)<- 2a 2+4a-2=-2(a -1)2a2<0,f (a 2)>0, f (1)=4a 1+a 2-2=-2(a -1)21+a 2<0,f (e 2)=4a e 2+a2>0,所以y =f (x )在(e - 2a 2,a 2),(a 2,1),(1,e 2)内各有一个零点, …11分 故所求a 的范围是0<a <1.…12分22.解:(1)由x =ρcos θ,y =ρsin θ得椭圆C 极坐标方程为ρ2(cos 2θ+2sin 2θ)=4,即ρ2=41+sin 2θ; …2分 直线l 的极坐标方程为ρsin θ=2,即ρ= 2sin θ.…4分(2)证明:设A (ρA ,θ),B (ρB ,θ+2),-2<θ<2.由(1)得|OA |2=ρ2A =41+sin 2θ,|OB |2=ρ2B = 4 sin 2(θ+ 2)=4cos 2θ, …7分由S △OAB = 1 2×|OA |×|OB |= 12×|AB |×h 可得,h 2=|OA |2×|OB |2|AB |2=|OA |2×|OB |2|OA |2+|OB |2=2.…9分故h 为定值,且h =2. …10分23.解:(1)由题意得|x -1|≥|2x -3|,所以|x -1|2≥|2x -3|2…2分整理可得3x 2-10x +8≤0,解得 4 3≤x ≤2,故原不等式的解集为{x | 43≤x ≤2}.…5分(2)显然g (x )=f (x )+f (-x )为偶函数, 所以只研究x ≥0时g (x )的最大值.…6分g (x )=f (x )+f (-x )=|x -1|-|2x -3|+|x +1|-|2x +3|,所以x ≥0时,g (x )=|x -1|-|2x -3|-x -2=⎩⎪⎨⎪⎧-4, 0≤x ≤1,2x -6,1<x < 3 2,-2x , x ≥ 32, …8分所以当x = 32时,g (x )取得最大值-3,故x =± 32时,g (x )取得最大值-3.…10分。

2018年普通高等学校招生全国统一考试模拟试题理科数学2

2018年普通高等学校招生全国统一考试模拟试题理科数学2

2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.【答案】B【解析】∵集合∴∵集合∴∴∵集合∴故选B.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.【答案】A【解析】,根据两复数相等的充要条件得,即,其共轭复数为,故选A.........................3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数【答案】D【解析】,为常数,故选D.4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】A【解析】设,则.∴,∴所求的概率为故选A.5. 已知点为双曲线:(,)的右焦点,点到渐近线的距离是点到左顶点的距离的一半,则双曲线的离心率为()A. 或B.C.D.【答案】B【解析】由题意可得,双曲线的渐近线方程为,即.∵点到渐近线的距离是点到左顶点的距离的一半∴,即.∴,即.∴∴双曲线的离心率为.故选B.点睛:本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.6. 已知函数则()A. B. C. D.【答案】D【解析】,,的几何意义是以原点为圆心,半径为的圆的面积的,故,故选D.7. 执行如图程序框图,则输出的的值为()A. B. C. D.【答案】C【解析】第1次循环后,,不满足退出循环的条件,;第2次循环后,,不满足退出循环的条件,;第3次循环后,,不满足退出循环的条件,;…第次循环后,,不满足退出循环的条件,;…第次循环后,,不满足退出循环的条件,;第次循环后,,满足退出循环的条件,故输出的的值为. 故选C.8. 已知函数的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】B【解析】,因为函数()的相邻两个零点差的绝对值为,所以函数的最小正周期为,而,,故的图象可看作是的图象向右平移个单位而得,故选B.9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.【答案】A【解析】令,得,而常数项为,所以展开式中剔除常数项的各项系数和为,故选A.10. 某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A. B. C. D.【答案】B【解析】由三视图可得该几何体是六棱锥,底面是边长为1的正六边形,有一条侧棱垂直底面,且长为2,可以将该几何体补成正六棱柱,其外接球与该正六棱柱外接球是同一个球.故该几何体的外接球的半径,则该几何体的外接球的表面积是.故选B.点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解;(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.11. 设为坐标原点,点为抛物线:上异于原点的任意一点,过点作斜率为的直线交轴于点,点是线段的中点,连接并延长交抛物线于点,则的值为()A. B. C. D.【答案】C【解析】设点,点,则,.∵过点作斜率为的直线交轴于点,点是线段的中点∴∴直线的方程为.∴联立,解得,即.∴故选C.12. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数,若函数是定义在区间内的2级类周期函数,且,当时,函数,若,,使成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】是定义在区间内的级类周期函数,且,,当时,,故时,时,,而当时,,,当时,在区间上单调递减,当时,在区间上单调递增,故,依题意得,即实数的取值范围是,故选B.【方法点睛】本题主要考查分段函数函数的最值、全称量词与存在量词的应用以及新定义问题. 属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.【答案】【解析】∵向量,,且∴,即.∵∴故答案为.14. 已知,满足约束条件则目标函数的最小值为__________.【答案】【解析】由约束条件作出可行域如图所示:联立,解得.由目标函数化为,由图可知过时,直线在轴上的截距最大,此时最小,的最小值为.故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 在等比数列中,,且与的等差中项为,设,,则数列的前项和为__________.【答案】【解析】设等比数列的首项为,公比为.∵∴,即.∵与的等差中项为∴,即.∴,.∴∵∴数列的前项和为.故答案为.16. 有一个容器,下部是高为的圆柱体,上部是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为__________.【答案】【解析】设圆柱的底面半径为,圆锥的高为,则,故.∴该容器的体积.∴当时,,即在上为增函数;当时,,即在上为减函数.∴当时,取得最大值,此时,.故答案为点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果要与实际情况相结合,用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.【答案】(1),;(2).【解析】试题分析:(1)由及正弦定理化简可得即,从而得.又,所以,由余弦定理得;(2)由,得,所以.试题解析:(1)由及正弦定理得,即,在中,,所以.又,所以.在中,由余弦定理得,所以.(2)由,得,所以.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.【答案】(1)证明见解析;(2)为的中点.【解析】试题分析:(1)连接,,,与的交点为,连接,则,由正方形的性质可得,从而得平面,,又,所以;(2)由勾股定理可得,由(1)得所以底面,所以、、两两垂直.以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,设(),求得,利用向量垂直数量积为零可得平面的一个法向量为,利用空间向量夹角余弦公式列方程可解得,从而可得结果.试题解析:(1)连接,,,因为,,所以和均为正三角形,于是.设与的交点为,连接,则,又四边形是正方形,所以,而,所以平面.又平面,所以,又,所以.(2)由,及,知,于是,从而,结合,,得底面,所以、、两两垂直.如图,以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,,由,易求得.设(),则,即,所以.设平面的一个法向量为,由得令,得,设直线与平面所成角为,则,解得或(舍去),所以当为的中点时,直线与平面所成角的正弦值为.【方法点晴】本题主要考查利用线面垂直证明线线垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.【答案】(1);(2)①,②分布列见解析,.【解析】试题分析:(1)根据频率分布直方图,直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①根据服从正态分布,从而求出;②根据题意得,的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;;;;. ∴的分布列为0 1 2 3 4∴.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,点的坐标为,问直线与的斜率之和是否为定值?若是,求出该定值,若不是,试说明理由.【答案】(1);(2)定值为.【解析】试题分析:(1)由椭圆的几何性质可得,即可求得,的值,从而可得椭圆的标准方程;(2)联立直线与椭圆的方程得,根据判别式可得的取值范围,设,,结合韦达定理,对化简,从而可得出定值.试题解析:(1)由已知可得解得,.故所求的椭圆方程为.(2)由得,则,解得或.设,,则,,则,,∴,∴为定值,且定值为0.点睛:(1)解题时注意圆锥曲线定义的两种应用,一是利用定义求曲线方程,二是根据曲线的定义求曲线上的点满足的条件,并进一步解题.(2)求定值问题常见的方法:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)根据题意,由函数的解析式计算可得,由函数的导数与函数单调性的关系,分函数在区间上是为单调增函数和单调减函数两种情况讨论,分别求出的取值范围,综合即可得答案;(2)根据题意,对求导分析可得,由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,在区间内存在零点,同理,在区间内存在零点,由(1)的结论,只需在区间内两个零点即可,利用导数研究函数的单调性,从而可得实数的取值范围.试题解析:(1)由题意得,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得;当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理,在区间内存在零点.∴在区间内恰有两个零点.由(1)知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单调递减,在区间内单调递增.记的两个零点为,,∴,,必有,.由,得.∴,又∵,,∴.综上所述,实数的取值范围为.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22. 在平面直角坐标系中,圆的参数方程为(是参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的交点为,,若圆与圆外切,试求实数的值及线段的长.【答案】(1),;(2),.【解析】试题分析:(1)先将圆的参数方程化为直角坐标方程,再利用可得圆的极坐标方程,两边同乘以利用互化公式即可得圆的直角坐标方程;(2)由(1)知圆的圆心,半径;圆的圆心,半径,圆与圆外切的性质列方程解得,分别将代入、的极坐标方程,利用极径的几何意义可得线段的长.试题解析:(1)圆:(是参数)消去参数,得其普通方程为,将,代入上式并化简,得圆的极坐标方程,由圆的极坐标方程,得.将,,代入上式,得圆的直角坐标方程为.(2)由(1)知圆的圆心,半径;圆的圆心,半径,,∵圆与圆外切,∴,解得,即圆的极坐标方程为.将代入,得,得;将代入,得,得;故.【名师点睛】本题考查圆的参数方程和普通方程的转化、圆的极坐标方程和直角坐标方程的转化以及极径的几何意义,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只需利用转化即可.选修4-5:不等式选讲23. 已知函数.(1)求不等式;(2)若正数,满足,求证:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)对分三种情况讨论,分别求解不等式组,然后求并集,即可得不等式的解集;(2)先利用基本不等式成立的条件可得,所以.试题解析:(1)此不等式等价于或或解得或或.即不等式的解集为.(2)∵,,,,即,当且仅当即时取等号.∴,当且仅当,即时,取等号.∴.。

2018年普通高等学校招生全国统一考试全真模拟理科数学试题

2018年普通高等学校招生全国统一考试全真模拟理科数学试题

第3题2018年普通高等学校招生全国统一考试全真模拟试卷理 科 数 学注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案用黑色签字笔写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}1M x x =<,{}20N x x x =-<,则( ) A .M N ⊆B .N M ⊆C .{}1MN x x =<D .{}0MN x x =>2.设()()()2i 3i 35i x y +-=++(i 为虚数单位),其中x ,y 是实数,则ix y +等于( )A .5B C .D .23.执行右面的程序框图()N *∈N,那么输出的p 是( )A.33A N N ++B.22A N N ++C.11A N N ++D.A NN4,则sin 2a 的值为( )AB C .9D .95.()52111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 的系数为( )A .15B .15-C .5D .5-6.已知双曲线()222210,0x ya b a b-=>>左焦点为F ,过点F 与x 轴垂直的直线与双曲线的两条渐近线分别交于点M ,N ,若OMN △的面积为20,其中O 是坐标原点,则该双曲线的标准方程为( )A .22128x y -=B .22148x y -=C .22182x y -=D .22184x y -=7.某空间几何体的三视图如图所示,则该几何体的体积为( )A .42π+B .26π+C .4π+D .24π+8.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为( ) A .110B .15C .310D .259()f x ω的值为( )A .2 B .103 C .23 D .3810.在正三棱柱111ABC A B C - (底面是正三角形,侧棱垂直于底面的棱柱)中,所有棱长之和为定值a .若正三棱柱111ABC A B C -的顶点都在球O 的表面上,则当正三棱柱侧面积取得最大值24时,该球的表面积为( )A .B .323πC .12πD .643π11.已知椭圆()222210x y a b a b+=>>的短轴长为2,上顶点为A ,左顶点为B ,1F ,2F 分别是椭圆的左、右焦点,且1F AB △P 为椭圆上的任意一点,则1211PF PF +的取值范围为( )A .[]12, B .C .⎤⎦D .[]14,12.已知对任意21e e x ⎡⎤∈⎢⎥⎣⎦,不等式2e xa x >恒成立(其中e 271828=⋅⋅⋅.是自然对数的底数),则实数a 的取值范围是( )A .e 02⎛⎫⎪⎝⎭,B .()0e ,C .()2e -∞-,D .24e ⎛⎫-∞ ⎪⎝⎭,第Ⅱ卷:本卷包括必考题和选考题两部分。

衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题-有答案

衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题-有答案

2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}02|>-=x x A ,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛=121|xx B ,则( )A .{}20|≤<=x xB A B .{}0|<=x x B AC .{}2|<=x x B AD .R B A =2.已知i 为虚数单位,a 为实数,复数z 满足ai a i z +=+3,若复数z 是纯虚数,则( ) A .3=a B .0=a C .0≠a D .0<a3.我国数学家邹元治利用下图证明了购股定理,该图中用勾()a 和股()b 分别表示直角三角形的两条直角边,用弦()c 来表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是( )A .4925 B .4924 C .74 D .754.已知等差数列()n a 的前n 项和为n S ,且π=69S ,则=5tan a ( ) A .33 B .3 C.3- D .33- 5.已知函数())(R a xax x f ∈+=,则下列结论正确的是( ) A .)(,x f R a ∈∀在区间()∞+,0内单调递增 B .)(,x f R a ∈∃在区间()∞+,0内单调递减 C.)(,x f R a ∈∃是偶函数D .)(,x f R a ∈∃是奇函数,且()x f 在区间()∞+,0内单调递增 6.()()421x x -+的展开式中x 项的系数为( )A .-16B .16 C. 48 D .-487.如图是某个集合体的三视图,则这个几何体的表面积是( )A .424++πB .4242++π C. 2242++π D .4222++π 8.若10,1<<<>b c a ,则下列不等式不正确的是( ) A .b a 20182018log log > B .a a c b log log < C.bca c a a c a )()(->- D .()()bca b c a b c ->-9.执行如图所示的程序框图,若输出的n 值为11,则判断框中的条件可以是( )A .?1022<SB .?2018<S C. ?4095<S D .?4095>S 10.已知函数()⎪⎪⎭⎫ ⎝⎛π≤ϕ>ϕϕ+ϖ=20)sin(2,x x f 的部分图象如图所示,将函数()x f 的图象向左平移12π个单位长度后,所得图象与函数)(x g y =的图象重合,则( )A .()⎪⎭⎫ ⎝⎛π+=32sin 2x x g B .()⎪⎭⎫ ⎝⎛π+=62sin 2x x g B .C.()x x g 2sin 2= D .()⎪⎭⎫ ⎝⎛π-=32sin 2x x g 11.已知抛物线x y C 4:2=的焦点为F ,过点F 作斜率为1的直线l 交抛物线C 于Q P ,两点,则QFPF 11+的值为( ) A .21 B .87C. 1 D .2 12.已知数列{}n a 中,()*+∈+=-=N n a a a n a n n n ,1,211,若对于任意的[]*∈-∈N n a ,2,2,不等式12121-+<++at t n a n 恒成立,则实数t 的取值范围为( ) A .(][)+∞-∞-,22, B .(][)+∞-∞-,12, C. (][)+∞-∞-,21, D .[]2,2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()()1,3,,1=λ=b a ,若向量b a -2与()2,1=c 共线,则向量a 在向量c 放心上的投影为 .14.若实数y x ,满足⎪⎩⎪⎨⎧≥≤=+,1,2,4x y x y x 则13+-=y x z 的最大值是 .15.过双曲线()0,012222>>=-b a bx a y 的下焦点1F 作y 轴的垂线,交双曲线于B A ,两点,若以AB 为直径的圆恰好过其上焦点2F ,则双曲线的离心率为 .16.一底面为正方形的长方体各棱长之和为24,则当该长方体体积最大时,其外接球的体积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若B c C b A a cos cos cos 2+=. (1)求角A 的大小;(2)若点D 在边AC 上,且BD 是ABC ∠的平分线,4,2==BC AB ,求AD 的长.18. 如图,在三棱柱111C B A ABC -中,侧棱⊥1CC 底面ABC ,且BC AC BC AC CC ⊥==,221,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证://CD 平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为23时,求二面角11C MB A --的余弦值.19. 第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政数处为了调查学生对“一带一络"的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示. (1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数; (2)从所轴取的70分以上的学生中再随机选取4人. ①记X 表示选取4人的成绩的平均数,求)87(≥X P ;②记ξ表示测试成绩在80分以上的人数,求ξ的分布列和数学期望.20.已知椭圆 )0(12222>>=+b a b y a x C :的左、右焦点分别为21,F F ,离心率为31,点P 在椭圆C 上,且21F PF ∆的面积的最大值为22. (1)求椭圆C 的方程;(2)已知直线)0(2:≠+=k kx y l 与椭圆C 交于不同的两点N M ,,若在x 轴上存在点G ,使得GN GM =,求点G 的横坐标的取值范围.21. 设函数e R a a x a e x f x,),ln(2)(∈+--=为自然对数的底数.(1)若0>a ,且函数)(x f 在区间),0[+∞内单调递增,求实数a 的取值范围; (2)若320<<a ,试判断函数)(x f 的零点个数. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,椭圆C 的方程为141622=+x y ,以O 为极点,x 轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为3)3sin(=π+θρ. (1)求直线l 的直角坐标方程和椭圆C 的参数方程;(2)设),(y x M 为椭圆C 上任意一点,求132-+y x 的最大值. 23.选修4-5:不等式选讲 已知函数|2|)(-=x x f .(1)求不等式4)2()(≤++x f x f 的解集;(2)若)2()()(x f x f x g +-=的最大值为m ,对任意不想等的正实数b a ,,证明:||)()(b a m a bf b af -≥+.试卷答案一、选择题1-5: DBBCD 6-10: ABCCA 11、12:CA二、填空题13.0 14.31-15.21+ 16.π34 三、解答题17.解:(1)在ABC ∆中,∵B c C b A a cos cos cos 2+=, ∴由正弦定理,得B C C B A cos sin cos sin cos sin 2+=A CB sin )sin(=+=,∵0sin ≠A ,∴21cos =A , ∵()π∈,0A , ∴3π=A . (2)在ABC ∆中,由余弦定理得A AC AB AC AB BC cos 2222⋅-+=,即AC AC 24162-+=,解得131+=AC , 或131-=AC (负值,舍去)∵BD 是ABC ∠的平分线,4,2==BC AB , ∴21==BC AB DC AD ,∴313131+==AC AD . 18.解:(1)取线段1AB 的中点E ,连结EM DE ,. ∵1,EB AE DB AD ==, ∴1//BB DE ,且121BB DE =. 又M 为1CC 的中点, ∴1//BB CM ,且121BB CM =. ∴DE CM //,且DE CM =. ∴四边形CDEM 是平行四边形. ∴EM CD //.又⊂EM 平面⊄CD M AB ,1平面M AB 1, ∴//CD 平面1MAB .(2)∵1,,CC CB CA 两两垂直,∴以C 为原点,1,,CC CB CA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Cxyz ,如图,∵三棱柱111C B A ABC -中,⊥1CC 平面ABC , ∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1=AC ,则由23tan =∠MAC ,得23=CM . ∴()()()()⎪⎭⎫ ⎝⎛23,0,0,2,1,0,0,1,0,0,0,1,0,0,01M B B A C . ∴()2,1,1,23,0,11-=⎪⎭⎫ ⎝⎛-=AB AM , 设平面1AMB 的一个法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,02,0231z y x n AB z x n 令2=z ,得1,3-==y x ,即)2,1,3(-=n . 又平面11B BCC 的一个法向量为)0,0,1(=,∴14143||==n , 又二面角11C MB A --的平面角为钝角, ∴二面角11C MB A --的余弦值为14143-. 19.解:(1)众数为76,中位数为76.抽取的12人中,70分以下的有4人,不低于70分的有8人, 故从该校学生中人选1人,这个人测试成绩在70分以上的概率为32128=,故该校这次测试成绩在70分以上的约有2000323000=⨯(人) (2)①由题意知70分以上的有72,76,76,76,82,88,93,94. 当所选取的四个人的成绩的平均分大于87分时,有两类. 一类是82,88,93,94,共1种; 另一类是76,88,93,94,共3种. 所以 3524087(48==≥C X p . ②由题意可得,ξ的可能取值为0,1,2,3,4701)0(484404===ξC C C P , ()35870161483414====ξC C C P ,35187036)2(482424====ξC C C P ,()35870163481434====ξC C C P , 701)4(480444===ξC C C P . ξ的分别列为()27043533523517010=⨯+⨯+⨯+⨯+⨯=ξ∴E 20.解:(1)由已知得⎪⎪⎪⎩⎪⎪⎪⎨⎧-==⨯⨯=,,22221,31222b a c b c a c解得1,8,9222===c b a ,∴椭圆C 的方程为18922=+y x . (2)设()()2211,,,y x N y x M ,MN 的中点为()00,y x E ,点()0,m G ,使得GN GM =, 则MN GE ⊥.由⎪⎩⎪⎨⎧=++=,189,222y x kx y 得()036369822=-++kx x k ,由0>∆,得R k ∈. ∴8936221+-=+k kx x ,∴89162,891820020+=+=+-=k kx y k k x . ∵,MN GE ⊥∴kk GE 1-=, 即k k k k 189180891622-=+--+,∴kk k k m 8928922+-=+-=. 当0>k 时,21289289=⨯≥+k k (当且仅当kk 89=,即322=k 时,取等号), ∴0122<≤-m ; 当0>k 时,21289-≤+k k (当且仅当kk 89=,即322-=k 时,取等号),∴1220≤<m , ∴点G 的横坐标的取值范围为⎥⎦⎤⎝⎛⎪⎪⎭⎫⎢⎣⎡-122,00,122U . 21.解:(1)∵函数()x f 在区间[)∞+,0内单调递增, ∴01)('≥+-=ax e x f x 在区间[)∞+,0内恒成立. 即x e a x -≥-在区间[)∞+,0内恒成立. 记()x ex g x-=-,则01)('<--=-x e x g 恒成立,∴()x g 在区间[)∞+,0内单调递减, ∴()()10=≤g x g ,∴1≥a ,即实数a 的取值范围为[)∞+,1. (2)∵320<<a ,ax e x f x +-=1)(', 记)(')(x f x h =,则()01)('2>++=a x e x h x,知)('x f 在区间()+∞-,a 内单调递增. 又∵011)0('<-=a f ,01)1('>+-=aa e f , ∴)('x f 在区间()+∞-,a 内存在唯一的零点0x , 即01)('000=+-=ax e x f x, 于是ax ex +=01,()a x x +-=00ln . 当0x x a <<-时,)(,0)('x f x f <单调递减; 当0x x >时,)(,0)('x f x f >单调递增. ∴()())ln(200min 0a x a ex f x f x +--==a a ax a x x a a x 3231210000-≥-+++=+-+=, 当且仅当10=+a x 时,取等号. 由320<<a ,得032>-a , ∴()()00min >=x f x f ,即函数()x f 没有零点. 22.解:(1)由33sin =⎪⎭⎫⎝⎛π+θρ, 得3cos 23sin 21=θρ+θρ, 将θρ=θρ=sin ,cos y x 代入,得直线l 的直角坐标方程为063=-+y x . 椭圆C 的参数方程为ϕ⎩⎨⎧ϕ=ϕ=(sin 4,cos 2y x 为参数).(2)因为点M 在椭圆C 上, 所以设)sin 4,cos 2(ϕϕM ,则1sin 4cos 34132-ϕ+ϕ=-+y x913sin 8≤-⎪⎭⎫ ⎝⎛π+ϕ=,当且仅当13sin -=⎪⎭⎫⎝⎛π+ϕ时,取等号, 所以9132max=-+y x .23.解:(1)不等式()4)2(≤++x f x f ,即42≤+-x x , 此不等式等价于⎩⎨⎧≤--≤,42,0x x x或⎩⎨⎧≤+-≤<,42,20x x x 或⎩⎨⎧≤+->.42,2x x x解得01≤≤-x ,或20≤<x ,或32≤<x .所以不等式()4)2(≤++x f x f 的解集为{}31|≤≤-x x . (2)()|||2|)2()(x x x f x f x f --=+-=, 因为()2|2|2=--≤--x x x x , 当且仅当0≤x 时,取等号, 所以()2≤x g ,即2=m , 因为b a ,为正实数,所以()()22-+-=+a b b a a bf b af()()b ab a ab b ab a ab 2222---≥-+-= b a m b a -=-=2,当且仅当()()022≤--a b 时,取等号. 即()()()||b a m a bf b af -≥+.。

2018年普通高等学校招生全国统一考试高中数学模拟测试试题(一)理

2018年普通高等学校招生全国统一考试高中数学模拟测试试题(一)理

请考生在第 22、23 题中任选一题做答。如果多做。则按所做的第一题记分.
22.(本小题满分 10 分)选修 4—4:坐标系与参数方程
x=t cos
在平面直角坐标系
xOy
中,直线
l
的参数方程为
y=1+t
sin
(t
为参数,0≤α<π).以
坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 的极坐标方程为: cos2
3
A.
B. 3
C. 2 3
D.3
2
9.一个几何体的三视图如图所示,则该几何体的体积为
8
A.
3
16
20
B.
C.
D.8
3
3
10.如果
ax
3 4x
x
1 x
6
的展开式中各项系数的和为
16,则展开式中
x3
项的系数为
39
A.
2
B. 39 2
C. 21 2
21
D.
2
3
3
11.已知直三棱柱 ABC—A1B1C1 的底面为等边三角形,且底面积为 ,体积为 ,点 P,
的分布列为
X
4
0 -2
p
1
1
1
3
2
6
6
则 E( X ) 4 1 0 1 (2) 1 1 .
32
6
假设丙选择产品 B 进行投资,且记 Y 为获利金额(单位:万元),则随机变量 Y 的分布
列为
Y 2 0 -1
pp1q 3

E
(Y
)
2
p
0
1 3
(1)
q
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试模拟试题(北京卷)数学(理科)考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效......... 4. 考试结束后,务必将试题卷和答题卡一并上交.第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项)1.设全集U=R ,{|}A x N x =∈≤≤110,{|}B x R x x =∈+-=260,则图中阴影表示的集合为( )A .{|}x x ≤≤12B .{|}x x ≤≤13C .{|}x x -≤≤32D .{|}x x -≤≤232.复数=+-+ii i 34)43()55(3( ) A .510i 510-- B .i 510510+C .i 510510-D .i 510510+-3.已知两条直线1l ∶0ax by c ++=,直线2l ∶0mx ny p ++=,则an bm =是直线21//l l 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.圆的极坐标方程是2cos ρθθ=+,则其圆心的极坐标是( )A .(2)3π,B .(2)6π,C .(1)3π,D .(1)6π, 5.如图给出了一个算法流程图,该算法流程图的功能是( )A .按从小到大排列的三个数B .按从大到小排列的三个数C .求三个数中最大的数D .求三个数中最小的数6.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是( )A B C D7.在复平面中,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①直线OC 与直线BA 平行;②; ③;④. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个8.已知数列}{n a 的前n 项和为)15(21-=n n S n ,+∈N n ,现从前m 项:1a ,2a ,…,m a 中抽出一项(不是1a ,也不是m a ),余下各项的算术平均数为37,则抽出的是( ) A .第6项 B .第8项 C .第12项 D .第15项 第Ⅱ卷 (非选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.给出下列4个命题:①函数m ax x x x f ++=||)(是奇函数的充要条件是m=0;②若函数)1lg()(+=ax x f 的定义域是}1|{<x x ,则1-<a ;③若2log 2log b a <,则1lim=+-∞→n n n n n b a b a (其中+∈N n ); ④圆:0541022=-+-+y x y x 上任意点M 关于直线25=--a y ax 的对称点,M '也在该圆上.填上所有正确命题的序号是________.10.长为l (0<l<1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.11.设(,sin )a α=34 ,(cos ,)b α=13 ,且a b ⊥ ,则tan α= . 12.若x 、y 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+009382y x y x y x ,,,则y x z 2+=的最大值为________.13.有A 、B 、C 、D 、E 五名学生参加网页设计竞赛,决出了第一到第五的名次,A 、B 两位同学去问成绩,教师对A 说:“你没能得第一名”.又对B 说:“你得了第三名”.从这个问题分析,这五人的名次排列共有________种可能(用数字作答). 14.已知:||2a =u r ,||b =r a b r r 与的夹角为45°,要使-b a a l r r r 与垂直,则λ=__________. 三、解答题(共6小题,共80分,解答应写出文字说明,演算步骤或证明过程)15.(本小题共13分) 已知a r =(αcos ,αsin ),b r =(βcos ,βsin ),a r 与b r之间有关系式ka b kb +=-r r r ,其中k>0.(1)用k 表示a b r r g ;(2)求a b r r g 的最小值,并求此时,a r 与b r 的夹角θ的大小.16.(本小题共14分)如图,在正三棱柱111C B A ABC -中,M ,N 分别为11B A ,BC 之中点.(1)试求AB AA 1,使011=⋅CB B A .(2)在(1)条件下,求二面角M AC N --1的大小.17.(本小题共13分)定义在(-1,1)上的函数)(x f ,(i )对任意x ,∈y (-1,1)都有:)1()()(xy y x f y f x f ++=+; (ii )当∈x (-1,0)时,0)(>x f ,回答下列问题. (1)判断)(x f 在(-1,1)上的奇偶性,并说明理由. (2)判断函数)(x f 在(0,1)上的单调性,并说明理由. (3)若21)51(=f ,试求)191()111()21(f f f --的值. 18.(本小题共13分) 已知某单位有50名职工,从中按系统抽样抽取10名职工. (1)若第5组抽出的号码为22,写出所有被抽出职工的号码; (2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差; 59625770368981 (3)在(2)的条件下.从这10名职工中随机抽取两名体重不轻于73公斤的职工,求体重为76公斤的职工被抽取到的概率. 19.(本小题共13分)在Rt △ABC 中,∠CAB=90°,AB=2,AC=22,一曲线E 过C 点,动点P 在曲线E 上运动,且保持||||PB PA +的值不变.(1)建立适当的坐标系,求曲线E 的方程;(2)直线l :t x y +=与曲线E 交于M ,N 两点,求四边形MANB 的面积的最大值.20.(本小题共14分)已知等差数列}{n a 的首项为a ,公差为b ;等比数列}{n b 的首项为b ,公比为a ,其中a ,+∈N b ,且32211a b a b a <<<<.(1)求a 的值;(2)若对于任意+∈N n ,总存在+∈N m ,使n m b a =+3,求b 的值;(3)在(2)中,记}{n c 是所有}{n a 中满足n m b a =+3,+∈N m 的项从小到大依次组成的数列,又记n S 为}{n c 的前n 项和,n T }{n a 的前n 项和,求证:n S ≥n T )(+∈N n .2012年普通高等学校招生全国统一考试模拟试题答案(北京卷)数学(理科)一、选择题1-5 ABBAD 6-8 BCB二、填空题9.①④ 10.24l 11.94-12.7 13.18 14.2三、解答题15.解:(1)由已知1||||==b a . ∵||3||b a b a k k -=+, ∴222||3||b a b a k k -=+. ∴)1(41k k +=⋅b a .(2)∵0k >,∴1142⋅≤⋅=a b . 当21=⋅b a 时,112cos 2a b θ==⋅.∴θ=60°.16.解:(1)以1C 点为坐标原点,11A C 所在直线为x轴,C C 1所在直线为z 轴,建立空间直角坐标系,设b B A =11,a AA =1(a ,∈b (0,+∞).∵三棱柱111C B A ABC -为正三棱柱,则1A ,B ,1B ,C 的坐标分别为:(b ,0,0),b 21(,b 23,)a ,b 21(,b 23,)0,(0,0,a ). ∴A 1b 21(-=,b 23,)a , B 1b 21(-=,b 23-,⎪⎭⎪⎬⎫=-=⇒⋅⋅.01121)2211B A b a B A a 又,2221==⇒=⇒b a AB A A a b . (2)在(1)条件下,不妨设b=2,则2=a , 又A ,M ,N 坐标分别为(b ,0,a ),(b 43,b 43,0),(b 41,b 43,a ). ∴332||==b AN ,3||1=N C . ∴3||||1==N C AN 同理||||1M C AM =. ∴△N AC 1与△M AC 1均为以1AC 为底边的等腰三角形,取1AC 中点为P , 则1AC NP ⊥,NPM AC MP ∠⇒⊥1为二面角M AC N --1的平面角,而 点P 坐标为(1,0,22), ∴21(-=,23,)22. 同理21(=,23,)22-.∴PN PM ⋅⇒=-+-=0214341PN PM ⊥.∴∠NPM=90°⇒二面角M AC N --1的大小等于90°.17解:(1)令0)0(0=⇒==f y x ,令y=-x ,则)(0)()(x f x f x f -⇒=-+)()(x f x f ⇒-=在(-1,1)上是奇函数.(2)设1021<<<x x ,则)1()()()()(21212121x x x x f x f x f x f x f --=-+=-,而021<-x x ,0)1(01102121212121>--⇒<--⇒<<x x xx f x x x xx x .即当21x x <时,)()(21x f x f >.∴f (x )在(0,1)上单调递减.(3)由于)31()5215121()51()21()51()21(f f f f f f =⨯--=-+=-,)41()111()31(f f f =-,)51()191()41(f f f =-, ∴1212)51(2)191()111()21(=⨯==--f f f f .18.解:(1)由题意,第5组抽出的号码为22.因为22=5×(5-1)+2所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,12,47(2)因为10名职工的平均体重为1(81707376787962656759)10x =+++++++++71=所以样本方差为: 222222222221(101257896412)10s =+++++++++52= (3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法: (73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81). 故所求概率为:42105P == 19.解:(1)以AB 为x 轴,以AB 中点为原点O 建立直角坐标系. ∵∴动点轨迹为椭圆,且2=a ,c=1,从而b=1. ∴方程为1222=+y x . (2)将y=x+t 代入1222=+y x ,得0224322=-++t tx x . 设M (1x ,1y )、N (2x ,2y ), ∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=+>--=∆⋅⋅③②①322340)22(34162212122t x x t x x t t ,, 由①得2t <3. ∴∴t=0时,362=大S .20.解:(1)∵b a ab b a a 2+<<+<,a ,+∈N b ,∴⎩⎨⎧+<<+.2,b a ab ab b a ∴⎪⎪⎩⎪⎪⎨⎧-<->.121b b a b b a , ∴⎪⎪⎩⎪⎪⎨⎧-+<-+>.122111b a b a , ∴⎩⎨⎧<>41a a ,.∴a=2或a=3(a=3时不合题意,舍去).∴a=2.(2)b m a m )1(2-+=,12-⋅=n n b b ,由n m b a =+3可得12)1(5-⋅=-+n b b m .∴5)12(1=+--m b n .∴b=5(3)由(2)知35-=n a n ,125-⋅=n n b ,∴32531-=-=-⋅n n m b a .∴3251-=-⋅n n C .∴n S n n 3)12(5--=,)15(21-=n n T n . ∵211==T S ,922==T S .当n ≥3时,]121212[52---=-n n T S n n n ]12121)11[(52---+=n n n ]12121)1[52321---++++=n n C C C n n n 0]121212)1(1[52=----++>n n n n n . ∴n n T S >.综上得n n T S ≥)(+∈N n .高考资源网( ) 您身边的高考专家 高考资源网版权所有,侵权必究!。

相关文档
最新文档