线性代数必须知识结论

合集下载

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

数三线性代数必考知识点

数三线性代数必考知识点
7.伴随矩阵:
①、伴随矩阵的秩:;
②、伴随矩阵的特征值:;
③、、
8.关于矩阵秩的描述:
①、,中有阶子式不为0,阶子式全部为0;(两句话)
②、,中有阶子式全部为0;
③、,中有阶子式不为0;
线性方程组:,其中为矩阵,则:
①、与方程的个数相同,即方程组有个方程;
②、与方程组得未知数个数相同,方程组为元方程;
10.线性方程组的求解:
①、对增广矩阵进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
11.由个未知数个方程的方程组构成元线性方程:
①、;
②、(向量方程,为矩阵,个方程,个未知数)
③、(全部按列分块,其中);
④、(线性表出)
⑤、有解的充要条件:(为未知数的个数或维数)
②、对矩阵,存在,、的行向量线性无关;
线性相关
存在一组不全为0的数,使得成立;(定义)
有非零解,即有非零解;
,系数矩阵的秩小于未知数的个数;
15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;
简言之:无关组延长后仍无关,反之,不确定;
7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;
向量组能由向量组线性表示,则;
向量组能由向量组线性表示
有解;
向量组能由向量组等价
8.方阵可逆存在有限个初等矩阵,使;
①、矩阵行等价:(左乘,可逆)与同解
②、矩阵列等价:(右乘,可逆);
③、矩阵等价:(、可逆);
将顺时针或逆时针旋转,所得行列式为,则;
将主对角线翻转后(转置),所得行列式为,则;
将主副角线翻转后,所得行列式为,则;

大一线性代数必过知识点

大一线性代数必过知识点

大一线性代数必过知识点一、矩阵和行列式线性代数的基础知识点之一就是矩阵和行列式。

矩阵代表了一个有限维度的数组,可以进行加法、减法、乘法等运算。

而行列式是一个数值,可以用来判断矩阵的性质。

在学习线性代数的过程中,我们必须掌握矩阵和行列式的基本性质,例如矩阵的转置、逆矩阵的存在性以及行列式的计算方法等。

二、向量空间和线性变换向量空间是线性代数中的一个重要概念,它描述了由多个向量组成的空间。

在向量空间中,我们可以定义向量之间的运算,例如加法和标量乘法。

线性变换是一种将一个向量空间映射到另一个向量空间的操作,它保持向量空间中的向量运算性质不变。

学习线性代数的过程中,我们需要熟悉向量空间和线性变换的基本性质,例如向量空间的维度、线性变换的矩阵表示等。

三、特征值和特征向量特征值和特征向量是线性代数中重要的概念之一。

对于一个给定的线性变换,特征向量是指在该变换下保持方向不变的非零向量,而特征值则表示特征向量在该变换下的缩放比例。

我们需要学习特征值和特征向量的求解方法,例如特征方程的求解和特征值的计算。

四、线性方程组和解空间线性方程组是线性代数中的核心内容之一。

线性方程组是由多个线性方程组成的方程组,我们需要求解方程组的解集。

解空间指的是线性方程组的所有解构成的向量空间。

在学习线性方程组的解法时,我们需要掌握高斯消元法、矩阵的秩和系数矩阵的行最简形等解题方法。

五、内积和正交性内积是线性代数中的重要概念,它定义了向量之间的夹角和长度。

内积可以用来判断向量是否正交、计算向量的长度以及求解投影等。

正交性是指向量之间的内积为零,正交矩阵则是指满足正交性质的方阵。

在学习内积和正交性时,我们需要了解内积的定义和性质,例如内积的线性性质和正交矩阵的特点。

六、最小二乘法最小二乘法是线性代数中的一种数值计算方法,用于求解超定方程组的最优近似解。

当线性方程组存在无解或者有多个解时,最小二乘法可以找到一个在平方误差意义下最接近原始数据的解。

线性代数期末复习知识点资料整理总结

线性代数期末复习知识点资料整理总结

行列式1.行列式的性质性质1行列式与它的转置行列式相等TD D =.性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a =推论2如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+性质5把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1已知,那么()A.-24B.-12C.-6D.12答案B解析2.余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3.行列式按行(列)展开法则定理1行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++ 或 1122j j j j nj njD a A a A a A =+++ ()1,2,,;1,2i n j n ==定理2行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++= 或,11220.j j j j nj nj a A a A a A i j +++=≠ ()1,2,,;1,2i n j n == 例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____;213122322333a A a A a A ++=___0___.4.行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =-(3)对角行列式1212n nλλλλλλ=,n(m 1)21212nn(1)λλλλλλ-=- (4)三角行列式1111121n 2122222n1122nnn1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素33=1,按该行展开,D=3333,不用忘记B 。

线性代数重点知识总结

线性代数重点知识总结

说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。

2.知识点会了不一定做的对题,所以还要有相应的练习题。

3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。

第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。

2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。

总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。

第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。

2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。

4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。

5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。

第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k ,等于用数k乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k 加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace 展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则7、n 阶(n ≥2)范德蒙德行列式大学资料菌数学归纳法证明★8、对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n |A| (2)|AB|=|A|·|B|(3)|A T |=|A|(4)|A -1|=|A|-1(5)|A*|=|A|n-1(6)若A 的特征值λ1、λ2、……λn ,则(7)若A 与B 相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解大学资料菌(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A -1,A*,f(A)时,可以用交换律)(3)AB=O 不能推出A=O 或B=O 。

数三线性代数必考知识点

数三线性代数必考知识点

线性代数必考知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵:无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;( 例14)4. ;( 例15)5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则;向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;②、对矩阵,存在,、的行向量线性无关;线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;5、相似矩阵和二次型1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:;;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

线性代数必须熟记的结论

线性代数必须熟记的结论

1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式; n 2n !n 2n2. 代数余子式的性质:①、ij A 和的大小无关;ij a ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A ++=−=−M4. 设行列式n D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D −=−; 将D 顺时针或逆时针旋转90,所得行列式为o2D ,则(1)22(1)n n D D −=−;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n −× −;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n −× −;⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m n CA OA AB B OB C==−⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk k k E A S λλλn k −=−=+−∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =−; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是阶可逆矩阵:n ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组有非零解; 0Ax =⇔n b R ∀∈,总有唯一解; Ax b =⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;线性代数必须熟记的结论⇔A 的行(列)向量组是的一组基; n R ⇔A 是中某两组基的过渡矩阵;n R 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3.1**111**()()()()()()T T T T A A A A A A −−−−===1***11()()()T T TAB B A AB B A AB B A −−−===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠O,则: Ⅰ、12s A A A A =L ;Ⅱ、; 111121s A A A A −−−−⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠O②、111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟;(主对角分块) ③、111O A O B B O A O −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟1⎟;(副对角分块) ④、;(拉普拉斯) 1111A C A A CB O B OB −−−−−⎛⎞−⎛⎞=⎜⎜⎟⎝⎠⎝⎠⑤、11111A O A O C B B CAB −−−−−⎛⎞⎛⎞=⎜⎜⎟−⎝⎠⎝⎠⎟;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m 矩阵n ×A ,总可经过初等变换化为标准形,其标准形是唯一确定的:;r m nE OF O O ×⎛⎞=⎜⎟⎝⎠等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则(,)(,)rA E E X A 可逆,且1X A −=;②、对矩阵做初等行变化,当(,)A B A 变为E 时,B 就变成1A B −,即:;1(,)(,)cA B E A B − ∼ ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且; 1x A b −=4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j −=,例如:;1111111−⎛⎞⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠④、倍乘某行或某列,符号(())E i k ,且11(())((E i k E i k −=,例如:1111(011k k k −⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠); ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k −=−,如:;11111(11k k k −−⎛⎞⎛⎞⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠0))5. 矩阵秩的基本性质:①、0(;)min(,m n r A m n ×≤≤②、;()()T r A r A =③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则;(可逆矩阵不影响矩阵的秩) ()()()()r A r PA r AQ r PAQ ===⑤、max ;(※) ((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※) ()()()r A B r A r B +≤+⑦、;(※)()min((),()r AB r A r B ≤)⑧、如果A 是矩阵,m n ×B 是矩阵,且n s ×0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为阶方阵,则;n ()()()r AB r A r B n ≥+−6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎞⎜⎜⎜⎟⎝⎠⎟⎟m 二项展开式:01111110()nnnn m n mmn n n nm m n nnnnnnm a b C a C a b C a b Ca b C b Ca b −−−−=+=++++++=∑L L −;注:Ⅰ、(展开后有项;)n a b +1n +Ⅱ、0(1)(1)!1123!()!−−+==−LL L m n n n n n n m n C C m m n m ==n C −=1Ⅲ、组合的性质:;111102−−+−===+=∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()nr A n r A r A n r A n = ⎧⎪==⎨⎪−<−⎩;②、伴随矩阵的特征值:*1*(,AAAX X A A A A X X λλλ− == ⇒ =);③、*1A A A −=、1*n A A−=8. 关于A 矩阵秩的描述:①、,()r A n =A 中有阶子式不为0,n 1n +阶子式全部为0;(两句话)②、,()r A n <A 中有阶子式全部为0; n ③、,()r A n ≥A 中有阶子式不为0;n 9. 线性方程组:,其中Ax b =A 为矩阵,则:m n ×①、m 与方程的个数相同,即方程组Ax b =有个方程;m ②、n 与方程组得未知数个数相同,方程组Ax b =为元方程; n 10. 线性方程组的求解:Ax b =①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成n 元线性方程:n m ①、;11112211211222221122n n n n m m nm n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L LLLLLLLLLLL L n②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⇔=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L M M O M M M L (向量方程,A 为m n ×矩阵,个方程,个未知数)m n ③、()1212n n x x a a a x β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M (全部按列分块,其中);12n b b b β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠M ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(为未知数的个数或维数)n 4、向量组的线性相关性1.个维列向量所组成的向量组m n A :12,,,m αααL 构成n m ×矩阵12(,,,)m A =L ααα;m 个维行向量所组成的向量组n B :12,,,T T TmβββL 构成m n ×矩阵12T T T m B βββ⎛⎞⎜⎟⎜=⎜⎟⎜⎟⎜⎟⎝⎠M ⎟; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)0Ax ⇔=②、向量的线性表出是否有解;(线性方程组) Ax b ⇔=③、向量组的相互线性表示 是否有解;(矩阵方程)AX B ⇔=3. 矩阵与m n A ×l n B ×行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ;(()(T r A A r A =)101P 例15) 5.维向量线性相关的几何意义:n ①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααL α线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s ααL α线性无关,则121,,,s ααα−L 必线性无关;(向量的个数加加减减,二者为对偶) 若维向量组r A 的每个向量上添上个分量,构成n 维向量组n r −B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为)能由向量组r B (个数为)线性表示,且s A 线性无关,则r (二版s ≤74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; (()(,)r A r A B ⇔=85P 定理2)向量组A 能由向量组B 等价(()()(,)r A r B r A B ⇔ ==85P 定理2推论) 8. 方阵A 可逆存在有限个初等矩阵,使⇔12,,,l P P P L 12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵与m n A ×l n B ×:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则与0Ax =0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若,则:m s s n m n A B C ×××=①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是的解,考试中可以直接作为定理使用,而无需证明; 0ABx =①、 只有零解0ABx =0Bx ⇒ =只有零解;②、0Bx = 有非零解一定存在非零解;0ABx ⇒ =12. 设向量组12:,,,n r r B b b b ×L 可由向量组线性表示为:(12:,,,n s s A a a a ×L 110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中为,且K s r ×A 线性无关,则B 组线性无关()r K r ⇔=;(B 与的列向量组具有相同线性相关性) K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q 注:当时,为方阵,可当作定理使用;r s =K 13. ①、对矩阵,存在, m n A ×n m Q ×m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵,存在, m n A ×n m P ×n PA E =()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααL α线性相关⇔存在一组不全为0的数,使得12,,,s k k k L 11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设的矩阵m n ×A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:;()r S n r =−16. 若*η为的一个解,Ax b =12,,,n r ξξξ−L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ−L 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵或T A A E ⇔=1T A A −=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即;1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ②、若A 为正交矩阵,则也为正交阵,且1T A A −=1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L 1b a =1;122211[,][,]b a b a b b b =−1LLL12112112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b −1−−−=−−−− L ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、可逆; Q ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ,其中可逆;⇔=T C AC B⇔与有相同的正、负惯性指数; T x Ax T x Bx ③、A 与B 相似 1−⇔=P AP B ; 5. 相似一定合同、合同未必相似;若为正交矩阵,则C T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. 元二次型为正定:n T x Ax A ⇔的正惯性指数为;n A ⇔与E 合同,即存在可逆矩阵,使C T C AC E =; A ⇔的所有特征值均为正数;的各阶顺序主子式均大于0; A ⇔0,0ii a A ⇒>>;(必要条件)。

线性代数须熟记的结论

线性代数须熟记的结论
02
线性变换的矩阵表示具有一些重要性质,如相似变换的性质 性变换的矩阵表示,可以方便地计算线性变换在不同 基下的表示。
线性变换的核与象
线性变换的核是指被映射到零向量的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{0}$的 向量$mathbf{x}$构成的子空间。
基底的性质
一个向量空间中,基底是由 不共线的向量组成的,且这 些向量能线性表示该空间中
的任意向量。
基底的判定
一个向量组是某向量空间的 基底当且仅当该向量组线性 无关。
矩阵的秩与行列式
矩阵的秩的定义
矩阵的秩是其行(或列)向量组的秩, 即该行(或列)向量组中线性无关向 量的个数。
矩阵的秩的性质
矩阵的秩是其行(或列)向量组的秩, 且矩阵的秩等于其行秩和列秩。
线性变换的象是指被映射到某个向量$mathbf{b}$的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{b}$的向量$mathbf{x}$构成的子空间。
核与象是线性变换的重要概念,它们在解决线性代数问题中具有广泛应用,如解线性方程组、求矩阵的 逆等。
05 二次型与矩阵的平方根
特征向量
对于给定的矩阵A和特征值λ,如果存 在一个非零向量x,使得Ax=λx成立, 则称x为矩阵A对应于λ的特征向量。
特征多项式与特征值的性质
特征多项式
对于给定的矩阵A,存在一个多项式f(λ),使得f(λ)=|λE-A|,其中E为单位矩阵,f(λ)称为矩阵A的特征多项式。
特征值的性质
特征值是特征多项式的根,即f(λ)=0的解。特征值具有复数、重数和代数重数等性质。
二次型的定义与标准型
二次型是实数域上的二次齐次多项式 函数,可以表示为$f(x) = Ax^2 + 2Bxy + Cy^2$的形式。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结「篇一」第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幕知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。

推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。

定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。

行列式的性质性质1:行列式与它的转置行列式相等。

性质2:交换行列式的两行(列),行列式变号。

*注2:交换i,j两列,记为ri↔ri(ci↔cj)。

推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。

性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。

注3:第i行(列)乘以k,记为ri×k(ci×k)。

推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。

性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。

#注4:上述结果可推广到有限个数和的情形。

性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。

注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。

行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。

k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。

大一线性代数总结知识点

大一线性代数总结知识点

大一线性代数总结知识点线性代数是大一学生学习的一门重要的数学课程,它是现代数学的基础,也是许多学科领域的基础。

在学习线性代数的过程中,我们需要掌握一些重要的知识点。

下面是我对大一线性代数的知识点进行的总结。

1. 向量与矩阵1.1 向量的定义与表示在线性代数中,我们首先学习向量的定义与表示。

向量可以看作是一个有序的数列或者几何上的箭头。

在二维空间中,一个向量通常用坐标表示,如(1, 2);在三维空间中,一个向量用三个坐标表示,如(1, 2, 3)。

向量还可以用加法、减法和数乘等运算进行操作。

1.2 矩阵的定义与表示矩阵是线性代数中的另一个重要概念,它是由数排列成的矩形阵列。

矩阵有行和列组成,如下所示:\[\begin{bmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9 \\\end{bmatrix}\]我们可以用矩阵表示线性方程组,进行线性方程组的求解等操作。

2. 向量空间与子空间2.1 向量空间的定义在线性代数中,向量空间是由一组向量和定义在这组向量上的向量加法和标量乘法组成的集合。

向量空间需要满足一些特定的性质,如封闭性、加法结合律、加法交换律、加法单位元、加法逆元等。

2.2 子空间的定义与判定子空间是向量空间的一个子集,并且子空间也要满足向量空间的性质。

我们可以通过判断子空间是否满足封闭性、加法单位元、加法逆元等性质来确定一个集合是否是子空间。

3. 线性相关性与线性无关性3.1 线性相关性的定义与判断在线性代数中,我们需要研究向量之间的线性相关性。

如果存在不全为零的系数使得向量的线性组合等于零向量,则称这组向量线性相关;否则,称这组向量线性无关。

3.2 线性无关性的性质与应用线性无关性是许多线性代数中的重要概念。

线性无关的向量组可以用来表示向量空间中的基,从而可以简化向量空间的研究和计算。

线性无关的向量组还可以用来求解线性方程组,求解特殊的方程组等。

线性代数公式必背_完整归纳清晰版

线性代数公式必背_完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线代最后必背知识

线代最后必背知识

(β1, β2, β3) = (α1,α2,α3)P (基变换公式),
则 P 称为从旧基到新基的过渡矩阵.有 P = (α1,α2,α3)−1(β1, β2, β3) .
设向量 x = ( x1, x2, x3)T 在旧基和新基下的坐标分别为 y1, y2, y3 和 z1, z2, z3 ,即
⎛ y1 ⎞
A 与 B 等价 ⇔ 存在可逆阵 P 及 Q ,使 PAQ = B ⇔ A、B 同型,且 r( A) = r(B)
线性代数最后必背知识---李良老师
新浪微博:@良哥考研
四、矩阵的秩 1.矩阵秩的定义
设 A 为 m × n 矩阵,如果 A 中存在 r 阶子式不为 0,而 r + 1阶子式全为 0,则称矩阵 A 的秩为 r ,记作 r( A) .规定零矩阵的秩为 0 .
阵:
(1) E 作变换 ri ↔ rj (或 ci ↔ c j ),得初等矩阵 Eij
(2) E 作变换 ri × k (或 ci × k ),得初等矩阵 Ei (k)
(3) E 作变换 ri + krj (或 c j + kci ),得初等矩阵 Eij (k)
2.初等矩阵的性质
(1)初等变换与初等矩阵的关系:对矩阵 Am×n 施行一次初等行 变换,就相当于在 A 的左
(5) r(AB) ≤ min{r(A), r(B)} (6)若 Am×nBn×s = O ,则 r( A) + r(B) ≤ n
(7)若 A 列满秩,则 r( AB) = r(B),若 B 行满秩则 r( AB) = r( A)
五、向量表出判定定理
1.向量 β 可由向量组 α1,α2,L ,αm 线性表示
边乘以相应的 m 阶初等矩阵;对 A 施行一次初等列变换,就相当于在 A 的右边乘以相应的

大学线性代数知识点总结

大学线性代数知识点总结

大学线性代数知识点总结线性代数是大学数学课程中的重要一环,它是研究向量空间及其上的线性变换和线性方程组的数学理论。

掌握线性代数的基本概念和定理,对于深入理解数学和应用领域都具有重要意义。

在本文中,将对大学线性代数的一些重要知识点进行总结。

一、向量与向量空间向量是线性代数的基本概念,它具有大小和方向。

在线性代数中,向量通常用列向量表示。

对于两个向量,可以进行加法和数乘运算。

向量空间是由一组向量及其运算所构成的集合,它具有封闭性、结合律、分配律等性质。

二、矩阵及其运算矩阵是线性代数中另一个重要的概念,它由若干行和列所组成的矩形数表。

矩阵可以进行加法、数乘和乘法运算。

矩阵乘法是线性代数中的核心内容,它不满足交换律。

矩阵的转置、逆矩阵和行列式等运算也是线性代数中常用的操作。

三、线性方程组及其求解线性方程组是线性代数的重要应用之一,它是由一组线性方程所组成的方程组。

线性方程组的解可以通过消元法、矩阵法或向量法来求解。

消元法是一种基本的求解思路,通过一系列行变换将线性方程组转化为等价方程组,进而求解未知数的值。

矩阵法则通过增广矩阵和高斯消元法来求解线性方程组。

向量法则利用矩阵乘法和逆矩阵的性质求解线性方程组。

四、向量空间的基与维数向量空间的基是向量空间的一个重要性质,它是一组线性无关的向量,可以通过线性组合得到向量空间中的任意向量。

向量空间的维数指的是基向量的个数,维数也是向量空间的一个重要特征。

五、特征值与特征向量特征值和特征向量是矩阵的重要性质。

对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,则称k为矩阵A的特征值,x为对应的特征向量。

特征值和特征向量在物理、工程等领域有着广泛的应用,它们可以描述系统的特性和变化规律。

六、线性变换与矩阵的相似性线性变换是线性代数中一个重要的概念,它是由向量空间到它自身的一种映射。

与线性变换相关的概念还有矩阵的相似性。

如果两个矩阵具有相同的特征值,则它们被称为相似矩阵,相似矩阵在各种应用中具有重要意义。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数是现代数学的一个重要分支,是许多领域的基础和工具。

它主要研究线性方程组、向量空间、线性变换和矩阵等数学概念和方法。

在各个学科领域,包括物理学、计算机科学、经济学和工程学等,线性代数都有着广泛的应用。

本文将对线性代数的主要知识点进行总结。

1. 向量与向量空间向量是线性代数中的基本概念,它包含有大小和方向的信息。

向量可以是二维、三维甚至更高维度的。

向量的加法和数乘运算满足一定的性质,构成了向量空间。

向量空间是一组向量的集合,这些向量满足一定的运算规则。

2. 矩阵与线性变换矩阵是线性代数中的重要概念,它由数表组成,具有行和列的结构。

矩阵可以表示线性方程组,通过矩阵的运算,可以求解线性方程组的解。

线性变换是从一个向量空间到另一个向量空间的映射,它可以用矩阵表示。

矩阵乘法是线性代数中的一种重要运算,它将一个矩阵映射到另一个矩阵。

3. 行列式与特征值特征向量行列式是一个数值,它可以判断一个矩阵是否可逆。

当行列式不等于零时,矩阵可逆,否则不可逆。

特征值和特征向量是矩阵的另一个重要概念。

特征值是一个数,它表示线性变换沿着特定方向的伸缩因子。

特征向量是一个非零向量,它在线性变换下只发生伸缩而不改变方向。

4. 线性方程组线性方程组是线性代数中的核心概念之一,它描述了变量之间的线性关系。

线性方程组可以由矩阵表示,并通过矩阵的运算来求解。

高斯消元法是一种常用的求解线性方程组的方法,它通过对方程组进行一系列的消元操作将其化为简化形式。

矩阵的秩表示矩阵的行(列)向量组的最大线性无关组的个数,可以用来判断线性方程组的解的情况。

5. 特殊矩阵与特殊向量在线性代数中,有一些特殊矩阵和特殊向量具有重要的性质和应用。

对称矩阵是指矩阵的转置矩阵等于它本身,它具有很多重要的性质和应用。

正交矩阵是指矩阵的转置矩阵等于它的逆矩阵,它在几何变换中起到了重要的作用。

零空间是线性变换的核的子空间,它包含了所有使线性变换为零的向量。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结
线性代数是一门关于向量、矩阵及其运算的数学分支,主要用来解决线性方程组、矩阵及其性质。

它涉及的知识有:
1. 矩阵的概念:矩阵是一组数值的集合,它由行和列组成,每一行和每一列都有相同的数目。

2. 矩阵的运算:包括加法、减法、乘法、除法以及求逆、求转置。

3. 矩阵的性质:包括行列式、特征值、特征向量、对角矩阵、正交矩阵等。

4. 线性方程组:由一组多元一次方程组成,可以使用矩阵运算求解。

5. 矢量空间:是由集合中的元素组成的子空间,可以使用矩阵运算求解。

6. 线性变换:是一种将空间中的向量映射到另一个空间的一种变换,可以使用矩阵运算求解。

7. 内积:是一种将空间中的向量映射到实数上的一种变换,可以使用矩阵运算求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A;3. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D=;将D 主副角线翻转后,所得行列式为4D ,则4D D=;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( =◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A CA B C B O B==、(1)m n C A O AA B B O B C==-⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值; 6. 对于n 阶行列式A,恒有:1(1)nn k n kk k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法: ①、A A=-;②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵 1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E ==无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12sA A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;②、111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF O O ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B= ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m n r A m n ⨯≤≤; ②、()()Tr A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-mn n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m m m m r nr r n nn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得; 11.由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、111211*********2n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫⎪⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,mααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TT mβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关; 若12,,,sααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =; ①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r rB b b b ⨯可由向量组12:,,,n s sA a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K=(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用; 13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n rηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型 1. 正交矩阵TAA E⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i ja a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1TA A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TC AC B ,其中可逆;⇔Tx Ax 与Tx Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似; 若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档