2019年中考数学第二轮专题复习 一次函数应用题专题训练题(无答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数应用题
1. 某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元. 设小明计划今年夏季游泳次数为x (x 为正整数).
()若小明计划今年夏季游泳的总费用为元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x >20时,小明选择哪种付费方式更合算?并说明理由.
2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两 种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示. (1)有月租费的收费方式是 (填①或②),月租费是 元; (2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
3.“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

根据以上信息,解答下列问题:
(1)设租车时间为x 小时,租用甲公司的车所需费用为1y 元,租用乙公司的车所需费用为2y 元,分别求出1y ,2y 关于x
的函数表达式;
(2)如果小明租车4小时,那么选择哪个出游方案合算?
(3)请你帮助小明计算并选择哪个出游方案合算。

4.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
5.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元. (1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的
,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40
元.
①若设购进甲种羽毛球m 筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W (元)与甲种羽毛球进货量m (筒)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?
x 1y 2y x
分钟)
6.某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:
(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);
(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?
(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.
7.健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.
(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案;
(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?
8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.
(1)已知甲种饮料成本每千克4
元,乙种饮料成本每千克3元,
请你写出y与x之间的函数关系
式.
(2)若用19千克A种果汁原料
和17.2千克B种果汁原料试制
甲、乙两种新型饮料,下表是试
验的相关数据;
请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?
9.2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?
(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?
(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?
10.某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有264户村民,村里得到34万元的政府资助款,不足部分由村民集资解决.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用
池共需费用y万元.
(1)求y与x之间的函数关系式;
(2)既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种?(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案?
11.为了提高土地利用率,将小麦、玉米、黄豆三种农作物套种在一起,俗称“三种三收”,现将面积 为l0亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例.要求小麦的种植面积占总 面积的60%,下表是三种农作物的亩产量及销售单价的对应表
(1) 设玉米的种值面积为x 亩,三种农作物的总售价为y 元,写出y 与x 的函数关系式;
(2) 在保证小麦种植面积的情况下,玉米、黄豆同时均按整亩数套种,有几种“三种三收”套种方
案?
(3) 在(2)中的种植方案中,采用哪种套种方案才能使总销售价最高?最高价是多少?
12.“五一
”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:
((2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)
13.今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉
农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.
(1)设甲种柴油发电机数量为x 台,乙种柴油发电机数量为y 台. ①用含x 、y 的式子表示丙种柴油发电机的数量; ②求出y 与x 的函数关系式;
(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W 最少?
14.“六一”前夕,某玩具经销商用去2350元购进A 、B 、C 三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A 种玩具x 套,B 种玩具y 套,三种电动玩具的进价和售价如表所示:
(1)用含x 、y 的代数式表示购进C 种玩具的套数;
(2)求y 与x 之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩
具的过程中需要另外支出各种费用200元.
①求出利润P (元)与x (套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.
15.某果品基地用汽车装运A、B、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A、B、C三种水果的重量及利润按下表提供信息:
(1)若用A、C两种水果?
(2)计划用20辆汽车装运A、B、C三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.
16.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:
(1)用含x,y
(2)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
17.全球第三大自贸区——中国—东盟自由贸易区的正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,先用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;
(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.18.某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A、B两村调水,其中A村需水15万吨,B村需水13万吨,甲、乙两水库各可调出水14万吨。

甲、乙两水库到A、B两村的路程和运费如下表:
(1)如果设甲水库调往A村x万吨水,求所需总
费用y(元)与x的函数关系式;
(2)如果经过精心组织实行最佳方案,那么市政
府需要准备的调运费用最低为多少?
19.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.
(1)求每台A型、B型净水器的进价各是多少元?
(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.
20. A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?
21.某年5月,我国南方某省A 、B 两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C 、D 获知A 、B 两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C 市有救灾物资240吨,D 市有救灾物资260吨,现将这些救灾物资全部调往A 、B 两市.已知从C 市运往A 、B 两市的费用分别为每吨20元和25元,从D 市运往往A 、B 两市的费用别为每吨15元和30元,设从D 市运往B 市的救灾物资为x 吨.
()设、两市的总运费为元,求与之间的函数关系式,并写出自变量x 的取值范围; (3)经过抢修,从D 市到B 市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线运费不变.若C 、D 两市的总运费的最小值不小于10320元,求m 的取值范围.
22.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?
(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.
②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).
23.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,
B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.
(1)求y 关于x 的函数关系式;
(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
24.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,12如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a= ,b= ,c= .
②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.
③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.
25.某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x 千克(x >0),总费用为y 元,现有两种购买方式.
方式一:若商家赞助厂家建设费11500元,则所购茶叶价格为130元/千克;(总费用=赞助厂家建设费+购买茶叶费)
方式二:总费用y (元)与购买茶叶数量x (千克)满足下列关系式:y=y ={200x (0<x ≤150)
150x +7500 (x >150).
请回答下面问题:
(1)写出购买方式一的y 与x 的函数关系式;
(2)如果购买茶叶超过150千克,说明选择哪种方式购买更省钱; (3)甲商家采用方式一购买,乙商家采用方式二购买,两商家共购买茶叶400千克,总费用共计74600元,求乙商家购买茶叶多少千克?
26.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y (元)与用电量x (度)间的函数关系式. (1)根据图象,阶梯电价方案分为三个档次,填写下表:
(2)小明家某月用电120度,需交电费____元;
(3)求第二档每月电费y (元)与用电量x (度)之间的函数关系式; (4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度,交电费153元,求m 的值.
27.如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示. (1)直接写出y 与x 之间的函数关系式;
(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
28.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系如图2所示. (1)观察图象,直接写出日销售量的最大值; (2)求李明家樱桃的日销售量y 与上市时间x 的函数解析式; (3)试比较第10天与第12天的销售金额哪天多?。

相关文档
最新文档