数学建模国家一等奖优秀论文

合集下载

全国大学生数学建模竞赛C题国家奖一等奖优秀论文

全国大学生数学建模竞赛C题国家奖一等奖优秀论文

脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。

根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。

同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。

首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。

分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。

同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。

其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。

即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。

最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。

分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。

关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。

这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。

对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。

全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。

全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。

数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。

这些获奖论文通常具有一些显著的特点。

首先,它们能够准确地把握问题的关键。

在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。

例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。

其次,优秀论文中的模型建立具有创新性和合理性。

学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。

他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。

再者,数据处理和分析能力也是至关重要的。

为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。

在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。

以一篇关于电商平台商品推荐系统的数学建模论文为例。

在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。

他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。

在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。

并且,通过大量的实验和对比分析,验证了模型的性能和优越性。

此外,优秀的论文还注重结果的解释和应用。

模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。

全国数学建模竞赛一等奖论文

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度摘要由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。

设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。

用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。

对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。

发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。

其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。

最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。

建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。

此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。

如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。

对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。

得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。

D、E、F区分别需新增4、2、2个平台。

利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。

其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。

在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。

最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。

全国数模优秀论文

全国数模优秀论文

全国数模优秀论文摘要:数学建模竞赛是我国高校和科研机构之间最具影响力的竞赛之一。

在每年的比赛中,数模优秀论文成为了评选标杆。

本文将介绍一些全国数模优秀论文的典型案例以及其独特之处,以期为今后的数学建模竞赛提供参考和借鉴。

第一部分:背景介绍数学建模竞赛在我国的高校和科研机构之间已经有着悠久的历史。

每年,大量的参赛团队通过精心准备和协作,在赛场上展示自己的数学建模能力。

然而,仅有少部分论文能够被评为全国数模优秀论文。

这些论文具有出色的创新性、严谨的研究方法和对实际问题的深入理解。

第二部分:案例分享2.1 实时监测系统优化某团队在2019年的数学建模竞赛中提出了一种实时监测系统的优化方案。

该方案通过改进数据采集与传输方式、优化算法和提高系统的稳定性,使实时监测系统的准确性和效率得到了极大的提升。

这项优化方案在实际应用中显著降低了监测数据的延迟和误差,为实时监测领域的相关研究提供了有益的参考。

2.2 路径优化及决策支持系统另一团队的研究成果是关于路径优化及决策支持系统。

他们利用数学模型和优化算法,对城市交通拥堵问题进行了研究,并提出了一种有效的路径优化策略,能够帮助驾驶员避开拥堵路段,减少交通时间和燃料消耗。

该论文的创新之处在于结合实时交通数据、地理信息和优化算法,为城市交通领域提供了新的思路和解决方案。

2.3 物流网络规划在2020年的数学建模竞赛中,一支团队针对物流网络规划问题进行了深入研究。

他们结合了图论、运筹学和网络优化方法,提出了一种高效的物流网络规划模型,并利用实际数据进行验证。

该模型不仅考虑了用户需求和运输成本,还考虑了不同供应商之间的协同与共享,使物流网络的效率和资源利用率得到了极大的提高。

第三部分:独特之处3.1 创新性全国数模优秀论文的独特之处在于具有创新性。

这些论文通过对现有问题的重新思考,提出了新的解决方法和思路。

创新性不仅体现在算法和模型的设计上,更是在问题的选取和实际应用中的独特性。

全国大学生数学建模大赛国家一等奖论文A题

全国大学生数学建模大赛国家一等奖论文A题
海床情况进行求解。
=
− − ( − 1)′
, = 1, 2, · · ·, 210

当逐渐增大,锚链受到的竖直向下方向的合力与支持力之差先逐渐接近于0,
再等于0,直至小于0。当合力小于0时,锚链以海床接触,此时海床提供向上的支持
力,其大小与′ 相等。因此可将小于0 的值都作零处理,故锚链接触海床时,
对于问题二,首先考虑第一个子问题,将风速36/直接代入问题一的模型中,
得出此条件下的吃水深度为0.723,各钢管倾斜角度(度)依次为8.960、9.014、9.068
、9.123,钢桶倾斜角(度)为9.179,锚链链接处的切线方向与海床的夹角(度)为18.414,
游动区域半径为18.80。发现此条件下,水声通讯系统设备的工作效果较差,且锚被
计与应用对海上科学发展有重要意义。
1.2 问题的提出
已知某近浅海传输节点(如图1所示),将浮标视作底面直径2为、高为2、质量
为1000的圆柱体,锚的质量为600,钢管共4节,每节长度为1,直径为50,
每节钢管的质量为10。水声通讯系统安装在一个长为1、外径为30的密封圆
柱形钢桶内,设备和钢桶总质量为100。
Step1: 遍历求解
令吃水深度ℎ的初始值为0.1,以0.0005为单位逐步增加至2。( 浮标高度为2,
完全浸没时吃水深度ℎ则为2 ),记录对应的数据,选取水下物体竖直方向高度和
与海域水深最接近的组别,进一步进行计算,结果如下表所示(具体程序见附录):
表 1: 不同风速的相关结果表
以风速24/的情况为例,绘制游动区域图:
题意的变量临界值。以水深16、系统各部分递推关系式和钢桶与竖直方向夹角小
于5°为约束条件,将多目标优化转化为单目标优化。通过调节决策变量中锚链的型

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

全国大学生数学建模优秀论文(A题) 国家一等奖

全国大学生数学建模优秀论文(A题) 国家一等奖

地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。

本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。

首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。

在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。

将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。

纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。

通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。

进一步考虑实际储油罐,两端为球冠体顶。

把储油罐分成中间的圆柱体和两边的球冠体分别求解。

中间的圆柱体求解类似于第一问,要分为三种情况。

在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。

根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

再利用附表2中的数据列方程组寻找α与β最准确的取值。

αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

优秀数学建模论文设计(全国一等奖)

优秀数学建模论文设计(全国一等奖)

word0000高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规如此.我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规如此的, 如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们X重承诺,严格遵守竞赛规如此,以保证竞赛的公正、公平性。

如有违反竞赛规如此的行为,我们将受到严肃处理。

我们参赛选择的题号是〔从A/B/C/D中选择一项填写〕:我们的参赛报名号为〔如果赛区设置报名号的话〕:所属学校〔请填写完整的全名〕:参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期:年月日赛区评阅编号〔由赛区组委会评阅前进展编号〕:0000高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号〔由赛区组委会评阅前进展编号〕:全国统一编号〔由赛区组委会送交全国前编号〕:全国评阅编号〔由全国组委会评阅前进展编号〕:A题:的资源配置摘要本文根据题目的要求建立了合理的有限资源分配优化模型,我们借助多种数学软件的优势挖掘出大量数据潜在的信息,并将其合理运用,在此根底上,以利润最大为目标,长远开展为原如此,制定出信息不足条件下的量化综合评价体系,并为在2006年如何合理有效地分配有限的书号资源提供了最优的分配方案。

在本文所建立的模型中,我们采取了层次分析法〔AHP〕、数据统计拟合以与整数线性规划相结合的手段,这样既借鉴了层次分析法综合评价的优势,又克制了该法中主观因素的不确定性,使模型更具有科学性,作出了2006年的分配方案,如下表经过对模型的检验,单从生产计划准确度一项来看,模型所得出的结果就比以往的高,这样就首先保证了获得年度稳定利润的前提,其他几个评价指标也都可以得出相似的结论。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模国家一等奖 论文

数学建模国家一等奖 论文

地面搜索问题的优化模型摘要本文针对地面搜索过程中人员安排和路线选择问题,建立了优化模型,并给出了相应算法,用LINGO软件编程,在确保所有地点都不遗漏且不重复的情况下,合理安排人员和线路,使得搜索用时最短。

问题一的求解中,把20个搜索队员排成一行,向前搜索。

从局部和总体两个方面对人员行进和路线选择。

在局部方面,考虑到人员行进中90度和180度转弯的情况,给出了两种转弯策略,并计算出这两种转弯的情况需要多耗费的时间;在总体方面,把需要进行搜索的区域分割成的126个方格,利用一笔画原理,判断出这些方格可以用一条不重复的线路走完。

考虑到转弯需要多耗费时间,建立了以转弯次数最少,并且从起始点开始不重复行走到达集结点的模型,利用LINGO软件进行编程求解,得到了最少转弯的模型。

考虑到具体情况,对上述模型得到的路线进行适当调整,得到最终的搜索线路安排图。

根据图表,计算出20个队员进行搜索需要50.117小时,无法在48内完成搜索任务。

考虑到队员和组长距离不超过1000米,设计一种让20名搜索队员组成的队伍和新增人员组成的队伍进行交替行进的模型,以确保让整个搜索过程控制在48小时以内。

最后给出了该行进模型的相应算法,通过计算,得出增加2个队员可以确保搜索在48小时内完成。

问题二的求解中,首先对50名人员分3组进行分析,由于矩形区域被分割后形成的小区域恰好能被20人组成的一个队列一次搜索覆盖,以及10人组成的一个队列一个来回的搜索覆盖,于是3组可分为:2个队伍为20人,1个队伍为10人。

随后进行队伍搜索区域的划分,根据各个队伍人数确定该组分配到的方格的数量,划分出各个队伍的搜索区域。

然后对三个区域进行搜索路径的优化求解,改进问题一的模型,求出三个区域的搜索路径。

再根据实际情况,对路径进行适当修改,得出20人的2个队伍,需要19.816小时,10人的队伍需要20.294小时。

根据先完成搜索任务的队伍能否有足够的时间来帮助未完成搜索任务的队伍提早完成任务的时间要求,判断出该解是可以接受的。

“高教社杯”全国大学生数学建模竞赛CUMCM国家一等奖优秀论文C题目论文

“高教社杯”全国大学生数学建模竞赛CUMCM国家一等奖优秀论文C题目论文

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):(隐去论文作者相关信息等)日期:2012年9月10日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):脑卒中发病环境因素分析及干预摘要:脑卒中逐渐威胁人们的生活,本文主要针对脑卒中发病病例信息和受病环境因素进行统计分析,从实际数据结果加深对脑卒中的认识,旨在对脑卒中加以预防。

针对问题一,先主要借助于EXCEL编程及筛选功能、MATLAB辅助编程对附件数据进行错误修复及标准化处理,得到2007~2010年期间有效数据的发病年、月、日,然后在EXCEL中分别按性别、年龄、职业、时间(包括年、月、日)四个字段对发病人数进行统计,并以图、表的形式予以展示,最后总结出脑卒中患者男女性别比为:1、集中患病年龄段为71~80岁、高危职业为农民、存在一定季节性等结论,该问属于一般的数据统计分析模型。

针对问题二,先对患者按照天来统计四年每天的发病人数(共1461条数据),再将气象数据与发病人数按天进行关联构成新的源数据,同时计算每天的气压差、温差,最后以发病率为因变量,以平均气压、最高气压、最低气压、气压差、平均温度、最高温度、最低温度、温度差、平均湿度、最低湿度10个特征为自变量进行多元线性回归,其步骤是先画因变量与自变量的散点图观测它们的关系,再利用SPSS软件统计所有变量之间的相关性,最后进行多元逐步回归分析。

大学生数学建模竞赛全国一等奖获奖论文之物理和数学的结合

大学生数学建模竞赛全国一等奖获奖论文之物理和数学的结合

数码相机定位摘要本文是双目定位的具体模型和方法进行了研究,分别给出了针孔线性模型、椭圆线性回归模型、RAC模型等并对其进行研究。

对于问题一,在针孔线性模型的基础上,通过对数码相机内外部参数的标定,确定靶标到靶标像的坐标转化关系,建立其坐标转换模型。

对于问题二,利用图像处理所得的像素模拟图表确定20组特征点的坐标在世界坐标系和图像坐标系的坐标,代入上述转换关系来确定系数矩阵M,进而求得圆心在像平面的像坐标,然后利用畸变校正模型对结果进行校正。

结果为左上圆(119.0938,69.6890)、中间圆(155.7689,72.4757)右上圆(234.6404,78.4603)、左下圆(105.4604,185.3796)右下圆(214.5271,184.9706)。

对于问题三,建立椭圆线性回归模型对靶标的像进行拟合,得到的图像中心坐标即为圆心在像平面的像坐标。

结果分析还表明该方法的精度和稳定性都比较好。

结果如下:左上圆(120.0039,69.2536)、中间圆(155.1462,73.0654)右上圆(236.2001,77.8279)、左下圆(103.4572,182.3599)右下圆(216.8469,179.6788)。

模型三与模型一的结果相差最大为2.945%。

很好地验证了模型一的结果的准确性对于问题四,利用RAC模型,确定出单个相机的外部参数,得出其旋转矩阵和平移向量,即完成单个相机的定标,然后利用其几何转化由相机各自的旋转矩阵和平移向量求解出两个相机的相对位置。

关键词:针孔线性模型像素模拟图表畸变校正曲线拟合RAC模型一.问题的重述与分析已知:一靶标和用一位置固定的数码相机摄的它的像,如题目中图3所示。

其中靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。

以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如题目中图1.1所示。

全国大学生数学建模大赛国家一等奖优秀论文系泊系统的设计

全国大学生数学建模大赛国家一等奖优秀论文系泊系统的设计

系泊系统的设计摘要本文详细对系泊系统的各个机构进行了力学分析,针对系泊系统的要求,建立优化模型,求解系泊系统在多种环境下的最优解,使得浮标游动范围,吃水程度和钢桶倾斜角度尽可能的小。

针对问题一,本文对系泊系统的受力及力矩进行了分析,基于浮标倾斜的考虑,得到了平衡状态下关于受力平衡及力矩平衡的方程组。

由于方程组数量较多及相互影响的特点,直接求解十分困难。

因此我们考虑以浮标两边的浸水长度,h h为变量,12利用搜索算法对方程组进行求解,并得到相应的结果。

如当风速为12m/s时,钢桶的倾斜角度1.0405°,从上到下钢管的倾斜角度分别为1.0086°、1.0146°、1.0206°、1.0267°,浮标吃水深度0.735m,浮标游动区域半径14.4429m。

针对问题二,首先将风速为36m/s的情况代入问题一建立的模型中,但是得到的结果不满足题目所给定的要求。

则考虑在重物球质量一定的条件下,以浮标的吃水深度和游动区域及钢桶的倾斜角为目标,建立了一个单决策变量的多目标最优系泊模型,相比于问题一,此问的变量更多,更加难于求解,故考虑将多目标转化成单目标的问题进行求解,并继续使用搜索法对问题进行求解。

最后找到了三组可行解,其中最优解是重力球的质量为2102kg.针对问题三,本文中有三个决策变量以及三个变系数,相比于前两问,无论是计算量还是计算维数,难度更大。

为了求解该问,建立了一个多决策变量的多目标变系数的最优系泊系统模型,为了简便运算,我们建立了变步长的搜索算法,并最终求解得到结果,得到的一组解为:选用了III型号的锚链,重物球质量为2800kg,锚链长度为23.4m。

针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。

关键词:系泊系统设计;力的平移定理;多目标;优化模型;搜索算法1.问题的重述一个由浮标系统、系泊系统和水声通讯系统组成的近浅海观测网的传输节点。

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。

通过收集历史空气质量数据,构建空气质量预测模型。

运用机器学习算法对模型进行训练和优化,提高预测精度。

通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。

二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。

建立物流配送模型,考虑配送成本、时间、距离等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。

三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。

构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。

运用风险度量方法对模型进行评估。

通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。

四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。

建立能源消耗模型,考虑设备运行、生产计划等因素。

运用优化算法对模型进行求解。

通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。

五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。

收集历史交通流量数据,构建交通流量预测模型。

运用时间序列分析方法对模型进行训练和优化。

通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。

数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。

建立医疗资源需求模型,考虑人口分布、疾病类型等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。

全国大学生数学建模竞赛优秀论文

全国大学生数学建模竞赛优秀论文
附图 1 是有两个采煤工作面和一个掘进工作面的矿井通风系统示意图,请你结合附表 2 的监测 数据,按照煤矿开采的实际情况研究下列问题:
(1)根据《煤矿安全规程》第一百三十三条的分类标准 (见附件 2),鉴别该矿是属于“低瓦斯 矿井”还是“高瓦斯矿井”。
(2)根据《煤矿安全规程》第一百六十八条的规定,并参照附表 1,判断该煤矿不安全的程度 (即发生爆炸事故的可能性)有多大?
B :矿井的相对瓦斯涌出量(单位: m3 / t );
R :矿井的日产量(单位: t / d ); :煤尘爆炸下限(单位: g / m3 );
b :瓦斯爆炸下限(单位:%); k :在空气中有瓦斯时,煤尘降低系数;
m :在空气中有瓦斯时,煤尘发生爆炸的下限(单位: g / m3 );
pg :煤尘爆炸对矿井的不安全性大小; qg :瓦斯爆炸对矿井的不安全性大小; z :煤矿的不安全性大小。
五、模型的建立与求解
5.1 问题 1 的分析与求解 5.1.1 绝对瓦斯涌出量与相对瓦斯涌出量的计算公式
由问题的分析,鉴定矿井是属于“低瓦斯矿井”还是“高瓦斯矿井”,需算出该矿的绝对瓦斯量 与相对瓦斯涌出量值,与分类标准值进行鉴别。由绝对瓦斯涌出量与相对瓦斯涌出量的定义,结合 相关的符号约定,可知
风量为风速在 1 分钟传播的距离乘以相应巷道横断面面积,公式为:
三、模型的假设
1、各监测站点的工作是相互独立的; 2、附表中的监测值均为有效值,忽略其测量误差,且每天各班次的监测数据为该班次内的平均监测 值; 3、煤矿的生产是严格按照国家《煤矿安全规程》进行生产; 4、煤矿爆炸只考虑由瓦斯爆炸和煤尘爆炸,不考虑其他如矿井温度,机器摩擦及一些由人为失误造 成的爆炸;
第 i 个监测点 30 天的平均相对瓦斯涌出量为:

2021数学建模国家一等奖论文(B)

2021数学建模国家一等奖论文(B)

2021数学建模国家一等奖论文(B)上海世博会影响力的定量评估摘要本文是一个对上海世博会影响力的定量评估问题,首先我们收集了与世博会有关的数据,如国内来沪旅游人数,国外来沪旅游人数等。

并用灰色预测对相应的数据进行了预处理,然后我们从横向(本届世博对上海的影响)和纵向(本届世博和历届世博的影响比较)两个角度对世博影响力进行了研究,最后还应用了多目标优化模型求出在不同投资增长系数下上海世博对当地旅游经济最大影响力系数。

第一步,我们横向考虑世博会对本地旅游业的影响力,并将该影响分为对旅游经济的影响和对旅游文化的影响两方面。

首先应用本底趋势线模型得出相应数据的本底值,再分别建立对旅游经济和旅游文化的影响力系数模型,然后利用本底值和统计值得出相应的影响力系数,结果表示如下:举办世博影不举办世博影增加的影旅游业时间响力系数响力系数响力系数世博前期 1.18 1 0.18 世博期间 1.58 1 0.58 旅游经济世博后期1.15 1 0.15 世博影响年均值 1.30 1 0.30 旅游文化 1.29 1 0.29 可得出世博期间的世博会对旅游经济影响力系数最大,为1.58。

相比旅游收入的本底值增加了579.39亿元的旅游收入。

而世博对旅游文化的影响力系数为1.29。

第二步,我们纵向考虑上海世博会与历届世博会相比的影响力。

根据收集的历届世博会相关的规模数据,将世博会影响力等级从低到高分为1-5等,从而建立了世博会综合影响力的模糊评价模型。

对历届世博会的影响力做出综合评价并得出了相应的综合影响力系数。

得出的前三名的排名情况如下:举办年份世博会名称综合影响力系数影响力排名2021 上海世博会 4.094134 1 1970 日本万国博览会 3.789834 2 1939 纽约世界博览会3.465383 3 第三步,我们从环保,旅游收入以及后世博效应三个角度对上海世博的影响重新进行了思考。

综合权衡这三个方面因素,我们建立了一个多目标优化的模型。

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。

本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。

实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。

三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。

本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。

实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。

四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。

本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。

实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。

五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。

本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。

实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

数学建模获奖论文(优秀范文10篇)11000字

数学建模获奖论文(优秀范文10篇)11000字

数学建模获奖论文(优秀范文10篇)11000字数学建模竞赛从1992年始,到现如今已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

本篇文章就为大家介绍一些数学建模获奖论文,供给大家欣赏和探讨。

数学建模获奖论文优秀范文10篇之第一篇:高中数学核心素养之数学建模能力培养的研究摘要:数学建模是一种比较重要的能力,教师在进行高中数学教学的过程中应该让学生们学习这种能力,这对于解决高中数学问题是比较有效的,而且对于学生们未来接受高等教育有更重要的意义。

教师在进行高中数学教学的过程中需要让学生们的能力得到锻炼,提升能力是教学的主要目的,学习知识是比较基础的教学目的,教师如果想让学生们的能力得到锻炼应该对教学方法进行更新,高中数学对于很多学生们来说都是比较困难的,所以教师应该不断更新教学方法,让学生们能理解教师的教学目的,而且找到适合自己的学习方法,这也是核心素养的基本内涵。

本文将对高中数学核心素养之数学建模能力培养进行研究。

关键词:高中数学; 核心素养; 数学建模; 能力培养; 应用研究;建模活动是一项比较有创造性的活动,学生们在学习的过程中一定要具备创新思维和自主学习能力,建模活动进行过程中可以让学生们独立,自觉运用数学理论知识去探索以及解决问题,构建模型解决实际问,教学活动中,让学生们的基础知识更加牢固、基本技能得到锻炼是最根本的目的。

学生们的运算能力以及逻辑思维能力也能在建模活动中得到锻炼,提升学生们的空间观念以及增强应用数学意识是延伸目的。

一、对数学建模的基本理解概述高中数学建模最简单的解释就是利用学生们学习过的理论知识来建立数学模型解决遇到的问题。

数学建模的基本过程就是对生活中或者课本中比较抽象问题解决的过程。

通过抽象可以建立刻画出一种较强的数学手段,通过运用数学思维也能观察分析各种事物的基本性质和特点。

学生们可以从复杂的问题中抽离出自己熟悉的模型,然后在利用好数学模型去解决实际问题基本就是事半功倍。

数学建模国赛一等奖论文

数学建模国赛一等奖论文

电力市场输电阻塞管理模型摘要本文通过设计合理的阻塞费用计算规则,建立了电力市场的输电阻塞管理模型。

通过对各机组出力方案实验数据的分析,用最小二乘法进行拟合,得到了各线路上有功潮流关于各发电机组出力的近似表达式。

按照电力市场规则,确定各机组的出力分配预案。

如果执行该预案会发生输电阻塞,则调整方案,并对引起的部分序内容量和序外容量的收益损失,设计了阻塞费用计算规则。

通过引入危险因子来反映输电线路的安全性,根据安全且经济的原则,把输电阻塞管理问题归结为:以求解阻塞费用和危险因子最小值为目标的双目标规划问题。

采用“两步走”的策略,把双目标规划转化为两次单目标规划:首先以危险因子为目标函数,得到其最小值;然后以其最小值为约束,找出使阻塞管理费用最小的机组出力分配方案。

当预报负荷为982.4MW时,分配预案的清算价为303元/MWh,购电成本为74416.8元,此时发生输电阻塞,经过调整后可以消除,阻塞费用为3264元。

当预报负荷为1052.8MW时,分配预案的清算价为356元/MWh,购电成本为93699.2元,此时发生输电阻塞,经过调整后可以使用线路的安全裕度输电,阻塞费用为1437.5元。

最后,本文分析了各线路的潮流限值调整对最大负荷的影响,据此给电网公司提出了建议;并提出了模型的改进方案。

一、问题的重述我国电力系统的市场化改革正在积极、稳步地进行,随着用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。

电网公司在组织电力的交易、调度和配送时,必须遵循电网“安全第一”的原则,同时按照购电费用最小的经济目标,制订如下电力市场交易规则:1、以15分钟为一个时段组织交易,每台机组在当前时段开始时刻前给出下一个时段的报价。

各机组将可用出力由低到高分成至多10段报价,每个段的长度称为段容量,每个段容量报一个段价,段价按段序数单调不减。

2、在当前时段内,市场交易-调度中心根据下一个时段的负荷预报、每台机组的报价、当前出力和出力改变速率,按段价从低到高选取各机组的段容量或其部分,直到它们之和等于预报的负荷,这时每个机组被选入的段容量或其部分之和形成该时段该机组的出力分配预案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2014 年9 月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):创意平板折叠桌摘要目前住宅空间的紧张导致越来越多的折叠家具的出现。

某公司设计制作了一款折叠桌以满足市场需要。

以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。

针对问题一,根据木板尺寸、木条宽度,首先确定木条根数为19根,接着,根据桌子是前后左右对称的结构,我们只以桌子的四分之一为研究对象,运用空间几何的相关知识关系,推导并建立了几何模型。

接着用MATLAB软件编程,绘制出折叠桌动态变化过程图。

然后求出折叠桌各木条相对桌面的角度、各木条长度、各木条的开槽长度等数据,相关结果见表1。

然后建立相应的三维坐标系,求出桌角各端点坐标,绘出桌角边缘线曲线图,并用MATLAB工具箱作拟合,求出桌角边缘线的函数关系式,并对拟合效果做分析(见表3)。

针对问题二,在折叠桌高度、桌面直径已知情况下,综合考虑桌子稳固性、加工方便、用材最少三个方面因素,我们运用材料力学等相关知识,对折叠桌作受力分析,确定稳固性、加工方便、用材最少三个方面因素间的相互制约关系,建立非线性优化模型。

用lingo软件编程,求出对于高70 cm,桌面直径80 cm 的折叠桌,平板尺寸172.24cm×80cm×3cm、钢筋位置在桌腿上距离铰链处、各木条的开槽长度(见表3)、最长木条(桌脚)与水平面夹角71.934°。

针对问题三,对任意给出的桌面边缘线(f(x)),不妨假定曲线是对称的(否则,桌子的稳定性难以保证),将对称轴上n等份,依照等份点沿着木板较长方向平行的方向下料,则这些点即是铰接处到木板中垂线(相对于木板长方向)的距离。

然后修改问题二建立的优化模型,用lingo软件编程,得到最优设计加工参数(平板尺寸、钢筋位置、开槽长度等)。

最后,我们根据所建立的模型,设计了一个桌面边缘线为椭圆的折叠桌,并且给出了8个动态变化过程图(见图10)和其具体设计加工参数(见表5)。

最后,对所建立的模型和求解方法的优缺点给出了客观的评价,并指出了改进的方法。

关键字:折叠桌曲线拟合非线性优化模型受力分析一、问题重述引言创意平板折叠桌注重于表达木制品的优雅和设计师所想要强调的自动化与功能性。

为了增大有效使用面积。

设计师以长方形木板的宽为直径截取了一个圆形作为桌面,又将木板剩余的面积切割成了若干个长短不一的木条,每根木条的长度为平板宽到圆上一点的距离,分别用两根钢筋贯穿两侧的木条,使用者只需提起木板的两侧,便可以在重力的作用下达到自动升起的效果,相互对称的木条宛如下垂的桌布,精密的制作工艺配以质朴的木材,让这件工艺品看起来就像是工业革命时期的机器。

问题的提出围绕创意平板折叠桌的动态变化过程、设计加工参数,本文依次提出如下问题:(1)给定长方形平板尺寸(120 cm × 50 cm × 3 cm),每根木条宽度( cm),连接桌腿木条的钢筋的位置,折叠后桌子的高度(53 cm)。

要求建立模型描述此折叠桌的动态变化过程,并在此基础上给出此折叠桌的设计加工参数和桌脚边缘线的数学描述。

(2)折叠桌的设计应做到产品稳固性好、加工方便、用材最少。

对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。

对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。

(3)给出软件设计的数学模型,可以根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状,并根据所建立的模型给出几个设计的创意平板折叠桌。

要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。

一、模型假设(1)忽略实际加工误差对设计的影响;(2)木条与圆桌面之间的交接处缝隙较小,可忽略;(3)钢筋强度足够大,不弯曲;(4)假设地面平整。

三、符号说明符号意义?x缝宽L木板长度(cm)W木板宽度(cm)N第n根木条T木条根数x x木板从外起第1个木条的长度(cm) x x木板从外起第n个木条的长度(cm) H桌子高度(cm)R桌子半径(cm)x x桌子厚度(cm)x x第n根木条到木板边沿的距离(cm)第n根木条顶点位置到圆面轴线径向距离x x(cm)x x第n根木条与水平面的夹角(度) xxxxxxxx x第n根木条开槽长度(cm)四、问题分析问题一分析题目要求建立模型描述折叠桌的动态变化图,由于在折叠时用力大小的不同,我们不能描述在某一时刻折叠桌的具体形态,但我们可以用每根木条的角度变化来描述折叠桌的动态变化。

首先,我们知道折叠桌前后左右对称,我们可以运用几何知识求出四分之一木条的角度变化。

最后,根据初始时刻和最终形态两种状态求出桌腿木条开槽的长度。

问题二分析题目要求从折叠桌的稳固性好、加工方便、用材最少三个角度,确定设计加工参数。

我们可以从应力、支撑面积考虑稳固性,从开槽长度考虑加工方便,从木板长度考虑用材最少。

而它们之间又是相互制约,我们需要确定最优设计加工参数,可以建立非线性规划模型,用lingo软件来求解最优设计加工参数(平板尺寸、钢筋位置、开槽长度等),这里以合力的方向(斜向上)与最长木条(桌腿)的夹角方向最小为目标函数,以木条所承受应力小于木条的许用应力、支撑面积大于桌面面积、木条的开槽长度小于木条本身长为约束条件。

问题三分析题目要求制作软件的意思就是客户给定折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,将这些信息输入程序就得到客户想要的桌子。

我们在求解最优设计加工参数时,自行给定桌面边缘线形状(椭圆、相交圆等),桌脚边缘线形状,折叠桌高度,应用第二问的非线性规划模型,用MATLAB软件绘制折叠桌截面图,得到自己设计的创意平板折叠桌。

问题三流程图:已知f(x)、g(x)、h、w五、模型建立和解决问题一的模型建立和解决模型的准备(1)符号说明为求出各木条角度关系,现引入下列符号:x n:木板从外起第n个木条的长度(cm)x n:第n个木条到木板边沿的距离c n:第n个木条与桌面铰接处到桌面轴线距离?c n:第n个木条与第n-1个木条桌面铰接处到桌面轴线距离差x n:第n个木条与桌面的夹角(2)木条数的确定根据题目意思,长方形平板尺寸,宽50 cm,每根木条宽 cm,知道木条数越多,桌子越不易松动,即稳固性更好,最大根数为502.5=20根,考虑木条间的间隙和刀片的厚度,定为19根,此时,缝宽?x为:?x=2.518=0.139cm(3)模型近似从折叠桌实物可以看出,桌面并非为标准的圆面,圆面边上是锯齿形状,考虑到锯齿长度和圆半径的差异,我们假定圆为过木条中点的圆,在作示意简图和实际计算时,都以木条端点中点为木条与桌面接触点。

另外,折叠桌以材料最省为设计原则,在木板尺寸一定情况下,应该做到桌面尽可能大,这里我们取木板宽度为桌面直径。

模型的建立为帮助理解,我们做折叠桌子两个最长脚(即在未折叠时的木板的同一侧最长木条)示意图,如图1所示:图1 折叠桌子两个最长脚截面图(其中A点为最长木条一端到水平面的距离,由于桌实际高度包括桌面厚度3cm,则A点到水平面距离要减去3cm)BC=√l12−(h−3)2其中l1为57cm,因为木板厚度为3cm,有AD为两倍厚度,因为l1+AD+DE= L=120cm则知l1为57cm。

记l’=xx下面,我们作出平板俯视示意图,如下图2所示图2 平板俯视示意图对于第n个木条到木板边沿的距离a n,应该包括(n-1)条缝宽,(n-1)根木条长度以及它自身一半的长度,则有:(n=2,3, (10)a n=(x−1)?x+(x−1)x+d2从几何关系上,应用勾股定理可以得出:c n=√(w2)2−(w2−a n)2则第n个木条与第n-1个木条顶点位置到圆面轴线径向距离差:?c n=c n+1−c n第n根木条长度x x:l n=L2−c n为了求解木条旋转角度αn,我们沿着钢筋的角度,作出折叠凳示意简图,如图3所示:图3 折叠桌示意简图由上图知x 1=arctan0.5xl’x 2=arctan0.5xl ’−?x 1x 3=arctan0.5xl ’−?x 1−?x 2……同理可得αn 递推公式,即每根木条旋转角度:x x =arctann 2l ’−∑(c n +1−c n )n 1(由图3知,l ’−∑(c n +1−c n )n 1可能为负值,说明x n 为钝角) 开槽长度kcaolong n =0.5(h −h 0)sin αn−(0.5l 1−∑?c n ))n −11综合以上所分析,可建立如下几何模型:{αn =arctan n 2l ’−∑(c n +1−c n )n1kcaolong n =0.5(h −h 0)sin αn−(0.5l 1−∑?c n ))n −11l n =L 2−c n模型的解决 (1)动态变化过程动态变化过程:由于用力大小未知,折叠桌与时间的关系不能确定,我们只能确定桌子从平板到折叠完成后这一过程中,任一角度的桌角位置,(程序见附录)例如当最长木条转过60°、65°、70°,通过程序可以得到各木条相对桌面旋转角度,如表1所示:表1最长木条转过xx°、xx°、xx°时各木条转动角度(2)长槽长度、木条长度、旋转角度根据以上建立的模型,运用MATLAB软件,编程计算每根木条长度、旋转角度、长槽长度结果如下表2所示:表2 木条长度、旋转角度、长槽长度从表1可以看出,第一根木条卡槽长度为0cm,符合实际。

相关文档
最新文档