bootstrap-openstack-cloud

合集下载

OpenStack架构详解

OpenStack架构详解

OpenStack架构详解What is OpenStack?OpenStack提供开放源码软件,建立公共和私有云。

OpenStack是一个社区和一个项目,以及开放源码软件,以帮助企业运行的虚拟计算或者存储云。

OpenStackd开源项目由社区维护,包括OpenStack计算(代号为Nova),OpenStack对象存储(代号为SWIF T),并OpenStack镜像服务(代号Glance)的集合。

OpenStack提供了一个操作平台,或工具包,用于编排云。

Components of OpenStackOpenStack当前主要有三个组件:计算,存储,镜像。

OpenStack计算是一个云控制器,用来启动一个用户或一个组的虚拟实例,它也用于配置每个实例或项目中包含多个实例为某个特定项目的联网。

OpenStack对象存储是一个在具有内置冗余和容错的大容量系统中存储对象的系统。

对象存储有各种应用,如备份或存档数据,存储图形或视频(流媒体数据传输到用户的浏览器),储存二级或三级静态数据,发展与数据存储集成新的应用程序,当预测存储容量困难时存储数据,创造弹性和灵活的云存储Web应用程序。

OpenStack镜像服务是一个查找和虚拟机图像检索系统。

它可以配置三种方式:使用Op enStack对象存储来存储图像;使用亚马逊S3直接存储,或使用S3对象存储作为S3访问中间存储。

OpenStack Project ArchitectureOpenStack当前包括三个子项目,三个项目相会独立,可以单独安装。

• Swift 提供对象存储。

这是大致类似于Rackspace云文件(从它派生)或亚马逊S3。

• Glance 提供OpenStack Nova虚拟机镜像的发现,存储和检索。

• Nova 根据要求提供虚拟服务。

这与Rackspace云服务器或亚马逊EC2类似。

将来会出现web 接口的子项目以及队列服务的子项目。

Cloud Provider Conceptual Architecture构建自己的Iaas云环境并将其提供给用户,需要提供以下几个特性:1. 允许应用用户注册云服务、查看使用情况以及账单。

openstack数据库相关操作

openstack数据库相关操作

openstack数据库相关操作OpenStack数据库相关操作OpenStack是一个开源的云计算平台,可以提供虚拟机、网络和存储资源的管理和分配。

数据库是OpenStack平台中非常重要的一部分,它负责存储和管理OpenStack平台的各种配置信息、状态信息和用户数据。

本文将介绍OpenStack数据库相关操作的实际应用。

一、数据库类型OpenStack使用了多种数据库类型,包括MySQL、MariaDB、PostgreSQL和SQLite等。

其中,MySQL是最常用的数据库类型,它被广泛用于存储OpenStack平台的各种配置信息和状态信息。

而MariaDB是MySQL的分支版本,也可以作为OpenStack的数据库类型。

PostgreSQL是另一种常用的数据库类型,用于存储OpenStack平台的用户数据。

SQLite是一个轻量级的数据库类型,主要用于开发和测试环境。

二、数据库配置在安装OpenStack平台时,需要配置数据库的相关参数。

通常需要指定数据库的类型、地址、端口号、用户名和密码等信息。

这些配置信息将被用于连接和管理数据库。

在配置数据库时,需要确保数据库服务器已正确安装和配置,并且可以通过网络进行访问。

三、创建和管理数据库在安装和配置完数据库后,需要创建相应的数据库和用户。

创建数据库时,可以使用命令行工具或数据库管理工具,如MySQL的命令行工具或phpMyAdmin。

创建用户时,需要指定用户的权限和访问范围,以及与数据库的关联关系。

为了确保数据库的安全性和可靠性,建议为每个组件和服务分别创建独立的数据库和用户。

四、数据库备份和恢复数据库备份是保证OpenStack平台数据安全的重要手段。

通过定期备份数据库,可以在数据丢失或损坏时进行恢复。

常用的数据库备份方法有物理备份和逻辑备份两种。

物理备份是直接备份数据库文件,包括数据文件和日志文件。

逻辑备份是使用数据库的导出工具将数据库导出为可读的文本文件,以便在需要时进行恢复。

openstack技术原理

openstack技术原理

openstack技术原理OpenStack技术是一个开源的云计算平台,它提供了一组丰富的工具和服务,用于构建和管理公有云和私有云环境。

OpenStack技术的原理主要包括以下几个方面:1. 架构:OpenStack采用了分层架构,包括计算层、网络层和存储层。

计算层提供了虚拟机实例的管理和调度功能;网络层提供了虚拟网络的创建和管理功能;存储层提供了对象存储和块存储的服务。

这种分层架构使得OpenStack具有高度的可扩展性和灵活性。

2. 组件:OpenStack由多个组件组成,包括Nova、Neutron、Cinder、Glance等。

Nova是OpenStack的计算组件,用于管理虚拟机实例的创建、调度和销毁;Neutron是OpenStack的网络组件,用于创建和管理虚拟网络;Cinder是OpenStack的块存储组件,用于提供持久化的块存储服务;Glance是OpenStack的镜像组件,用于管理虚拟机实例的镜像。

3. 虚拟化技术:OpenStack支持多种虚拟化技术,包括KVM、Xen、VMware和Hyper-V等。

这些虚拟化技术可以将物理服务器划分为多个虚拟机实例,并提供虚拟机实例的管理和调度功能。

4. API:OpenStack提供了丰富的API接口,用于与OpenStack 进行交互。

通过这些API接口,用户可以创建虚拟机实例、创建虚拟网络、上传镜像等操作。

同时,OpenStack还提供了CLI命令行工具和Web界面,方便用户进行操作和管理。

5. 高可用性:OpenStack具有高可用性的特性,可以通过配置多个控制节点和计算节点,实现故障切换和负载均衡。

同时,OpenStack还提供了监控和告警功能,可以及时发现和解决故障。

6. 安全性:OpenStack提供了多种安全性措施,包括身份认证、访问控制、加密传输等。

用户可以通过身份认证获取访问令牌,然后使用访问令牌进行API调用。

openstack原理

openstack原理

openstack原理OpenStack是一种开源的云计算平台,它由一系列相互关联的服务组成,包括计算、存储、网络等。

它的设计理念是实现可扩展性、高可用性和自动化管理,为用户提供弹性、稳定和高效的云计算服务。

OpenStack的核心组件包括Nova(计算)、Swift(对象存储)、Cinder(块存储)、Neutron(网络)、Glance(镜像)、Keystone(身份认证)、Horizon(仪表盘)等。

这些组件共同构成了一个完整的云计算平台,可以满足不同用户的需求。

在OpenStack中,计算服务(Nova)负责管理虚拟机实例,包括创建、启动、停止、删除等操作。

它支持多种虚拟化技术,如KVM、Xen、VMware等,用户可以根据自己的需求选择合适的虚拟化方案。

存储服务是OpenStack的另一个重要组件,它包括对象存储(Swift)和块存储(Cinder)。

对象存储提供了高可用、可扩展的存储服务,适用于存储大量非结构化数据,如图片、视频、文档等。

块存储则提供了持久化的存储服务,适用于虚拟机实例的磁盘存储。

网络服务(Neutron)负责管理云计算平台的网络资源,包括虚拟网络、子网、路由等。

它支持多种网络模式,如Flat、VLAN、GRE、VXLAN等,可以满足不同用户的网络需求。

OpenStack的身份认证服务(Keystone)提供了统一的身份认证和授权机制,用户可以通过它管理云计算平台的用户、角色、项目等。

仪表盘(Horizon)是OpenStack的管理界面,用户可以通过它进行云资源的管理和监控。

除了核心组件外,OpenStack还提供了丰富的插件和扩展,如数据库服务(Trove)、消息队列服务(Zaqar)、容器服务(Magnum)等,用户可以根据自己的需求选择合适的扩展服务。

总的来说,OpenStack是一个功能强大、灵活多样的云计算平台,它可以满足不同用户的需求,为他们提供弹性、稳定和高效的云计算服务。

IT-运维工程师的工作要点、岗位职责及任职需求-进阶

IT-运维工程师的工作要点、岗位职责及任职需求-进阶

运维技能武器库Bootstrapping: Kickstart、Cobbler、rpmbuild/xen、kvm、lxc、Openstack、Cloudstack、Opennebula、Eucalyplus、RHEV配置类工具: Capistrano、Chef、puppet、func、salstack、Ansible、rundeck监控类工具: Cacti、Nagios(Icinga)、Zabbix、基于时间监控前端Grafana、Mtop、MRTG(网络流量监控图形工具)、Monit性能监控工具: dstat(多类型资源统计)、atop(htop/top)、nmon(类Unix系统性能监控)、slabtop(内核slab缓存信息)、sar(性能监控和瓶颈检查)、sysdig(系统进程高级视图)、tcpdump(网络抓包)、iftop(类似top的网络连接工具)、iperf(网络性能工具)、smem)(高级内存报表工具)、collectl(性能监控工具)免费APM工具: mmtrix(见过的最全面的分析工具)、alibench进程监控: mmonit、Supervisor日志系统: Logstash、Scribe绘图工具: RRDtool、Gnuplot流控系统: Panabit、在线数据包分析工具Pcap Analyzer安全检查: chrootkit、rkhunterPaaS:Cloudify、Cloudfoundry、Openshift、Deis (Docker、CoreOS、Atomic、ubuntu core/Snappy)Troubleshooting:Sysdig 、Systemtap、Perf持续集成: Go、Jenkins、Gitlab磁盘压测: fio、iozone、IOMeter(win)Memcache Mcrouter(scaling memcached)Redis Dynomite、Twemproxy、codis/SSDB/AerospikeMySQL 监控: mytop、orzdba、Percona-toolkit、Maatkit、innotop、myawr、SQL级监控mysqlpcap、拓扑可视化工具MySQL基准测试: mysqlsla、sql-bench、Super Smack、Percona's TPCC-MYSQL Tool、sysbenchMySQL Proxy: SOHU-DBProxy、Altas、cobar、58同城OceanusMySQL逻辑备份工具: mysqldump、mysqlhotcopy、mydumper、MySQLDumper 、mk-parallel-dump/mk-parallel-restoreMySQL物理备份工具: Xtrabackup、LVM SnapshotMongoDB压测:iibench&sysbench运维管理工作全貌1.域名从买域名开始,要买多个域名,50个甚至100个。

openstack 基本知识

openstack 基本知识

openstack 基本知识摘要:1.OpenStack 概述2.OpenStack 组件及其功能3.OpenStack 架构和部署方式4.OpenStack 的使用方法和技巧5.OpenStack 的发展前景和社区正文:1.OpenStack 概述OpenStack 是一个开源的云计算平台,旨在提供基础设施即服务(IaaS)和platform as a service(PaaS)功能。

它由多个组件组合而成,每个组件负责处理不同类型的任务,例如计算、存储、网络和身份验证等。

OpenStack 最初由美国宇航局(NASA)开发,后来得到了众多企业和开发者的支持,成为了一个非常流行的云计算平台。

2.OpenStack 组件及其功能OpenStack 包含多个组件,其中一些主要的组件包括:- Nova:负责提供计算服务,允许用户创建和启动虚拟机。

- Glance:负责提供镜像服务,允许用户查找和部署镜像。

- Keystone:负责提供身份验证服务,允许用户进行身份验证和授权。

- Swift:负责提供对象存储服务,允许用户存储和检索二进制数据。

- Cinder:负责提供块存储服务,允许用户创建和管理卷。

- Neutron:负责提供网络服务,允许用户创建和管理网络。

3.OpenStack 架构和部署方式OpenStack 可以部署在多种架构上,包括私有云、公有云和混合云。

部署OpenStack 的方式也有多种,例如手动部署、使用自动化工具部署和通过OpenStack 服务提供商进行部署等。

4.OpenStack 的使用方法和技巧使用OpenStack 需要掌握一些基本知识和技巧,例如如何创建和管理虚拟机、如何存储和检索数据、如何创建和管理网络等。

此外,还需要了解如何使用OpenStack 的API 和工具,例如如何使用Nova CLI 和Keystone CLI 等。

5.OpenStack 的发展前景和社区OpenStack 的发展前景非常广阔,它已经成为了云计算领域的重要标准之一。

OpenStack云平台的系统性能优化与部署

OpenStack云平台的系统性能优化与部署

OpenStack云平台的系统性能优化与部署随着云计算技术的不断发展和普及,OpenStack作为一个开源的云计算平台,受到了越来越多企业和机构的青睐。

然而,随着OpenStack部署的规模和应用的复杂度不断增加,系统性能的问题也愈发突出。

因此,本文将简要介绍OpenStack平台的架构和应用,重点探讨OpenStack云平台的系统性能优化与部署。

一、OpenStack概述OpenStack是一个开源的、免费的、模块化的云计算平台,由NASA和Rackspace于2010年共同开发。

其主要组成部分包括控制节点和计算节点。

控制节点主要负责管理和控制整个云平台,包括虚拟机管理、网络管理、存储管理等;计算节点则用于承载虚拟机运行的实际物理机器。

OpenStack平台以虚拟化技术为基础,利用虚拟化技术将物理资源转换为虚拟资源,实现了对计算、存储和网络等资源的高效管理和调度。

OpenStack提供了适用于公有云和私有云的多租户环境,并支持各种操作系统和编程语言的部署和扩展。

二、OpenStack部署OpenStack的部署和配置相对复杂,需要考虑各种参数和组件之间的关系。

通常,OpenStack的部署有两种形式:手动部署和自动化部署。

手动部署需要管理员手动配置和设置各种参数和组件,耗费时间和精力较多;自动化部署则由工具实现一键部署,省时省力但也需管理员熟悉和掌握对应工具的使用。

在部署和配置OpenStack时,还需要考虑到以下因素:1.硬件配置:OpenStack通常需要足够的计算和存储资源才能正常运行。

因此,在部署前需要对硬件进行评估和规划,尽量保证物理机有足够的内存、CPU和存储空间。

2.网络配置:OpenStack需要网络可达的环境,因此需要对网络进行规划和设置。

网络设置包括IP地址、子网掩码、网关等。

3.组件配置:OpenStack由许多组件构成,不同的组件需要不同的参数和设置。

管理员需要熟悉各个组件之间的关系和设置。

openstack版本命名规则

openstack版本命名规则

openstack版本命名规则【原创实用版】目录1.OpenStack 简介2.OpenStack 版本命名规则3.OpenStack 最新版本4.OpenStack 核心服务正文1.OpenStack 简介OpenStack 是一个开源的云计算管理平台项目,由几个主要的组件组合起来完成具体工作。

OpenStack 支持几乎所有类型的云环境,项目目标是提供实施简单、可大规模扩展、丰富、标准统一的云计算管理平台。

OpenStack 通过各种互补的服务提供了基础设施即服务(IaaS)的解决方案,每个服务提供 API 以进行集成。

2.OpenStack 版本命名规则OpenStack 的版本命名规则采用了一种固定的命名格式,通常包含三个部分:一个英文单词、一个版本号和一个英文单词。

其中,第一个和第三个部分表示版本的主要特征,而版本号则表示该版本的具体迭代。

例如,OpenStack 的 Ocata 版本,其命名规则为:ocata-x.x.x,其中 x.x.x 表示版本号。

3.OpenStack 最新版本截至 2022 年 12 月,OpenStack 的最新版本是 Ocata。

需要注意的是,OpenStack 项目已经不再继续使用原有的版本命名规则,而是采用了一种新的命名方式,以更加简洁明了地表示版本迭代。

4.OpenStack 核心服务OpenStack 的核心服务包括计算(Compute)、对象存储(Object Storage)、镜像服务(Image Service)和身份服务(Identity Service)。

这些服务在 OpenStack 中扮演着关键角色,为用户提供了基础设施即服务(IaaS)的解决方案。

计算服务(Compute)由 Nova 组件提供,负责虚拟机创建、开机、关机、挂起、暂停、调整、迁移、重启、销毁等操作,配置 CPU、内存等信息规格。

对象存储服务(Object Storage)由 Swift 组件提供,用于在大规模可扩展系统中通过内置冗余及高容错机制实现对象存储。

openstack试题

openstack试题

openstack试题OpenStack是一个开源云计算平台,它提供了一套用于构建和管理云计算环境的工具和服务。

本文将对OpenStack进行介绍,并回答一些与OpenStack相关的试题。

一、简介OpenStack是由NASA和Rackspace合作开发的云计算平台,它起源于2009年,并于2010年成为一个开源项目。

OpenStack提供了一套完整的云计算解决方案,包括计算、存储、网络等各方面的服务。

二、OpenStack的组件1. Nova(计算服务):提供了虚拟机实例的管理和调度功能,支持弹性伸缩和负载均衡等特性。

2. Swift(对象存储):用于存储非结构化数据,如图片、视频等,具有高可用性和可靠性。

3. Cinder(块存储):提供了虚拟机需要的块存储服务,可以根据需求动态添加或删除存储卷。

4. Neutron(网络服务):负责管理和配置虚拟机的网络,提供了虚拟网络和路由等功能。

5. Glance(镜像服务):用于管理虚拟机的镜像,用户可以通过Glance获取和上传镜像文件。

6. Keystone(身份认证):提供了用户认证和授权功能,确保安全访问各个OpenStack组件。

7. Horizon(用户界面):通过网页界面管理和使用OpenStack提供的各项服务。

三、试题回答1. 如何创建一个虚拟机实例?首先,在Nova中创建一个虚拟机镜像,然后使用Nova创建虚拟机实例,并指定虚拟机的配置参数,如CPU、内存大小等。

最后,启动虚拟机实例。

2. 如何添加存储卷到虚拟机?在Cinder中创建一个卷类型,然后通过Cinder创建一个存储卷,指定卷类型和卷的大小。

最后,将存储卷添加到虚拟机中。

3. OpenStack中的弹性伸缩是什么意思?弹性伸缩是指根据系统负载的变化,动态调整虚拟机的数量。

当负载增加时,自动创建新的虚拟机实例来分担负载;当负载减小时,自动删除多余的虚拟机实例,以节省资源。

OpenStack的架构详解

OpenStack的架构详解

OpenStack的架构详解OpenStack既是一个社区,也是一个项目和一个开源软件,它提供了一个部署云的操作平台或工具集。

其宗旨在于,帮助组织运行为虚拟计算或存储服务的云,为公有云、私有云,也为大云、小云提供可扩展的、灵活的云计算。

1. OpenStack是什么OpenStack既是一个社区,也是一个项目和一个开源软件,它提供了一个部署云的操作平台或工具集。

其宗旨在于,帮助组织运行为虚拟计算或存储服务的云,为公有云、私有云,也为大云、小云提供可扩展的、灵活的云计算。

OpenStack旗下包含了一组由社区维护的开源项目,他们分别是OpenStackCompute(Nova),OpenStackObjectStorage(Swift),以及OpenStackImageService(Glance)。

OpenStackCompute[1],为云组织的控制器,它提供一个工具来部署云,包括运行实例、管理网络以及控制用户和其他项目对云的访问(thecloudthroughusersandprojects)。

它底层的开源项目名称是Nova,其提供的软件能控制IaaS云计算平台,类似于AmazonEC2和RackspaceCloudServers。

实际上它定义的是,与运行在主机操作系统上潜在的虚拟化机制交互的驱动,暴露基于WebAPI的功能。

OpenStackObjectStorage[2],是一个可扩展的对象存储系统。

对象存储支持多种应用,比如复制和存档数据,图像或视频服务,存储次级静态数据,开发数据存储整合的新应用,存储容量难以估计的数据,为Web应用创建基于云的弹性存储。

OpenStackImageService[1],是一个虚拟机镜像的存储、查询和检索系统,服务包括的RESTfulAPI允许用户通过HTTP请求查询VM镜像元数据,以及检索实际的镜像。

VM镜像有四种配置方式:简单的文件系统,类似OpenStackObjectStorage的对象存储系统,直接用Amazon'sSimpleStorageSolution(S3)存储,用带有ObjectStore的S3间接访问S3。

OpenStack介绍

OpenStack介绍

服务项⽬名称描述Compute (计算服务)Nova 负责实例⽣命周期的管理,计算资源的单位。

对Hypervisor 进⾏屏蔽,⽀持多种虚拟化技术,⽀持横向扩展Network (⽹络服务)Neutron 负责虚拟⽹络的管理,为实例创建⽹络的拓扑结构。

是⾯向租户的⽹络管理,可以⾃⼰定义⾃⼰的⽹络,各个租户之间互不影响ldentity (⾝份认证服务)Keystone 类似于LDAP 服务,对⽤户、租户和⾓⾊、服务进⾏认证与授权,且⽀持多认证机构Dashboard (控制⾯板服务)Horizon 提供⼀个Web 管理界⾯,与OpenStack 底层服务进⾏交互lmage Service (镜像服务)Glance 提供虚拟机镜像模板的注册与管理,将做好的操作系统拷贝为镜像模板,在创建虚拟机时直接使⽤,可⽀持多格式的镜像Block Storage (块存储服务)Cinder 负责为运⾏实例提供持久的块存储设备,可进⾏⽅便的扩展,按需付费,⽀持多种后端存储Object Storage (对象存储服务)Swift 为OpenStack 提供基于云的弹性存储,⽀持集群⽆单点故障Telemetry (计量服务)Ceilometer ⽤于度量、监控和控制数据资源的集中来源,为OpenStack ⽤户提供记账途径OpenStack 介绍⼀、云计算服务模型1、laaS (基础架构即服务)·提供底层IT 基础设施服务,包括处理能⼒、存储空间、⽹络资源等·⾯向对象⼀般是IT 管理⼈员2、PaaS (平台即服务)·把安装好开发环境的系统平台作为⼀种服务通过互联⽹提供给⽤户·⾯向对象⼀般是开发⼈员3、SaaS (软件即服务)·直接通过互联⽹为⽤户提供软件和应⽤程序等服务·⾯向对象⼀般是普通⽤户⼆、什么是OpenStack OpenStack 是⼀系列开源⼯具(或开源项⽬)的组合,主要使⽤池化虚拟资源来构建和管理私有云及公共云。

openstack运维面试题

openstack运维面试题

openstack运维面试题一、OpenStack概述OpenStack是一个开源的云计算平台,它提供了一系列功能强大的云计算服务,包括计算、网络、存储和身份认证等。

作为一名OpenStack运维人员,你需要了解OpenStack的架构、组件和工作原理。

二、OpenStack组件1. Nova:负责虚拟机的管理和调度,包括虚拟机的创建、启动、停止和删除等操作。

2. Neutron:提供网络服务,包括网络拓扑管理、路由和防火墙等。

3. Cinder:提供块存储服务,允许用户创建和管理云主机的块设备。

4. Swift:提供对象存储服务,可用于存储大规模的非结构化数据。

5. Glance:提供镜像服务,用于管理和存储虚拟机镜像。

6. Keystone:提供身份认证和授权服务,用于管理OpenStack的用户、角色和权限。

7. Horizon:提供Web界面,用于用户管理和监控OpenStack资源。

8. Heat:提供模板化的编排服务,用于自动化部署和管理OpenStack资源。

三、OpenStack运维面试题1. 什么是OpenStack?它的主要特点是什么?2. 请简要介绍一下OpenStack的组件架构。

3. 如何部署和升级OpenStack?4. 在OpenStack中,如何进行虚拟机实例的创建和管理?5. OpenStack中的网络服务是如何实现的?6. 如何备份和恢复OpenStack的组件和数据?7. OpenStack的高可用性如何保证?8. 请简要介绍一下OpenStack的身份认证和授权机制。

9. 如何监控和调优OpenStack的性能?10. 在OpenStack环境中,如何解决存储性能的瓶颈问题?四、总结本文对OpenStack运维面试题进行了梳理和回答。

希望通过阐述OpenStack的概述、组件和运维面试题,能够帮助读者更好地了解和掌握OpenStack的运维知识。

当面对OpenStack运维面试时,读者可以参考本文提供的问题和答案,准备充分,展现自己的专业素养。

openstack 组件基本原理总结

openstack 组件基本原理总结

OpenStack是一种开源的云计算评台,由一系列的组件组成,每个组件都有着自己独特的功能和作用。

在这篇文章中,我将对OpenStack 的组件进行深度和广度的总结,以便更好地理解其基本原理。

1. NovaNova是OpenStack的计算引擎,负责管理和调度计算实例。

它允许用户启动、停止和管理虚拟机实例,还可以自动调度虚拟机实例到可用的计算节点上。

使用Nova,用户可以轻松地管理大规模的计算资源。

2. NeutronNeutron是OpenStack的网络服务,负责提供网络连接和资源分配。

它允许用户创建虚拟网络、子网和路由器,还可以为虚拟机实例分配IP位置区域和配置防火墙规则。

Neutron的灵活性和可扩展性使得用户可以轻松地构建复杂的网络架构。

3. CinderCinder是OpenStack的块存储服务,提供持久化的块级存储资源。

它允许用户创建和管理存储卷,将存储卷附加到虚拟机实例上,并进行快照和备份。

使用Cinder,用户可以实现高性能和可靠的存储解决方案。

4. SwiftSwift是OpenStack的对象存储服务,提供可伸缩的、高可用的对象存储资源。

它允许用户存储和检索大规模的非结构化数据,还可以实现数据的复制和故障转移。

Swift的弹性和可靠性使得用户可以构建可持久化的数据存储解决方案。

5. KeystoneKeystone是OpenStack的身份认证服务,负责管理用户、角色和项目的身份和访问权限。

它允许用户进行认证、授权和委托,还可以集成外部的身份认证系统。

使用Keystone,用户可以轻松地实现对OpenStack的安全访问和管理。

OpenStack的组件包括Nova、Neutron、Cinder、Swift和Keystone,它们分别负责计算、网络、存储、对象存储和身份认证服务。

这些组件相互协作,实现了完整的云计算评台,为用户提供了丰富的计算和存储资源。

个人认为,OpenStack的组件之间具有高度的可扩展性和灵活性,可以满足不同场景下的需求,是一种理想的云计算解决方案。

openstack知识点总结

openstack知识点总结

openstack知识点总结OpenStack是一个开源的云计算平台,它的目标是提供一个可伸缩的云计算平台,使用户能够轻松地构建和管理私有云和公有云。

OpenStack由一系列组件和项目组成,每个项目都提供不同的功能和服务。

在本文中,我们将对OpenStack的核心知识点进行总结,包括其架构、组件、网络、存储、身份认证等方面的内容。

一、OpenStack架构OpenStack的架构是一个由多个组件和服务构成的系统,其中各组件相互之间通过API进行通信,实现云计算服务。

OpenStack的架构主要包括以下几个组件:1.计算(Nova):Nova是OpenStack的计算服务组件,用于虚拟机和其他实例的管理。

它提供了虚拟机的创建、启动、停止和销毁等功能。

2.网络(Neutron):Neutron是OpenStack的网络服务组件,用于配置和管理虚拟网络。

它提供了网络拓扑的管理、IP地址分配、虚拟网络的连接等功能。

3.存储(Cinder、Swift):Cinder是OpenStack的块存储服务组件,用于提供持久化存储。

Swift是OpenStack的对象存储服务组件,用于存储非结构化数据。

4.身份认证(Keystone):Keystone是OpenStack的身份认证服务组件,用于用户和服务的身份认证、授权和访问控制。

5.图像(Glance):Glance是OpenStack的镜像服务组件,用于创建和管理虚拟机的镜像。

6.数据库(Trove):Trove是OpenStack的数据库服务组件,用于提供数据库即服务(DBaaS)。

7. 资源编排(Heat):Heat是OpenStack的资源编排服务组件,用于定义和管理云资源的部署。

二、OpenStack组件1. NovaNova是OpenStack的计算服务组件,它通过管理和调度计算资源,为用户提供虚拟机和其他实例的创建和管理。

Nova提供了一组API,用于控制虚拟机的生命周期,包括创建、启动、暂停、恢复、停止、销毁等操作。

openstack面试常问知识

openstack面试常问知识

OpenStack面试常问知识引言OpenStack是一个开源的云计算平台,它提供了一套丰富而灵活的工具和服务,用于构建和管理公有云、私有云和混合云环境。

在OpenStack的生态系统中,有许多职位需要熟悉和掌握OpenStack的相关知识。

本文将介绍一些在OpenStack面试中常常被问到的知识点。

1. 什么是OpenStack?OpenStack是一个开源的云计算平台,用于构建和管理公有云、私有云和混合云环境。

它由一系列相互关联的项目组成,包括计算、网络、存储、身份认证等。

OpenStack提供了一套灵活和可扩展的工具和服务,使用户能够轻松地部署和管理云基础设施。

2. OpenStack的核心组件有哪些?OpenStack由多个核心组件组成,包括:•Nova:用于管理和调度计算实例的计算服务。

•Neutron:用于管理和配置网络的网络服务。

•Cinder:提供持久化块存储服务。

•Swift:提供对象存储服务。

•Keystone:用于身份认证和访问控制的身份服务。

•Glance:用于镜像管理的镜像服务。

•Horizon:提供Web界面用于用户管理和监控。

•Heat:提供基于模板的编排服务。

•Ceilometer:提供计量和监控服务。

•Trove:提供数据库即服务。

3. 什么是Nova?Nova是OpenStack中的计算服务组件,用于管理和调度计算实例。

它可以创建、启动、停止和删除虚拟机实例,并提供了弹性伸缩、负载均衡等功能。

Nova通过Hypervisor(如KVM、Xen、VMware等)来管理计算资源,并与其他OpenStack组件(如Neutron、Cinder等)进行协作,提供完整的云计算平台。

4. 什么是Neutron?Neutron是OpenStack中的网络服务组件,用于管理和配置网络。

它可以创建和管理虚拟网络、子网、路由器等网络资源,并提供了软件定义网络(SDN)的功能。

Neutron通过将网络相关的操作抽象为API,并与底层的网络设备进行交互,实现了灵活且可扩展的网络管理。

云计算中的容器技术使用方法详解

云计算中的容器技术使用方法详解

云计算中的容器技术使用方法详解近年来,随着云计算的迅速发展,容器技术在云计算中的应用也逐渐受到关注。

容器技术作为一种轻量级的虚拟化解决方案,可以提供高效、灵活和可扩展的应用程序部署方式。

本文将详细介绍云计算中的容器技术的使用方法,包括容器的概念、常用的容器引擎、容器的部署和管理,以及与传统虚拟化技术的比较。

首先,我们来了解一下容器的概念。

容器是一种通过隔离应用程序和其所需的运行时环境的技术。

与传统的虚拟机相比,容器更加轻量级,可以在一个操作系统内运行多个容器,每个容器都有自己独立的文件系统和运行时环境。

容器使用镜像来打包应用程序及其所有的依赖关系,这使得容器在不同的环境之间迁移和部署变得非常简单。

在云计算中,最常用的容器引擎是Docker。

Docker是一个开源的容器引擎,它提供了一套高效的工具和平台,可以方便地创建、打包和部署容器。

使用Docker,可以将应用程序及其所有的依赖项打包成一个镜像,然后在任何支持Docker的主机上运行。

Docker还提供了一套灵活的管理和编排工具,可以方便地管理大规模的容器集群。

容器的部署和管理是云计算中容器技术的核心问题之一。

在部署容器之前,首先需要选择合适的基础设施平台。

云计算提供了各种各样的基础设施平台,如公有云、私有云和混合云等。

选择合适的平台可以根据实际需求和预算来决定。

一旦选择了基础设施平台,就可以开始部署容器了。

在部署容器之前,需要先创建一个适当的镜像。

Docker提供了一个命令行工具,可以方便地创建和管理镜像。

可以通过编写一个Dockerfile来描述镜像的构建过程,然后使用docker build命令来构建镜像。

Dockerfile是一个文本文件,通过一系列的指令来构建和配置镜像。

这些指令包括FROM、RUN、COPY、EXPOSE和CMD等,可以用来指定基础镜像、安装软件包、复制文件、暴露端口和指定容器的启动命令等。

一旦创建了一个镜像,就可以使用docker run命令来运行容器了。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Bootstrapping OpenStack Clouds Platforms and Infrastructure for Hyperscale Environments A Dell Technical White PaperAuthored by Rob Hirschfeld and Greg AlthausContributions from Bret Piatt, Director of Product Management, Rackspace Cloud BuildersBring open APIs and best practices to cloud operations.THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND.Table of ContentsExecutive Summary (3)Selecting a Platform (3)Fundamental Hyperscale Design Patterns (4)Fault Zones (4)Flatness at the Edges (5)Choosing Hardware (5)Network Configuration (7)Design Guidelines (8)Operations Infrastructure (10)The Administration Server (10)Core Services (10)Provisioning (12)Monitoring (12)Beyond Bootstrapping: Laying Down OpenStack (13)Deploying Storage (Swift) (13)Deploying Compute (Nova) (13)Other Services (14)Key Takeaways (15)To Learn More (15)Executive SummaryBringing a cloud infrastructure online can be a daunting bootstrapping challenge. Before hanging out a shingle as a private or public service provider, you must select a platform, acquire hardware, configure your network, set up operations services, and integrate it all together. Those are a lot of moving parts before you have even installed a sellable application.This white paper walks you through the decision process to get started with an open source cloud infrastructure based on OpenStack and Dell Power Edge C class hardware. The figure below serves as a roadmap for components that we’ll cover: red for OpenStack, blue for hardware, green for operations and configuration, and white for topics reserved for future white papers from Dell. At the end, you’ll be ready to design your own trial system that will serve as the foundation of your hyperscale cloud.Selecting a PlatformThis white paper assumes that you’ve selected OpenStack Bexar Release on Ubuntu 10.10 as your infrastructure platform. While the concepts hold for any hyperscale cloud infrastructure, it’s helpful to focus on a single platform for this reference. OpenStack is particularly interesting as an open source cloud because it:∙ Supports the two top public compute cloud application programming interfaces, or APIs (Amazon and Rackspace)∙ Supports the two top open source hypervisors (KVM and Xen)∙ Can run guests using Windows, Linux, or other x86-based operating systems∙ Will be deployed at hyperscale (>1000 nodes) at multiple sites (NASA, Rackspace, and others)∙ Is truly open and community -developed allowing fixes, support, and extend features as needed∙Has a significant international community adding new featuresOpenStack represents an innovator’s paradise: it offers support for existing ecosystems and opportunities to influence future direction, and it provides the foundational components for a cloud service. By building on this foundation, you can create a complete cloud solution. We will discuss added services and extensions at the end of this paper.Getting StartedIf you want a serious leg up toward a working cloud, Dell is building a getting-started kit around the principles discussed in this white paper. This kit includes a base hardware specification and tools that take you from unboxingservers to running a usable OpenStack cloud in hours. Email us atOpenStack@if you are interested in learning more.Interested users are now reaching out to Dell for help in test driving OpenStack as an open source cloud. Dell’s OpenStack getting -started kit specifically targets trials by reducing setup time and lessening the learning curve to configure a base OpenStack cloud.There are three primary components of OpenStack: Compute (Nova), Object Storage (Swift), and an Image Service (Glance). Our focus is on preparing an environment to run OpenStack. You will need additional references to learn everything you need to manually complete an OpenStack install.Note: Dell is actively seeking customers interested in conducting a proof-of-concept (PoC) using OpenStack. A PoC engagement with Dell will involve many of the configurations and services discussed in this white paper. You may also wish to take advantage of services available from Rackspace Cloud Builders. Email us at OpenStack@ if you are interested in learning more.Fundamental Hyperscale Design PatternsFault ZonesBuilding a hyperscale cloud requires a different mindset (we like to call it “revolutionary”) compared to a traditional enterprise virtualized infrastructure. This means driving a degree of simplicity, homogeneity, and density that is beyond most enterprise systems.The core lesson of these large systems is that redundancy moves from the hardware into the software and applications. In fact, the expectation of failure is built into the system as a key assumption because daily failures are a fact of life when you have thousands of servers.To achieve scale, individual components intentionally lack network, power, and disk redundancy. Servers are configured with single network paths, single power supplies, and non -RAIDed drives (aka JBOD, or “just a bunch of disks”). That means that a power distribution unit (PDU) or rack switch failure will take down a handful of servers. To accommodate this risk, the system is divided into what we call “fault zones.” Applications and data are striped across fault zones (similar to data stripping on a RAID) to isolate the impact of multiple component failures.The benefits of this design approach are significant:What isa ”hyperscale cloud ”?Hyperscale systems are designed to operate thousands of servers under a singlemanagementinfrastructure. The scope of these systems requires a differentmanagementparadigm in which hardware faults are common, manual steps are notpractical, and small costs add up to large economic impacts.An example of small costs adding to big impacts: changing a six-drive array from RAID 5 to RAID 10 would reduce total storage by 40 percent. Putanother way, you’d have to buy 66 percent more disk (10 instead of 6 drives) for thesame total storage!∙The ability to choose non-redundant components (disk, server and network) with a lower total cost of ownership (TCO)∙Simpler network routing and configuration∙Simpler physical data center layouts∙Higher density because capacity is not lost to redundant disk, network, and power∙Predictable and streamlined setups and deployment processesIt is important to point out that core networking is still constructed with redundant and hardware-fault-tolerant paths.As a consumer of this infrastructure approach, applications must take a fault-zone-tolerant deployment model. We have discussed this in detail in blogs posts and presentations about application striping using redundant arrays of inexpensive nodes (RAIN).Flatness at the Edges“Flatness at the edges” is one of the guiding principles of hyperscale cloud designs. Flatness means that cloud infrastructure avoids creating tiers where possible. For example, having a blade in a frame aggregating networking that is connected to a SAN via a VLAN is a tiered designin which the components are vertically coupled. A single node with local disk connected directly to the switch has all the same components but in a single “flat” layer. Edges are the bottom tier (or “leaves”) of the cloud. Being flat creates a lot of edges because most of the components are self-contained. To scale and reduce complexity, clouds must rely on the edges to make independent decisions, such as how to route network traffic, where to replicate data, or when to throttle virtual machines (VMs). We are effectively distributing an intelligence overhead tax on each component of the cloud rather than relying on a “centralized overcloud” to rule them all.Note: An anti-example of edge design is using VLANs to segment tenants because VLANs (a limited resource) require configuration at the switching tier to manage traffic generated by an edge component.Choosing HardwareChoosing cloud hardware requires committing to a fault-tolerance strategy that matches your operations model. For hyperscale clouds, our customers demand highly modular and dense solutions. Just as a RAID system focuses on using interchangeable commodity disks, clouds are built using interchangeable utility servers. The logic is that you will have sufficient scale to create redundancy and, more importantly, sufficient modularity to grow incrementally. Modularity is a critical value to help reduce complexity. When clouds are measured in the hundreds of nodes, it is difficult to manage nodes that are linked in groups of six to a dedicated SAN and then connected with eight or more pairs of teamed network interface controllers (NICs) to different cross-connected switches. If just describing the system is difficult then imagine trying to design, document, and maintain it.Fundamentally, hyperscale clouds have less shared physical infrastructure by design because shared physical infrastructure is harder to configure, manage, and troubleshoot. It also has the unfortunate side effect of causing broader systems outages. While the individual components may be more likely to fail in this model, the impact of those failures is more isolated, smaller, and much easier to correct quickly.In our experience, nodes fall into one of four performance categories:Concepts like “Flatness at the Edges” are based on operating hyperscale clouds. In many cases, hyperscale design requirements are contrary to traditional data center objectives because they have different core assumptions.Dell Data Center Solutions (DCS) group has been helping customers build clouds at this scale for years. The innovations from these hyperscale data centers have begun to trickle down and can now be successfully applied at a moderate scale.∙Compute solutions are not as common for virtual manchine-based clouds but typical for some analytics systems (interestingly, many analytics are more disk- and network-bound). In practice, cloud applications are more likely to scale out than up.∙Storage solutions should be treated with caution. Use IP-network-based iSCSI SAN or NAS storage to address these cases because it’s much easier to centralize big data than drag all of it to your local nodes. Note: If you have a solution that needs really big storage and lots of VMs, then it may not be a good cloud application.∙Network solutions may really be compute-heavy systems in disguise. Unless you are packing a lot of RAM and CPU into your systems, it’s unlikely that you will hit the wall on networking bandwidth (more about this later). Remote storage is a primary driver for needing more networking capacity, so you may solve your networking constraints by using more local disk.∙Balanced solutions are a good compromise because even the most basic VM placement can distribute VMs to level resource use. This is likely to become eveneasier when live migration is a standard feature (expected before the OpenStackCactus release)Comparing these four categories to available Dell PowerEdge C server models, the balanced-focus server seems to handle the broadest range of applications for compute while the storage node is the best choice for storage. We recommend the balanced node for trial systems because it can be easily repurposed anywhere else as your cloud grows.Net/CoreAssumptions:48 gigabytes (GB) per node (actual RAM can be higher or lower)∙ 2.5-inch drives boost spindle counts. 3.5-inch drives offer more capacity and less cost but lower IOPS (input/output operations per second).∙Disk/Core assumes unRAIDed drives for comparison. Counts decrease if RAID systems are used.“To RAID or not to RAID, that is the question.”Using hardware RAID on compute nodes can provide an additional safety net for customer data. This is important when you do not expect (or force) customers to scale on multiple nodes or use network storage for critical data.The downside of RAID is that it reduces storage capacity while adding cost and complexity. RAID may also underperform JBOD configurations if VM I/O is not uniform. Ultimately, your Ops capability and risk tolerance determines if RAID is the right fit.Four NICs per node, as per guidance in the “Network Configuration” section of this paper.The key to selecting hardware is to determine your target ratios. For example, if you are planning compute to have one core per VM (a conservative estimate) then a balanced system would net nearly one spindle per VM. That effectively creates a dedicated I/O channel for each VM and gives plenty of storage. While you may target higher densities, it’s useful to understand that your one core class of VMs has nearly dedicated resources. Flatness at the edges encourages this type of isolation at the VM level because it eliminates interependencies at the maximum possible grainularity.When you look at storage hardware, it can be difficult to find a high enough disk-to-core ratio. For solutions like Swift, you may want to consider the most power-efficient CPUs and largest disks. Object stores are often fronted with a cache so that high-demand files do not hit the actual storage nodes.So let’s look at the concept of a mixed storage and compute system. In that model, the same nodes perform both compute and storage functions. For that configuration, the network-optimized node seems to be the best compromise; however, we consistently find that a mixed-use node has too many compromises and ends up being more expensive—10-gigabit (Gb) networking has a hefty premium still—compared to a heterogeneous system. There is one exception: we recommend a mixed-use system for small-scale pilots because it gives you themost flexibility while you are learning to use your cloud infrastructure.As with any design, the challenge is to prevent exceptions from forcing suboptimal design changes. For example, the need to host some 100-Gb disk VMs should not force the entire infrastructure into a storage-heavy pattern. It is likely a better design to assume 20-Gb VMs on fast local disk and set up a single shared iSCSI SAN or NAS target to handle the exceptions as secondary drives. For service providers, these exceptions become premium features. Network ConfigurationIt is virtually impossible to overstate the importance of networking for hyperscale clouds, but importance should not translate into complexity. The key to cloud networking is to simplify and flatten. Achieving this design objective requires making choices that are contrary to enterprise network topologies.A Typical TopologyBest practice for hyperscale clouds calls forthree logical primary networks with a possiblefourth. In practice, these networks are usuallymapped directly to physical NICs; however,that mapping is not required.1.The administration network connects the cloud infrastructure management to thenodes that run the cloud workloads. This network is restricted and not accessible toVMs. See the “Operations Infrastructure” section for more information.2.The internal network provides connectivity between VMs and services (e.g. the objectstore) within the cloud. This network typically carries the bulk of the cloud traffic, and customers are not charged for bandwidth consumed internally.3.The external network connects VMs to the Internet and is metered so use can becharged to the customer.Hyperscale clouds are fundamentally multitenant. The ability to mix unrelated work together enables large-scale cloud load balancing. The expectation of dynamic demand pairs with the feature of resource elasticity.Our multitenant assumption creates a requirement paradox: We need both isolation and aggressive intermixing. It should be no surprise that the answer is virtualization of compute, network, and storage.4. Use of a storage network is recommendedwhen using centralized storage to isolate the impact of large transfers on other networks. If storage traffic is isolated from the VMs then it may be possible to combine storage with the administration network.There are several reasons for segmenting the networks but the primary one is bandwidth distribution. We want to ensure that traffic on our money network (external) is not disrupted by activity on the other networks. Segmentation also allows for better IP management. Surprisingly, security is not a motivation for segmentation. In a multitenant cloud, we must assume that untrusted users can penetrate to VMs that have access to the internal network; consequently, we must rely on better methods to isolate intruders.As 10-Gb networking becomes more affordable, we expect to see a trend to map these logical networks into one or two physical 10-Gb NICs. Dropping to a single interface is good designsince a single 10-Gb port can carry more than twice the traffic 1of the four -NIC configuration. In addition, the single high -speed NIC design has more elastic bandwidth: one network can burst to consume up to 80 percent of the capacity and still leave the other networks with 1-Gb of bandwidth. Remember that the Admin network must access the motherboard Intelligent Platform Management Interface (IPMI) and management, and likely cannot ride on secondary interfaces.Design GuidelinesSince there is no one -size -fits -all topology, we will outline some basic rules for constructing cloud networks, presented in priority order. Following these rules will help ensure you have a solid cloud connectivity foundation.Rule 1: Cost matters.Creating unused capacity wastes money. Idle backup links and under -subscribed bandwidth more than double costs. Adding complexity also costs money. Managing overlapping VLANs, complex routing rules, and sophisticated active -active paths injects the need for manual labor or expensive management tools. In an inelastic enterprise data center, the investment in fully1While 10 Gb NICs do provide more bandwidth, they have limited packet count that may prevent them from handling the full capacity. For example: VMs sending heavy loads with small packets may saturate a single10-Gb NIC, where multiple 1-Gb NICs could handle the load.About False RedundantWhile on the surface, creating a one-to-one switch-to-server mapping may seem risky, it is actually more than three times more reliable than spreading the server’s network load to four switches. Unless you have redundancy, adding components to a system will make it less reliable.redundant networks (usually requiring eight or more interfaces connecting to four interleaved switches) makes sense; however, cloud scale makes it economically unfeasible to buy, install, and manage the extra (and more expensive) equipment.A hyperscale cloud network can use simpler switches because we have embraced fault zones. In our recommended configuration, each server connects to just one switch. This means you need fewer switches, fewer ports, less sophisticated paths, and even shorter wires. More components touching a node make that node less reliable. The only way to increase reliability is to add expensive and complex redundancy. Hyperscale clouds choose system-level redundancy plus more low-cost resources as a way to improve fault tolerance.Rule 2: Keep your network flat.Four thousand ninety six sounds like a big number. That is the maximum number of VLANs that most networks will support without forcing you to get creative. You will need some VLANs to create logical networks and manage broadcast domains; however, using VLANs to segment tenant traffic will not scale. Our current density recommendation is 36 nodes per rack. If each node supports 32 VMs (4 per core) then each rack will sustain 1,152 VMs and require an allocation of nearly 2,500 IPs addresses. Managing tiered networks and VLANs for systems at that density is not practical; consequently, cloud networks tend to be as flat as possible.Our cloud network reference designs use stacking to create a logical top-of-rack switch: stacking uses short distance 14-Gb networking that effectively merges all the switches. Thisallows for extremely fast and simple communication between nodes in the rack, and stacked switches can share 10-Gb uplinks to core routers per switch. This way, each switch can still be an isolated fault zone without paying the price of routing all traffic to core.Rule 3: Filter at the edge.Since VLANs do not scale, we need another way to prevent unwanted cross-tenant communication. The solution is to edge filter traffic at the node level. This requires the cloud management system (OpenStack Nova) to set up network access rules for each VM that it deploys. The rules must allow VMs from the same tenant to talk to each other while blocking other traffic. Currently, Linux IPTables is the tool of choice for this filtering, but look for new approaches using OpenFlow or Open vSwitch.Rule 4: Design fault zones.You should be able to easily identify fault zones in your network topology. Remember that fault zones are used to both isolate the impact of failures and simplify your design. Your lowest paid data center tech and highly automated cloud management system must be able to understand the topology.Rule 5: Plan for local traffic.Cloud applications are more likely to be chatty scale-out architectures than traditional tiered designs. While this delivers reliability by spreading work across fault zones, it creates a lot of internal network traffic. If this internal traffic has to route between switches over the core network then you can oversubscribe your core bandwidth and impact external communications. Luckily, it is possible to predict internal communication because it is mainly between VMs for each tenant. This concern can be mitigated with additional outbound links, 30-Second Rule of ComplexityIf you’ve studied computer science then you know there are algorithms that calculate “complexity.” Unfortunately, these have little practical use for data center operators.Our complexity rule does not require a PhD:If it takes more than 30 seconds to pick out what would be impacted by a device failure then your design is too complex.stacking top-of-rack switches (see Rule 1 above), and clustering a tenant so most of its traffic aggregates into the same core switches.Rule 6: Offer load balancers.Our final rule helps enable good architecture hygiene by the cloud users. Making load balancers inexpensive and easy to use encourages customers to scale out their applications. Cloud providers need scaled-out applications to span fault zones and mitigate a hyperscale cloud’s higher risk of edge failures. Several public clouds integrate load balancing as a core service or make pre-configured load balancer VMs easily available. If you are not encouraging customers to scale out their applications than you should plan to scale out your help desk and Operations (Ops) team.Operations InfrastructureOne of our critical lessons learned about cloud bootstrapping is that Ops capabilities are just as fundamental to success as hardware and software. You will need the same basic core Ops components whether you are planning a 1,000-node public cloud or a six-node lab. These services build upwards in layers from core network services to monitoring and then to provisioning and access.The Administration ServerBefore we jump into specific services to deploy, it’s important to allocate a small fraction (one for each 100 nodes) of your infrastructure as an Administration (Admin) service. In all of our deployment scripts, this server is the first one configured and provides the operations services that the rest of the infrastructure relies on. This server is not the one running your external APIs or portals; it is strictly for internal infrastructure management. During bootstrapping, it is the image server and deployment manager. Postbootstrapping, it can be your bastion host and monitoring system. Even in our smallest systems, we make sure to dedicate a server for Admin because it makes operating the cloud substantially easier. As we’ll explore below, the Admin server is a real workhorse.Core ServicesCore services enable the most basic access and coordination of the infrastructure. These services are essential to cloud operations because the rest of the infrastructure anticipates a data center level of Ops capability. Unlike a single-node targeted SQL server, cloud software expects to operate in an Internet data center with all the services and network connectivity that comes with being “on the net .” Here’s the list of core services:We have gone back and forth about using DHCP during normal operations. Initially, we were reluctant to introduce yet anotherdependency to set up and maintain. Ultimately, we embraced DHCP for the Adminnetwork because it can be used for both delivery boot-up configuration and to sustain our PXE integration. Now that we haveProvisioningThe most obvious challenge for hyperscale is the degree of repetition required to bring systems online (aka provision) and then maintain their patch levels. This is especially challenging for dynamic projects like OpenStack where new features or patches may surface at any time. In the Dell cloud development labs, we plan for a weekly rebuild of the entire system.To keep up with these installs, we invest in learning deployment tools like Puppet and Chef. Our cloud automation leverages a Chef server on the Admin and Chef clients are included on the node images. After the operating system has been laid down by PXE on a node, the Chef client retrieves the node’s specif ic configuration from the server. The configuration scripts (“recipes”and “cookbooks” in Chef vernacular) not only install the correct packages, they also lay down the customized configuration and data files needed for that specific node. For example, a Swift data node must be given its correct ring configuration file.To truly bootstrap a cloud, deployment automation must be understood as an interconnected system. We call this description a “meta configuration.” Ops must make informed decisions about which drives belong to each Swift rung and which Nova nodes belong to each scheduler. To help simplify trial systems, our cloud installer makes recommendations based on your specific infrastructure. Ultimately, you must take the time to map the dependencies and fault zones of your infrastructure because each cloud is unique.MonitoringOnce the nodes are provisioned, Ops must keep the system running. With hundreds of nodes and thousands of spindles, failures and performance collisions are normal occurrences. Of course, cloud software takes the crisis out of faults because it is designed to accommodate failures; however, Ops must still find and repair the faults. While edge faults should not cause panic, they do have a financial impact because they degrade available capacity. Good cloud design needs overhead to account for planned (patches) and unplanned (failures) outages.To accommodate this need, it is essential to set up a both a health and performance monitoring system for your cloud infrastructure. This is a well understood and highly competitive market. If you have an existing Ops infrastructure then you should leverage your existing systems. For our automated OpenStack lab systems, we’ve integrated open source tools Nagios (health) and Ganglia (performance) into our automated deployment scripts. As we began testing our clouds, we found it very helpful to have these capabilities immediately available.。

相关文档
最新文档