MAX3044ESE-T中文资料
MAX4544ESA+T中文资料
The MAX4541–MAX4544 are precision, dual analog switches designed to operate from a single +2.7V to +12V supply. Low power consumption (5µW) makes these parts ideal for battery-powered equipment. These switches offer low leakage currents (100pA max) and fast switching speeds (tON = 150ns max, tOFF = 100ns max).
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at .
Continuous Current (any terminal)....................................±10mA Peak Current, COM_, NO_, NC_
(pulsed at 1ms, 10% duty cycle max) ............................±20mA ESD per Method 3015.7 .................................................> 2000V Continuous Power Dissipation
MAX3490EESA+中文资料
General DescriptionDevices in the MAX3483E family (MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E) are ±15kV ESD-protected, +3.3V, low-power transceivers for RS-485 and RS-422 communications. Each device con-tains one driver and one receiver. The MAX3483E and MAX3488E feature slew-rate-limited drivers that minimize EMI and reduce reflections caused by improperly termi-nated cables, allowing error-free data transmission at data rates up to 250kbps. The partially slew-rate-limited MAX3486E transmits up to 2.5Mbps. The MAX3485E,MAX3490E, and MAX3491E transmit at up to 12Mbps.All devices feature enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model.Drivers are short-circuit current limited and are protect-ed against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if both inputs are open circuit.The MAX3488E, MAX3490E, and MAX3491E feature full-duplex communication, while the MAX3483E,MAX3485E, and MAX3486E are designed for half-duplex communication.ApplicationsTelecommunicationsIndustrial-Control Local Area Networks Transceivers for EMI-Sensitive Applications Integrated Services Digital Networks Packet SwitchingFeatureso ESD Protection for RS-485 I/O Pins±15kV—Human Body Model±8kV—IEC 1000-4-2, Contact Discharge ±15kV—IEC 1000-4-2, Air-Gap Discharge o Operate from a Single +3.3V Supply—No Charge Pump Required o Interoperable with +5V Logic o Guaranteed 12Mbps Data Rate (MAX3485E/MAX3490E/MAX3491E)o Slew-Rate Limited for Errorless Data Transmission (MAX3483E/MAX3488E) o 2nA Low-Current Shutdown Mode(MAX3483E/MAX3485E/MAX3486E/MAX3491E)o -7V to +12V Common-Mode Input Voltage Range o Full-Duplex and Half-Duplex Versions Available o Industry-Standard 75176 Pinout (MAX3483E/MAX3485E/MAX3486E)o Current-Limiting and Thermal Shutdown for Driver Overload ProtectionMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers________________________________________________________________Maxim Integrated Products119-1474; Rev 0; 4/99Selector GuideOrdering InformationOrdering Information continued at end of data sheet.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceiversABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V = +3.3V ±0.3V, T = T to T , unless otherwise noted. Typical values are at T = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC ).............................................................+7V Control Input Voltage (RE , DE).................................-0.3V to +7V Driver Input Voltage (DI)...........................................-0.3V to +7V Driver Output Voltage (A, B, Y, Z).......................-7.5V to +12.5V Receiver Input Voltage (A, B)..............................-7.5V to +12.5V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Continuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C)..................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW14-Pin SO (derate 8.33mW/°C above +70°C)................667mW 14-Pin Plastic DIP (derate 10mW/°C above +70°C)......800mW Operating Temperature RangesMAX34_ _ EC_ _...................................................0°C to +70°C MAX34_ _ EE_ _.................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceiversDC ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.3V ±0.3V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)DRIVER SWITCHING CHARACTERISTICS—MAX3485E/MAX3490E/MAX3491E(V = +3.3V, T = +25°C.)DRIVER SWITCHING CHARACTERISTICS—MAX3486E(V = +3.3V, T = +25°C.)*MAX3488E and MAX3491E will be compliant to ±8kV per IEC 1000-4-2 Contact Discharge by September 1999.M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICS—MAX3483E/MAX3488E(V CC = +3.3V, T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICS(V CC = +3.3V, T A = +25°C.)Note 1:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 2:Measured on |t PLH (Y) - t PHL (Y)|and |t PLH (Z) - t PHL (Z)|.Note 3:The transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 80ns, thedevices are guaranteed not to enter shutdown. If the inputs are in this state for at least 300ns, the devices are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +3.3V, T A = +25°C, unless otherwise noted.)252015105000.51.01.52.02.53.53.0OUTPUT CURRENT vs.RECEIVER OUTPUT LOW VOLTAGEM A X 3483E -01OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )-20-18-16-14-12-10-8-6-4-2000.51.01.52.02.53.53.0OUTPUT CURRENT vs.RECEIVER OUTPUT HIGH VOLTAGEM A X 3483E -02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )3.003.053.103.153.203.253.30-40-20020406010080RECEIVER OUTPUT HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )00.10.20.30.40.50.60.70.8-40-2020406010080RECEIVER OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )2505075100125150175024681012OUTPUT CURRENT vs.DRIVER OUTPUT LOW VOLTAGEM A X 3483E -07OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )100908070605040302010000.5 1.0 1.5 2.0 2.5 3.53.0DRIVER OUTPUT CURRENT vs.DIFFERENTIAL OUTPUT VOLTAGEM A X 3483E -05DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )1.61.71.81.92.02.12.22.32.42.62.5-40-20020406010080DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )-100-80-60-40-20543210-7-6-3-4-5-2-1OUTPUT CURRENT vs.DRIVER OUTPUT HIGH VOLTAGEM A X 3483E -08OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers0.80.70.91.01.11.2-40-2020406010080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )Typical Operating Characteristics (continued)(V CC = +3.3V, T A = +25°C, unless otherwise noted.)0102030405060708010090-40-2020406010080SHUTDOWN CURRENT vs. TEMPERATUREM A X 3483E -10TEMPERATURE (°C)S H U T D O W N C U R R E N T (n A )Pin DescriptionMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers_______________________________________________________________________________________7Figure 2. MAX3488E/MAX3490E Pin Configuration and Typical Operating CircuitFigure 3. MAX3491E Pin Configuration and Typical Operating CircuitFigure 1. MAX3483E/MAX3485E/MAX3486E Pin Configuration and Typical Operating CircuitM A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers8_______________________________________________________________________________________Figure 4. Driver V OD and V OC Figure 7. Driver Differential Output Delay and Transition TimesFigure 6. Receiver V OH and V OLFigure 5. Driver V OD with Varying Common-Mode VoltageMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers_______________________________________________________________________________________9Figure 8. Driver Propagation TimesFigure 9. Driver Enable and Disable Times (t PZH , t PSH , t PHZ )Figure 10. Driver Enable and Disable Times (t PZL , t PSL , t PLZ )M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers10______________________________________________________________________________________Figure 11. Receiver Propagation DelayFigure 12. Receiver Enable and Disable TimesNote 4: The input pulse is supplied by a generator with the following characteristics: f = 250kHz, 50% duty cycle, t r ≤6.0ns, Z O = 50Ω.Note 5: C L includes probe and stray capacitance._____________________Function TablesDevices with Receiver/Driver Enable(MAX3483E/MAX3485E/MAX3486E/MAX3491E)Table 1. Transmitting* B and A outputs are Z and Y, respectively, for full-duplex part (MAX3491E).X = Don’t care; High-Z = High impedanceTable 2. Receiving* DE is a “don’t care” (x) for the full-duplex part (MAX3491E).X = Don’t care; High-Z = High impedanceDevices without Receiver/Driver Enable(MAX3488E/MAX3490E)Table 3. TransmittingTable 4. Receiving___________Applications InformationThe MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E are low-power transceivers for RS-485 and RS-422 communications. The MAX3483E and MAX3488E can transmit and receive at data rates up to 250kbps, the MAX3486E at up to 2.5Mbps, and the MAX3485E/MAX3490E/MAX3491E at up to 12Mbps. The MAX3488E/MAX3490E/MAX3491E are full-duplex trans-ceivers, while the MAX3483E/MAX3485E/MAX3486E are half-duplex. Driver Enable (DE) and Receiver Enable (RE ) pins are included on the MAX3483E/MAX3485E/MAX3486E/MAX3491E. When disabled, the driver and receiver outputs are high impedance.Reduced EMI and Reflections (MAX3483E/MAX3486E/MAX3488E)The MAX3483E/MAX3488E are slew-rate limited, mini-mizing EMI and reducing reflections caused by improp-erly terminated cables. Figure 13 shows the driver output waveform of a MAX3485E/MAX3490E/MAX3491E transmitting a 125kHz signal, as well as the Fourier analysis of that waveform. High-frequency harmonics with large amplitudes are evident. Figure 14 shows the same information, but for the slew-rate-limited MAX3483E/MAX3488E transmitting the same signal. The high-frequency harmonics have much lower amplitudes,and the potential for EMI is significantly reduced.Low-Power Shutdown Mode(MAX3483E/MAX3485E/MAX3486E/MAX3491E)A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled (high impedance). In shutdown, the devices typically draw only 2nA of supply current.For these devices, the t PSH and t PSL enable times assume the part was in the low-power shutdown mode;the t PZH and t PZL enable times assume the receiver or driver was disabled, but the part was not shut down.MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers______________________________________________________________________________________11INPUTS OUTPUT A, B RO ≥+0.2V 1≤-0.2V 0Inputs Open1INPUT OUTPUTS DI Z Y 101015MHz 500kHz/div 05MHz500kHz/div Figure 13. Driver Output Waveform and FFT Plot of MAX3485E/MAX3490E/MAX3491E Transmitting a 125kHz Signal Figure 14. Driver Output Waveform and FFT Plot of MAX3483E/ MAX3488E Transmitting a 125kHz SignalM A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers12______________________________________________________________________________________Figure 17. MAX3483E/MAX3488E Driver Propagation Delay Figure 19. MAX3483E/MAX3488E System Differential Voltage at 125kHz Driving 4000 Feet of Cable Figure 20. MAX3485E/MAX3490E/MAX3491E System Differential Voltage at 125kHz Driving 4000 Feet of CableDriver-Output Protection Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). In addition, a thermal shut-down circuit forces the driver outputs into a high-imped-ance state if the die temperature rises excessively.Propagation Delay Figures 15–18 show the typical propagation delays. Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle).The receiver skew time, |t PRLH- t PRHL|, is under 10ns (20ns for the MAX3483E/MAX3488E). The driver skew times are 8ns for the MAX3485E/MAX3490E/MAX3491E, 12ns for the MAX3486E, and typically under 50ns for the MAX3483E/MAX3488E.Line Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 21 for an example of a line repeater.Figures 19 and 20 show the system differential voltage for parts driving 4000 feet of 26AWG twisted-pair wire at 125kHz into 120Ωloads.For faster data rate transmission, please consult the fac-tory.±15kV ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX3483E family of devices have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup or damage.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the Contact-Discharge method specifiedin IEC 1000-4-23)±15kV using IEC 1000-4-2’s Air-Gap method.ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body Model Figure 22a shows the Human Body Model and Figure 22b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5kΩresistor.IEC 1000-4-2 The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifi-cally refer to integrated circuits. The MAX3483E family of devices helps you design equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 23a shows the IEC 1000-4-2 model, and Figure 23b shows the current waveform for the ±8kV IEC 1000-4-2, Level 4 ESD contact-discharge test.Figure 21. Line Repeater for MAX3488E/MAX3490E/MAX3491EMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers ______________________________________________________________________________________13M A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491EThe air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Typical ApplicationsThe MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 24 and 25 show typical net-work applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 21.To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3483E/MAX3488E and the partially slew-rate-limited MAX3486E are more tolerant of imperfect termination.3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers14______________________________________________________________________________________Figure 22a. Human Body ESD Test ModelFigure 22b. Human Body Current WaveformFigure 23a. IEC 1000-4-2 ESD Test ModelFigure 23b. IEC 1000-4-2 ESD Generator Current WaveformMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceivers______________________________________________________________________________________15Figure 25. MAX3488E/MAX3490E/MAX3491E Full-Duplex RS-485 NetworkFigure 24. MAX3483E/MAX3485E/MAX3486E Typical RS-485 NetworkM A X 3483E /M A X 3485E /M A X 3486E /M A X 3488E /M A X 3490E /M A X 3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited T rue RS-485/RS-422 T ransceiversTRANSISTOR COUNT: 761Chip InformationOrdering Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
1.4404材质 标准
1.4404材质标准摘要:1.1.4404 材质的概述2.1.4404 材质的标准3.1.4404 材质的特点4.1.4404 材质的应用领域正文:1.1.4404 材质,又称为AISI 316 不锈钢,是一种具有良好耐腐蚀性能的奥氏体不锈钢。
其主要成分为碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S) 以及铬(Cr)、镍(Ni) 等元素,这些成分的恰当配比使得1.4404 材质在许多腐蚀环境中表现出优越的性能。
2.1.4404 材质的标准主要遵循美国不锈钢标准AISI 316,以及欧洲标准EN 10088-3。
在我国,1.4404 材质也得到了广泛应用,参照的标准有GB/T 1220-2007《不锈钢棒》和GB/T 3280-2012《不锈钢冷轧钢板和钢带》等。
3.1.4404 材质的特点主要表现在以下几个方面:- 良好的耐腐蚀性能:1.4404 材质中的铬含量达到了16%,使得它具有很好的耐腐蚀性能,特别是在弱腐蚀环境下,如海水、氯化物和其他化学介质中,表现出优越的耐蚀性。
- 耐高温性能:1.4404 材质具有较高的耐高温性能,其抗氧化性在高温下表现良好。
- 良好的焊接性能:1.4404 材质可以通过各种焊接方法进行焊接,具有良好的焊接性能。
4.1.4404 材质广泛应用于以下领域:- 食品工业:1.4404 材质符合食品安全标准,常用于制作食品机械、厨房用具等。
- 制药工业:1.4404 材质具有良好的耐腐蚀性能,在制药设备、管道等方面有着广泛应用。
- 化工设备:1.4404 材质在各种腐蚀性介质中表现出优越的性能,因此被广泛应用于化工设备制造。
- 建筑装饰:1.4404 材质外观美观,常用于制作豪华建筑的内外装饰材料。
MAX3044ESE+中文资料
General DescriptionThe MAX3040–MAX3045 is a family of 5V quad RS-485/RS-422 transmitters designed for digital data trans-mission over twisted-pair balanced lines. All transmitter outputs are protected to ±10kV using the Human Body Model. In addition the MAX3040–MAX3045 withstand ±4kV per IEC 1000-4-4 Electrical Fast Transient/Burst Stressing. The MAX3040/MAX3043 (250kbps) and the MAX3041/MAX3044 (2.5Mbps) are slew-rate limited transmitters that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free transmission.The MAX3040–MAX3045 feature a hot-swap capability*that eliminates false transitions on the data cable during power-up or hot insertion. The MAX3042B/MAX3045B are optimized for data transfer rates up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps.The MAX3040–MAX3045 offer optimum performance when used with the MAX3093E or MAX3095 5V quad differential line receivers or MAX3094E/MAX3096 3V quad differential line receivers.The MAX3040–MAX3045 are ESD-protected pin-compat-ible, low-power upgrades to the industry-standard ‘SN75174 and ‘DS26LS31C. They are available in space-saving TSSOP, narrow SO, and wide SO packages.*Patent pendingApplicationsTelecommunications Equipment Industrial Motor ControlTransmitter for ESD-Sensitive Applications Hand-Held Equipment Industrial PLCs NetworkingFeatureso ESD Protection: ±10kV—Human Body Model o Single +5V Operationo Guaranteed Device-to-Device Skew(MAX3040/MAX3041/MAX3043/MAX3044)o Pin-Compatible with ‘SN75174, ‘26LS31C and LTC487o Hot-Swappable for Telecom Applications o Up to 20Mbps Data Rate (MAX3042B/MAX3045B)o Slew-Rate Limited (Data Rates at 2.5Mbps and 250kbps)o 2nA Low-Power Shutdown Mode o 1mA Operating Supply Currento ±4kV EFT Fast Transient Burst Immunity per IEC 1000-4-4o Level 2 Surge Immunity per IEC 1000-4-5,Unshielded Cable Model o Ultra-Small 16-Pin TSSOP, 16-Pin Narrow SO, and Wide 16-Pin SOMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters________________________________________________________________Maxim Integrated Products1Pin ConfigurationsSelector GuideOrdering Information19-2143; Rev 1; 12/01Ordering Information continued at end of data sheet.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All voltages referenced to ground (GND).Supply Voltage (V CC ).............................................................+7V Control Input Voltage (EN, EN , EN_) .........-0.3V to (V CC + 0.3V)Driver Input Voltage (T_IN).........................-0.3V to (V CC + 0.3V)Driver Output Voltage (Y_, Z_)(Driver Disabled).............................................-7.5V to +12.5V Driver Output Voltage (Y_, Z_)(Driver Enabled).................................................-7.5V to +10V Continuous Power Dissipation (T A = +70°C)16-Pin TSSOP (derate 9.4mW/°C above +70°C)..........755mW16-Pin Narrow SO (derate 8.70mW/°C above +70°C)..696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW Operating Temperature RangeMAX304_C_E.......................................................0°C to +70°C MAX304_E_E....................................................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersSWITCHING CHARACTERISTICS —MAX3040/MAX3043SWITCHING CHARACTERISTICS —MAX3041/MAX3044M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 4_______________________________________________________________________________________Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the transmitter input changes state.Note 3:This input current level is for the hot-swap enable (EN_, EN, EN ) inputs and is present until the first transition only. After thefirst transition the input reverts to a standard high-impedance CMOS input with input current I IN . For the first 20µs the input current may be as high as 1mA. During this period the input is disabled.Note 4:Maximum current level applies to peak current just prior to foldback-current limiting. Minimum current level applies duringcurrent limiting.SWITCHING CHARACTERISTICS —MAX3041/MAX3044 (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.)OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )54-6-5-4-2-1012-3310203040506070800-76OUTPUT CURRENT vs. TRANSMITTEROUTPUT HIGH VOLTAGE0.70.81.00.91.11.220103040506070SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U RR E N T (m A )10010000105152025353040450.1110MAX3040/MAX3043SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )4000.1110100100010,000MAX3041/MAX3044SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )1052015353025MAX3042B/MAX3045BSUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)0.1100100010,000110100,000S U P P L Y C U R R E N T (m A )60010203050400201040306050700426810OUTPUT CURRENT vs. TRANSMITTEROUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)020104030605070021345OUTPUT CURRENTvs. DIFFERENTIAL OUTPUT VOLTAGEM A X 3040 t oc 07DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )2.102.202.152.352.302.252.502.452.402.5520301040506070TRANSMITTER DIFFERENTIAL OUTPUTVOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 6_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters7Detailed DescriptionThe MAX3040–MAX3045 are quad RS-485/RS-422 trans-mitters. They operate from a single +5V power supply and are designed to give optimum performance when used with the MAX3093E/MAX3095 5V quad RS-485/RS-422 receivers or MAX3094E/MAX3096 3V quad RS-485/RS-422 receivers. The MAX3040–MAX3045 only need 1mA of operating supply current and consume 2nA when they enter a low-power shutdown mode. The MAX3040–MAX3045 also feature a hot-swap capability allowing line insertion without erroneous data transfer.The MAX3042B/MAX3045B are capable of transferring data up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps. All transmitter outputs are pro-tected to ±10kV using the Human Body Model.±10kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges (ESD) encountered during handling and assembly. The MAX3040–MAX3045 transmitter outputs have extra protection against electrostatic dis-charges found in normal operation. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against the application of ±10kV ESD (Human Body Model), without damage.ESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. Of course, all pins (not just RS-485inputs) require this protection during manufacturing.Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model.±4kV Electrical Fast Transient/Burst Testing(IEC 1000-4-4)IEC 1000-4-4 Electrical Fast Transient/Burst (EFT/B) is an immunity test for the evaluation of electrical and electronic systems during operating conditions. The test was adapted for evaluation of integrated circuits with power applied. Repetitive fast transients with severe pulsed EMI were applied to signal and control ports. Over 15,000 distinct discharges per minute are sent to each interface port of the IC or equipment under test (EUT) simultaneously with a minimum test duration time of one minute. This simulates stress due to dis-placement current from electrical transients on AC mains, or other telecommunication lines in close prox-imity. Short rise times and very specific repetition rates are essential to the validity of the test.Stress placed on the EUT is severe. In addition to the controlled individual discharges placed on the EUT,extraneous noise and ringing on the transmission line can multiply the number of discharges as well as increase the magnitude of each discharge. All cabling was left unterminated to simulate worst-case reflections.The MAX3040–MAX3045 were setup as specified in IEC 1000-4-4 and the Typical Operating Circuit of this data sheet. The amplitude, pulse rise time, pulse dura-tion, pulse repetition period, burst duration, and burst period (Figure 8)of the burst generator were all verified with a digital oscilloscope according to the specifica-tions in IEC 1000-4-4 sections 6.1.1 and 6.1.2. A simpli-fied diagram of the EFT/B generator is shown in Figure 7. The burst stresses were applied to Y1–Y4 and Z1–Z4simultaneously.IEC 1000-4-4 provides several levels of test severity (see Table 1). The MAX3040–MAX3045 pass the 4000V stress, a special category “X ” beyond the highest level for severe (transient) industrial environments for telecommunication lines.M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 8_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________9IEC 1000-4-4 Burst/Electrical FastTransient Test Levels (For Communication Lines)The stresses are applied while the MAX3040–MAX3045are powered up. Test results are reported as:1)Normal performance within the specification limits.2)Temporary degradation or loss of function or perfor-mance which is self-recoverable.3)Temporary degradation, loss of function or perfor-mance requiring operator intervention, such as sys-tem reset.4)Degradation or loss of function not recoverable due to damage.The MAX3040–MAX3045 meets classification 2 listed above. Additionally, the MAX3040–MAX3045 will not latchup during the IEC burst stress events.Hot-Swap CapabilityHot-Swap InputsWhen circuit boards are plugged into a “hot ” back-plane, there can be disturbances to the differential sig-nal levels that could be detected by receivers connected to the transmission line. This erroneous data could cause data errors to an RS-485/RS-422 system.To avoid this, the MAX3040–MAX3045 have hot-swap capable inputs.When a circuit board is plugged into a “hot ” backplane there is an interval during which the processor is going through its power-up sequence. During this time, the processor ’s output drivers are high impedance and will be unable to drive the enable inputs of the MAX3040–MAX3045 (EN, EN , EN_) to defined logic lev-els. Leakage currents from these high impedance dri-vers, of as much as 10µA, could cause the enable inputs of the MAX3040–MAX3045 to drift high or low.Additionally, parasitic capacitance of the circuit board could cause capacitive coupling of the enable inputs to either G ND or V CC . These factors could cause the enable inputs of the MAX3040–MAX3045 to drift to lev-els that may enable the transmitter outputs (Y_ and Z_).To avoid this problem, the hot-swap input provides a method of holding the enable inputs of the MAX3040–MAX3045 in the disabled state as V CC ramps up. This hot-swap input is able to overcome the leakage currents and parasitic capacitances that may pull the enable inputs to the enabled state.Hot-Swap Input CircuitryIn the MAX3040–MAX3045 the enable inputs feature hot-swap capability. At the input there are two NMOSdevices, Q1 and Q2 (Figure 9). When V CC is ramping up from 0, an internal 10µs timer turns on Q2 and sets the SR latch, which also turns on Q1. Transistors Q2, a 700µA current sink, and Q1, an 85µA current sink, pull EN to GND through a 5.6k Ωresistor. Q2 is designed to pull the EN input to the disabled state against an exter-nal parasitic capacitance of up to 100pF that is trying to enable the EN input. After 10µs, the timer turns Q2 off and Q1 remains on, holding the EN input low against three-state output leakages that might enable EN. Q1remains on until an external source overcomes theM A X 3040–M A X 3045required input current. At this time the SR latch resets and Q1 turns off. When Q1 turns off, EN reverts to a standard, high-impedance CMOS input. Whenever V CC drops below 1V, the hot-swap input is reset.The EN12 and EN34 input structures are identical to the EN input. For the EN input, there is a complimentary cir-cuit employing two PMOS devices pulling the EN input to V CC .Hot-Swap Line TransientThe circuit of Figure 10 shows a typical offset termina-tion used to guarantee a greater than 200mV offset when a line is not driven. The 50pF represents the mini-mum parasitic capacitance which would exist in a typi-cal application. In most cases, more capacitance exists in the system and will reduce the magnitude of the glitch. During a “hot-swap ” event when the driver is connected to the line and is powered up, the driver must not cause the differential signal to drop below 200mV. Figures 11 and 12 show the results of the MAX3040–MAX3045 during power-up for two different V CC ramp rates (0.1V/µs and 1V/µs). The photos show the V CC ramp, the single-ended signal on each side of the 100Ωtermination, the differential signal across the termination, and shows the hot-swap line transient stays above the 200mV RS-485 specification.Operation of Enable PinsThe MAX3040–MAX3045 family has two enable-func-tional versions:The MAX3040/MAX3041/MAX3042B have two transmit-ter enable inputs EN12 and EN34. EN12 controls the transmitters 1 and 2, and EN34 controls transmitters 3and 4. EN12 and EN34 are active-high and the part will enter the low-power shutdown mode when both are pulled low. The transmitter outputs are high impedance when disabled (Table 2).The MAX3043/MAX3044/MAX3045B have two transmit-ter enable inputs EN and EN , which are active-high and active-low, respectively. When EN is logic high or EN is logic low all transmitters are active. When EN is pulled low and EN is driven high, all transmitters are disabled and the part enters the low-power shutdown mode. The transmitter outputs are high impedance when disabled (Table 3).Applications InformationTypical ApplicationsThe MAX3040–MAX3045 offer optimum performance when used with the MAX3093E/MAX3095 5V quad receivers or MAX3094E/MAX3096 3V quad differential line receivers. Figure 13 shows a typical RS-485 con-nection for transmitting and receiving data and Figure 14 shows a typical multi-point connection.±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 10______________________________________________________________________________________Figure 9. Simplified Structure of the Driver Enable Pin (EN)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters______________________________________________________________________________________11V CC 2V/div Y-Z(20mV/div)238mVY200mV/div Z200mV/div Figure 11. Differential Power-Up Glitch (0.1V/µs)V CC 2V/div Y-Z(5mV/div)238mVY50mV/div Z50mV/div 1µs/divFigure 12. Differential Power-Up Glitch (1V/µs)Figure 10. Differential Power-Up Glitch (Hot Swap)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 12______________________________________________________________________________________Typical Multiple-Point ConnectionFigure 14 shows a typical multiple-point connection for the MAX3040–MAX3045 with the MAX3095. Because of the high frequencies and the distances involved, high attention must be paid to transmission-line effects while using termination resistors. A terminating resistor (RT)is simply a resistor that should be placed at the extreme ends of the cable to match the characteristic impedance of the cable. When the termination resis-tance is not the same value as the characteristic impedance of the cable, reflections will occur as the signal is traveling down the cable. Although some reflections are inevitable due to the cable and resistor tolerances, large mismatches can cause significant reflections resulting in errors in the data. With this in mind, it is very important to match the terminating resis-tance and the characteristic impedance as closely as possible. As a general rule in a multi-drop system, termi-nation resistors should always be placed at both ends of the cable.Figure 13. Typical Connection of a Quad Transmitter and a Quad Receiver as a PairMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters13Pin Configurations (continued)Figure 12. Typical Connection for Multiple-Point RS-485 BusChip InformationTRANSISTOR COUNT: 545PROCESS: CMOSOrdering Information (continued)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/422Transmitters 14______________________________________________________________________________________Ordering Information (continued)Pin Configurations (continued)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersM axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。
MAX4464EXK-T中文资料
General DescriptionThe MAX4464/MAX4470/MAX4471/MAX4472/MAX4474family of micropower op amps operate from a single +1.8V to +5.5V supply and draw only 750nA of supply current. The MAX4470 family feature ground-sensing inputs and Rail-to-Rail ®output. The ultra-low supply current, low-operating voltage, and rail-to-rail output capabilities make these operational amplifiers ideal for use in single lithium ion (Li+), or two-cell NiCd or alka-line battery systems.The rail-to-rail output stage of the MAX4464/MAX4470/ MAX4471/MAX4472/MAX4474 amplifiers is capable of driving the output voltage to within 4mV of the rail with a 100k Ωload, and can sink and source 11mA with a +5V supply. These amplifiers are available in both fully com-pensated and decompensated versions. The single MAX4470, dual MAX4471, and the quad MAX4472 are unity-gain stable. The single MAX4464 and the dual MAX4474 are stable for closed-loop gain configurations of ≥+5V/V. These amplifiers are available in space-sav-ing SC70, SOT23, µMAX, and TSSOP packages.ApplicationsFeatureso Ultra-Low 750nA Supply Current Per Amplifier o Ultra-Low +1.8V Supply Voltage Operation o Ground-Sensing Input Common-Mode Range o Outputs Swing Rail-to-Railo Outputs Source and Sink 11mA of Load Current o No Phase Reversal for Overdriven Inputs o High 120dB Open-Loop Voltage Gain o Low 500µV Input Offset Voltage o 9kHz Gain-Bandwidth Product (MAX4470/MAX4471/MAX4472)o 40kHz Gain-Bandwidth Product (MAX4464/MAX4474)o 250pF (min) Capacitive Load Capability o Available in Tiny 5-Pin SC70 and 8-Pin SOT23PackagesMAX4464/MAX4470/MAX4471/MAX4472/MAX4474Single/Dual/Quad, +1.8V/750nA, SC70,Rail-to-Rail Op Amps________________________________________________________________Maxim Integrated Products 1Pin Configurations19-2021; Rev 2; 2/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering InformationRail-to-Rail is a registered trademark of Nippon Motorola, Ltd.Selector GuideBattery-Powered SystemsPortable Instrumentation Pagers and Cellphones Micropower ThermostatsElectrometer Amplifiers Solar-Powered Systems Remote Sensor Active Badges pH MetersM A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to V SS ...............................................................-0.3V to +6V IN_+ or IN_-......................................(V SS - 0.3V) to (V DD + 0.3V)OUT_ Shorted to V SS or V DD ......................................Continuous Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 3.1mW/°C above +70°C)...................247mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C).................571mW 8-Pin SOT23 (derate 8.9mW/°C above +70°C).................714mW 8-Pin µMAX (derate 4.5mW/°C above +70°C)..................362mW8-Pin SO (derate 5.88mW/°C above +70°C)....................471mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)...........727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature Range .........................-40°C to +85°C Junction Temperature .....................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s) ................................+300°CMAX4464/MAX4470/MAX4471/MAX4472/MAX4474Single/Dual/Quad, +1.8V/750nA, SC70,Rail-to-Rail Op Amps_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)ELECTRICAL CHARACTERISTICSM A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 4_______________________________________________________________________________________Typical Operating Characteristics(V DD = +5V, V SS = 0, V CM = 0, R L = 100k Ωto V DD /2, T A = +25°C, unless otherwise noted.)0.20.10.50.40.30.70.80.60.91.5 3.0 3.52.0 2.5 4.0 4.5 5.0 5.5 6.0SUPPLY CURRENT PER AMPLIFIER vs.SUPPLY VOLTAGEM A X 4470–74 t o c 01SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )0.20.10.50.40.30.70.80.60.9-500-25255075100SUPPLY CURRENT PER AMPLIFIER vs.TEMPERATUREM A X 4470–74 t o c 02TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )00.100.050.300.200.250.150.400.450.350.50-50-25255075100OFFSET VOLTAGE vs.TEMPERATUREM A X 4470–74 t o c 03TEMPERATURE (°C)O F F S E T V O L T A G E (m V )00.100.050.200.150.300.250.350.450.400.501.01.50.52.02.53.03.54.0OFFSET VOLTAGEvs. COMMON-MODE VOLTAGEM A X 4470-74 t o c 04COMMON-MODE VOLTAGE (V)O F F S E T V O L T A G E (m V )-400-350-150-250-200-300-50-1000-50-25255075100INPUT BIAS CURRENT vs.TEMPERATUREM A X 4470–74 t o c 05TEMPERATURE (°C)I N P U T B I A S C U R R E N T (p A )-90-70-80-40-50-60-20-10-3000 1.51.00.5 2.0 2.5 3.0 3.5 4.0INPUT BIAS CURRENT MON-MODE VOLTAGEM A X 4470–74 t o c 06COMMON-MODE VOLTAGE (V)I N P U T B I A S C U R R E N T (p A )0-1001010010k1kPOWER-SUPPLY REJECTION RATIO vs.FREQUENCY-80-90M A X 4470–74 t o c 07FREQUENCY (Hz)P S R R (d B )-60-70-40-30-50-20-1000.21.00.60.80.41.41.21.6-50-25255075100OUTPUT VOLTAGE SWING LOW vs.TEMPERATURETEMPERATURE (°C)V O L - V S S (m V )142356-500-25255075100OUTPUT VOLTAGE SWING HIGH vs.TEMPERATURETEMPERATURE (°C)V D D - V O H (m V )MAX4464/MAX4470/MAX4471/MAX4472/MAX4474Single/Dual/Quad, +1.8V/750nA, SC70,Rail-to-Rail Op Amps_______________________________________________________________________________________5-120-100-110-60-80-70-90-40-30-50-20-50-25255075100COMMON-MODE REJECTION RATIO vs.TEMPERATURETEMPERATURE (°C)C M R R (d B )00.40.20.80.61.21.01.4-5025-255075100MINIMUM SUPPLY VOLTAGEvs. TEMPERATUREM A X 4470-74 t o c 11TEMPERATURE (°C)M I N I M UM S U P P L Y V O L T A G E (V )607080901001101201301402.53.0 3.54.0 4.55.0A VOL vs. OUTPUT VOLTAGE SWINGOUTPUT VOLTAGE (Vp-p)A V O L (dB )11001k 10k10100kMAX4470/MAX4471/MAX4472GAIN AND PHASE vs. FREQUENCYFREQUENCY (Hz)G A I N (d B )P H A S E (d e g )80706050403020-60100-10-20-30-40-509045-1350-45-9011001k10k10100kMAX4470/MAX4471/MAX4472GAIN AND PHASE vs. FREQUENCYFREQUENCY (Hz)G A I N (d B )P H A S E (d e g )80706050403020-60100-10-20-30-40-501801359045-1350-45-90-40-140101001k 10k100kCROSSTALK vs. FREQUENCY-100-120FREQUENCY (Hz)C R O S S T A L K (d B )-80-6010.000.011010010k1kMAX4470/MAX4471/MAX4472TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCYM A X 4470–74 t o c 16FREQUENCY (Hz)T H D + N (%)0.101.0010k 10101k 100100k10kVOLTAGE NOISE DENSITY vs.FREQUENCYM A X 4470–74 t o c 17FREQUENCY (Hz)1001k N O I S E (n V /√H z )100k10010k100k 1MMAX4470/MAX4471/MAX4472 STABILITY vs. CAPACITIVE AND RESISTIVE LOADSRESISTIVE LOAD (Ω)1k10kC A P A C I T I V E L O AD (p F )Typical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 100k Ωto V DD /2, T A = +25°C, unless otherwise noted.)500µs/divMAX4470/MAX4471/MAX4472SMALL-SIGNAL STEP RESPONSEINPUT 50mV/divOUTPUT 50mV/divV DD = +5V A V = +1V/V R L = 1M Ω C L = 250pF500µs/div MAX4470/MAX4471/MAX4472SMALL-SIGNAL STEP RESPONSEINPUT 50mV/divOUTPUT 50mV/div V DD = +5V A V = +1V/V R L = 1M Ω C L = 1000pF500µs/div MAX4470/MAX4471/MAX4472LARGE-SIGNAL STEP RESPONSEV DD = +5V A V = +1V/V R L = 1M ΩC L = 12pFINPUT 500mV/divOUTPUT 500mV/div500µs/divMAX4470/MAX4471/MAX4472LARGE-SIGNAL STEP RESPONSEINPUT 500mV/divOUTPUT 500mV/divV DD = +5V A V = +1V/V R L = 1M Ω C L = 1000pF052010152530010050150200250300MAX4470/MAX4471/MAX4472PERCENT OVERSHOOT vs. CAPACITIVE LOADC LOAD (pF)P E R C E N T O V E R S H O O T (%)3-71001k 10kMAX4470/MAX4471/MAX4472SMALL-SIGNAL GAIN vs. FREQUENCY-5-6FREQUENCY (Hz)G A I N (d B )-3-4-10-2123-71001k 100k10k MAX4470/MAX4471/MAX4472SMALL-SIGNAL GAIN vs. FREQUENCY-5-6FREQUENCY (Hz)G A I N (d B )-3-4-10-212M A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 6_______________________________________________________________________________________0128416202428323640021345I OUT vs. V OUTV OUT (V)I O U T (m A )500µs/div MAX4470/MAX4471/MAX4472SMALL-SIGNAL STEP RESPONSE V DD = +5V A V = +1V/V R L = 1M ΩC L = 12pFINPUT 500mV/divOUTPUT 500mV/div Typical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 100k Ωto V DD /2, T A = +25°C, unless otherwise noted.)MAX4464/MAX4470/MAX4471/MAX4472/MAX4474Single/Dual/Quad, +1.8V/750nA, SC70,Rail-to-Rail Op Amps_______________________________________________________________________________________7Typical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 100k Ωto V DD /2, T A = +25°C, unless otherwise noted.)3-71001k 10k 100k MAX4470/MAX4471/MAX4472SMALL-SIGNAL GAIN vs. FREQUENCY-5FREQUENCY (Hz)G A I N (d B )-3-112-6-4-203-71001k 10k MAX4470/MAX4471/MAX4472LARGE-SIGNAL GAIN vs. FREQUENCY-5-6FREQUENCY (Hz)G A I N (d B )-3-4-10-2123-71001k 10kMAX4470/MAX4471/MAX4472LARGE-SIGNAL GAIN vs. FREQUENCY-5-6FREQUENCY (Hz)G A I N (d B )-3-4-10-2123-71001k 10kMAX4470/MAX4471/MAX4472LARGE-SIGNAL GAIN vs. FREQUENCY-5-6FREQUENCY (Hz)G A I N (d B )-3-4-10-21280-6011k 10k100k10FREQUENCY (Hz)G A I N (d B )10100MAX4464/MAX4474GAIN AND PHASE vs. FREQUENCY7060504030200-10-20-30-40-5018013590450-45-90-135P H A S E (d e g r e e s )80-6011k 10k100k10FREQUENCY (Hz)G A I N (d B )10100MAX4464/MAX4474GAIN AND PHASE vs. FREQUENCY7060504030200-10-20-30-40-5018013590450-45-90-135P H A S E (d e g r e e s )0.0011010k1k100MAX4464/MAX4474TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY100.0110.1M A X 4464 t o c 34FREQUENCY (Hz)T H D + N (%)100,00010010k100k 1MMAX4464/MAX4474STABILITY vs. CAPACITIVE AND RESISTIVE LOADSRESISTIVE LOAD (Ω)C A P A C I T I V E L O AD (p F )100010,000OUTPUT 50mV/divINPUT 10mV/divMAX4464/MAX4474SMALL-SIGNAL STEP RESPONSE500µs/divV DD = +5V A V = +5V/V R L = 1M ΩC L = 8pFM A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 8_______________________________________________________________________________________OUTPUT 50mV/div INPUT 10mV/divMAX4464/MAX4474SMALL-SIGNAL STEP RESPONSEM A X 4464 t o c 37500µs/div V DD = +5V A V = +5V/V R L = 1M ΩC L = 250pFOUTPUT 50mV/div INPUT 10mV/divMAX4464/MAX4474SMALL-SIGNAL STEP RESPONSEM A X 4464 t o c 38500µs/div V DD = +5V A V = +5V/V R L = 1M ΩC L = 1000pFOUTPUT 500mV/divINPUT 100mV/divMAX4464/MAX4474LARGE-SIGNAL STEP RESPONSE500µs/divV DD = +5V A V = +5V/V R L = 1M ΩC L = 8pFOUTPUT 500mV/divINPUT 100mV/divMAX4464/MAX4474LARGE-SIGNAL STEP RESPONSE500µs/divV DD = +5V A V = +5V/V R L = 1M ΩC L = 1000pF10520152530010015050200250300MAX4464/MAX4474PERCENT OVERSHOOT vs. CAPACITIVE LOADC LOAD (pF)P E R C E N T O V E R S H O O T (%)2-7100100k10k 1k MAX4464/MAX4474SMALL-SIGNAL NORMALIZED GAINvs. FREQUENCY-4-60-23-3-51-1FREQUENCY (Hz)G A I N (d B )2-7100100k10k1kMAX4464/MAX4474SMALL-SIGNAL NORMALIZED GAINvs. FREQUENCY-4-60-23-3-51-1FREQUENCY (Hz)G A I N (d B )Typical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 100k Ωto V DD /2, T A = +25°C, unless otherwise noted.)MAX4464/MAX4470/MAX4471/MAX4472/MAX4474Single/Dual/Quad, +1.8V/750nA, SC70,Rail-to-Rail Op Amps2-7100100k 10k 1k MAX4464/MAX4474LARGE-SIGNAL NORMALIZED GAINvs. FREQUENCY-4-60-23-3-51-1FREQUENCY (Hz)G A I N (d B )2-7100100k10k 1k MAX4464/MAX4474LARGE-SIGNAL NORMALIZED GAINvs. FREQUENCY-4-60-23-3-51-1FREQUENCY (Hz)G A I N (d B )2-7100100k 10k 1k MAX4464/MAX4474SMALL-SIGNAL NORMALIZED GAINvs. FREQUENCY-4-60-23-3-51-1FREQUENCY (Hz)G A I N (d B )2-7100100k10k 1k MAX4464/MAX4474LARGE-SIGNAL NORMALIZED GAINvs. FREQUENCY-4-60-23-3-51-1FREQUENCY (Hz)G A I N (d B )Typical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 100k Ωto V DD /2, T A = +25°C, unless otherwise noted.)M A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 10______________________________________________________________________________________Figure 2. Compensation for Feedback Node CapacitanceApplications InformationGround SensingThe common-mode input range of the MAX4470 family extends down to ground, and offers excellent common-mode rejection. These devices are guaranteed not to undergo phase reversal when the input is overdriven.Power Supplies and LayoutThe MAX4470 family operates from a single +1.8V to +5.5V power supply. Bypass power supplies with a 0.1µF ceramic capacitor placed close to the V DD pin. Ground layout improves performance by decreasing the amount of stray capacitance and noise at the op amp ’s inputs and outputs. To decrease stray capacitance, mini-mize PC board lengths and resistor leads, and place external components close to the op amps ’ pins.BandwidthThe MAX4470/MAX4471/MAX4472 are internally compensated for unity-gain stability and have a typical gain-bandwidth of 9kHz. The MAX4464/MAX4474 have a 40kHz typical gain-bandwidth and are stable for a gain of +5V/V or greater.StabilityThe MAX4464/MAX4470/MAX4471/MAX4472/MAX4474maintain stability in their minimum gain configuration while driving capacitive loads. Although this product family is primarily designed for low-frequency applica-tions, good layout is extremely important because low-power requirements demand high-impedance circuits.The layout should also minimize stray capacitance at the amplifier inputs. However some stray capacitance may be unavoidable, and it may be necessary to add a 2pF to 10pF capacitor across the feedback resistor as shown in Figure 2. Select the smallest capacitor value that ensures stability.Chip InformationMAX4470/MAX4464 TRANSISTOR COUNT: 147MAX4471/MAX4474 TRANSISTOR COUNT: 293MAX4472 TRANSISTOR COUNT: 585PROCESS: BiCMOSMAX4464/MAX4470/MAX4471/MAX4472/MAX4474Rail-to-Rail Op Amps______________________________________________________________________________________11M A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Rail-to-Rail Op AmpsS C 70, 5L .E P SPackage Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .MAX4464/MAX4470/MAX4471/MAX4472/MAX4474Rail-to-Rail Op AmpsPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .M A X 4464/M A X 4470/M A X 4471/M A X 4472/M A X 4474Rail-to-Rail Op Amps Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.14____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.S O I C N .E P SPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .。
max3485esa中文资料
General Description The MAX3483, MAX3485, MAX3486, MAX3488,MAX3490, and MAX3491 are 3.3V , low-power transceivers forRS-485 and RS-422 communication. Each part containsone driver and one receiver. The MAX3483 and MAX3488feature slew-rate-limited drivers that minimize EMI andreduce reflections caused by improperly terminatedcables, allowing error-free data transmission at data ratesup to 250kbps. The partially slew-rate-limited MAX3486transmits up to 2.5Mbps. The MAX3485, MAX3490, andMAX3491 transmit at up to 10Mbps.Drivers are short-circuit current-limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if both inputs are opencircuit.The MAX3488, MAX3490, and MAX3491 feature full-duplex communication, while the MAX3483, MAX3485, andMAX3486 are designed for half-duplex communication.Applications ●Low-Power RS-485/RS-422 Transceivers ●Telecommunications ●Transceivers for EMI-Sensitive Applications ●Industrial-Control Local Area NetworksFeatures●Operate from a Single 3.3V Supply—No Charge Pump!●Interoperable with +5V Logic ●8ns Max Skew (MAX3485/MAX3490/MAX3491)●Slew-Rate Limited for Errorless Data Transmission (MAX3483/MAX3488)●2nA Low-Current Shutdown Mode (MAX3483/MAX3485/MAX3486/MAX3491)●-7V to +12V Common-Mode Input Voltage Range ●Allows up to 32 Transceivers on the Bus ●Full-Duplex and Half-Duplex Versions Available ●Industry Standard 75176 Pinout (MAX3483/MAX3485/MAX3486)●Current-Limiting and Thermal Shutdown for Driver Overload Protection 19-0333; Rev 1; 5/19Ordering Information continued at end of data sheet.*Contact factory for for dice specifications.PARTTEMP . RANGE PIN-PACKAGE MAX3483CPA0°C to +70°C 8 Plastic DIP MAX3483CSA0°C to +70°C 8 SO MAX3483C/D0°C to +70°C Dice*MAX3483EPA-40°C to +85°C 8 Plastic DIP MAX3483ESA-40°C to +85°C 8 SO MAX3485CPA0°C to +70°C 8 Plastic DIP MAX3485CSA0°C to +70°C 8 SO MAX3485C/D0°C to +70°C Dice*MAX3485EPA-40°C to +85°C 8 Plastic DIP MAX3485ESA -40°C to +85°C 8 SO PARTNUMBERGUARANTEED DATA RATE (Mbps)SUPPLY VOLTAGE (V)HALF/FULL DUPLEX SLEW-RATE LIMITED DRIVER/RECEIVER ENABLE SHUTDOWN CURRENT (nA)PIN COUNT MAX34830.25 3.0 to 3.6Half Yes Yes 28MAX348510Half No No 28MAX34862.5Half Yes Yes 28MAX34880.25Half Yes Yes —8MAX349010Half No No —8MAX349110Half No Yes 214MAX3483/MAX3485/MAX3486/MAX3488/MAX3490/MAX3491Selection TableOrdering Information找电子元器件上宇航军工Figure 1. MAX3483/MAX3485/MAX3486 Pin Configuration and Typical Operating Circuit Figure 2. MAX3488/MAX3490 Pin Configuration and Typical Operating Circuit Figure 3. MAX3491 Pin Configuration and Typical Operating CircuitMAX3486/MAX3488/MAX3490/MAX3491True RS-485/RS-422 TransceiversFigure 22. MAX3488/MAX3490/MAX3491 Full-Duplex RS-485 NetworkFigure 23. Line Repeater for MAX3488/MAX3490/MAX3491MAX3486/MAX3488/MAX3490/MAX3491True RS-485/RS-422 Transceivers。
MAX3095ESE+中文资料
________________________Applications
Telecommunications Equipment Rugged RS-422/RS-485/RS-423 Bus Receiver Receivers for ESD-Sensitive Applications Level Translators
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
________________Functional Diagram
VCC
Байду номын сангаасG G A1
MAX3095 MAX3096
Y1
Pin Configuration
TOP VIEW
B1 1 A1 2 Y2 Y1 3 G 4 Y3 Y2 5 A2 6 Y4 B2 7 GND 8 16 VCC 15 B4 14 A4
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
MAX3094EESE中文资料
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
MAX3093E/MAX3094E
_______________Ordering Information
PART MAX3093ECUE MAX3093ECSE MAX3093ECPE MAX3093EEUE MAX3093EESE MAX3093EEPE MAX3094ECUE MAX3094ECSE MAX3094ECPE MAX3094EEUE MAX3094EESE MAX3094EEPE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 16 TSSOP 16 Narrow SO 16 Plastic DIP 16 TSSOP 16 Narrow SO 16 Plastic DIP 16 TSSOP 16 Narrow SO 16 Plastic DIP 16 TSSOP 16 Narrow SO 16 Plastic DIP
________________________Applications
MAX4164ESD+中文资料
ELECTRICAL CHARACTERISTICS: 3V Operation
(VDD = 3V, VSS = 0, VCM = VDD/2, VOUT = VDD/2, RL tied to VDD/2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
Operating Voltage Range Supply Current (Per Amplifier) Input Bias Current (Note 2)
Input Offset Voltage
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
________________________Applications
Battery-Powered Devices pH Probes Portable Equipment Low-Power, Low-Voltage Equipment
Medical Instruments Ionization Detectors Cellular Phones
电磁保护设备TeSys GV系列产品参数表说明书
C i r c u i t b r e a k e r sCircuit breakersTeSys GV, GBC ontrol and P rotection C omponentsChapterB60.75g g 1.1g g 1.5375 2.533.5 LR2 K0308GV2LE071.1g g –––––– 2.533.5 LR2 K0308GV2LE071.5g g 1.5g g 3375451 LR2 K0310GV2LE08––– 2.2g g –––451 LR2 K0312GV2LE082.2g g 3501004375 6.378 LR2 K0312GV2LE103g g 410100 5.537510138 LR2 K0314GV2LE144g g 5.510100–––10138 LR2 K0316GV2LE14––––––7.537510138 LRD 14GV2LE14––––––937514170 LRD 16GV2LE165.515507.56751137514170 LR2 K0321GV2LE167.5155096751537518223 LRD 21GV2LE20915401147518.537525327 LRD 22GV2LE2211154015475–––25327 LRD 22GV2LE2215105018.54752237532416LRD 32GV2LE32(1) As % of Icu.g ) > 100 kA.GV2 LE10D F 526144.t i fC i r c u i t b r e a k e r s0.09––––––0.45LRD 03GV2L030.12g g –––0.37g g 0.638LRD 04GV2L040.18g g ––––––0.638LRD 04GV2L04––––––0.55g g 113LRD 05GV2L050.25g g ––––––113LRD 05GV2L05––––––0.75g g 113LRD 06GV2L050.37g g 0.37g g –––113LRD 05GV2L050.55g g 0.55g g 1.1g g 1.622.5LRD 06GV2L06–––0.75g g ––– 1.622.5LRD 06GV2L060.75g g 1.1g g 1.54100 2.533.5LRD 07GV2L07Example: GV3 L32 becomes GV3 L326.(1) As % of Icu. Associated current limiter or fuses, where required. See characteristics page B6/33.g > 100 kA.GV2 L10D F 526145.t i fGV3 L65D F 526146.t i fTeSys GVThermal-magnetic motor circuit breakers GV2 ME0.06gg––––––0.16…0.252.4GV2ME020.09g g––––––0.25…0.405GV2ME030.12 0.18g g g g – –– –– – 0.37 –g–g –0.40…0.638GV2ME040.25gg––– 0.55gg0.63…113GV2ME050.37 0.55 –g g –g g –0.37 0.55 0.75g g g g g g – 0.75 1.1– g g – g g 1…1622.5GV2ME060.75g g1.1gg1.5375 1.6...2.533.5GV2ME071.1 1.5g g g g 1.5 2.2g g g g 2.2 3 3 375 75 2.5 (4)51GV2ME082.2gg350100 43754...6.378GV2ME103 4g g g g 4 5.510 10100 100 5.5 7.5 3 375 756 (10)138GV2ME145.5 –15 –50 –7.5 – 6 –75 – 9 11 3 375 759…14170GV2ME167.5155096751537513…18223GV2ME209154011475 18.537517…23327GV2ME2111154015475 –––20…25327GV2ME22 (3)15105018.54752237524 (32)416GV2ME32Motor circuit breakers from 0.06 to 15 kW / 400 V, with lugsTo order thermal magnetic circuit breakers with connection by lugs, add the digit 6 to the end of reference selected above.Example: GV2 ME08 becomes GV2 ME086.Thermal magnetic circuit breakers GV2 ME with built-in auxiliary contact block With instantaneous auxiliary contact block (composition, see page B6/11):b GV AE1, add suffix AE1TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AE1TQ .b GV AE11, add suffix AE11TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AE11TQ .b GV AN11, add suffix AN11TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AN11TQ .These circuit breakers with built-in contact block are sold in lots of 20 units in a single pack.(1) As % of Icu.(2) The thermal trip setting must be within the range marked on the graduated knob.(3) Maximum rating which can be mounted in enclosures GV2 MC or MP , please consult your Regional Sales Office. g > 100 kA.GV2 ME10D F 526134.t i fC i r c u i t b r e a k e r sTeSys GVTeSys protection componentsThermal-magnetic motor circuit breakers GV2 MEReferences0.06g g ––– 0.16…0.25 2.4GV2ME0230.09g g ––– 0.25…0.405GV2ME0330.120.18g g g g –––0.40…0.638GV2ME0430.250.37g g g g 0.37g g 0.63…113GV2ME0530.370.55g g g g 0.370.550.75g g g g g g 1…1.622.5GV2ME0630.75g g1.1g g 1.6…2.533.5GV2ME0731.11.5g g g g 1.52.2g g g g 2.5…451GV2ME0832.2g g 350100 4…6.378GV2ME10334g g g g 45.510101001006…10138GV2ME1435.515507.5675 9…14170GV2ME1637.515509675 13…18223GV2ME203911151540401147517…23327GV2ME2131115401547520 (25)327GV2ME223Contact blocksDescription Mounting Maximum number Type of contacts Sold in lots of Unitreference Instantaneous auxiliary contactsFront 1N/O + N/C 10GVAE113N/O + N/O 10GVAE203LH side2N/O + N/C 1GVAN113N/O + N/O1GVAN203AccessoryDescriptionApplicationSold in lots of Unitreference Cable end reducerFor connection of conductors from 1 to 1.5 mm 220LA9D99(1) For connection of conductors from 1 to 1.5 mm 2, the use of an LA9 D99 cable end reducer is recommended.(2) Maximum rating which can be mounted in enclosures GV2 MC or MP , please consult your Regional Sales Office (3) The thermal trip setting must be within the range marked on the graduated knob.g > 100 kA.GV2 ME pp 3D F 526135.t i fLA9 D99D F 533898.e p sTeSys GVReferencesTeSys protection componentsThermal-magnetic motor circuit breakersGV2 P, GV3 P and GV3 ME80GV2 P10D F 526137.t i fGV3 P65D F 526139.t i fGV3 P651D F 526140.t i fC i r c u i t b r e a k e r sTeSys GVReferences93610011181001581007.59707010010091150501001001115101010010012…20GV7RS20 2.0109113636100100111518181001001518.58810010015…25GV7RE25 2.0109117070100100111550501001001518.5101010010015…25GV7RS25 2.01018.53610018.522181810010022810025…40GV7RE40 2.01018.57010018.550100221010025…40GV7RS40 2.0102236100301810030810030…50GV7RE50 2.01522701003050100301010030 (50)GV7RS502.01537361004555181810010055810048...80GV7RE80 2.040377010045555050100100551010048...80GV7RS80 2.0404536100–1810075810060...100GV7RE100 2.0404570100–50100751010060...100GV7RS100 2.0405575353510010075903030100100901108810010090 (150)GV7RE1502.020557570701001007590505010010090110101010010090…150GV7RS150 2.02090110353510010011013216030303010010010016020088100100132…220GV7RE220 2.3509011070701001001101321605050501001001001602001010100100132…220GV7RS220 2.350(1) As % of lcu.TeSys protection componentsThermal-magnetic motor circuit breakers GV7 RGV7 RE40D F 526138.t i fGV7 RS220D F 526141.t i f0.12–0.120.180.18–0.370.40…0.6313GV2RT040.090.120.250.370.250.370.370.550.63…122GV2RT050.180.250.370.550.370.550.370.550.750.751.11…1.633GV2RT060.370.750.751.1 1.11.51.6…2.551GV2RT070.550.75 1.11.5 1.51.52.2 2.23 2.5…478GV2RT081.12.22.23344…6.3138GV2RT101.52.234445.5 5.57.56…10200GV2RT142.23 5.55.57.57.59119…14280GV2RT1647.57.5991513…18400GV2RT205.5911111118.517…23400GV2RT21(1) The thermal trip setting must be within the range marked on the graduated knob.GV2 RTD F 526142.t i fC i r c u i t b r e a k e r sblack handle, blue legend plate(1) The thermal trip setting must be within the range marked on the graduated knob.(2) Other accessories such as mounting, cabling and marking accessories are identical to those used for GV2 ME motor circuit breakers, see page B6/13.GV2 RTD F 526142.t i fD F 526340.e p sC i r c u i t b r e a k e r sTeSys GVDescription Mounting Maximum number Type of contacts Sold inlots of Unitreference Instantaneous auxiliary contactsFront (1)1N/O or N/C (2)10GVAE1N/O + N/C 10GVAE11N/O + N/O10GVAE20Side (LH)2N/O + N/C1GVAN11N/O + N/O1GVAN20Fault signalling contact + instantaneous auxiliary contact Side (3) (LH)1N/O (fault)+ N/O1GVAD1010+ N/C1GVAD1001N/C (fault)+ N/O1GVAD0110+ N/C1GVAD0101Short-circuit signalling contactSide (LH)1C/O common point1GVAM11(1 block on RH sideof circuit breaker GV2 ME)50 Hz GVAX11560 Hz GVAX116127 V60 Hz GVAX115220…240 V 50 Hz GVAX22560 Hz GVAX226380…400 V50 Hz GVAX38560 Hz GVAX386415…440 V 50 Hz GVAX415440 V60 Hz GVAX385Add-on contact blocksDescriptionMountingMaximum number Reference Visible isolation block (5)Front (1)1GV2AK00 (6)LimitersAt top(GV2 ME and GV2 P)1GV1L3Independent1LA9LB920(1) Mounting of a GV AE contact block or a GV2 AK00 visible isolation block on GV2 P and GV2 L .(2) Choice of N/C or N/O contact operation, depending on which way round the reversible block is mounted.(3) The GV AD is always mounted next to the circuit breaker.(4) To order an undervoltage trip: replace the dot (p ) in the reference with a U , example: GV AU025. To order a shunt trip: replace the dot (p ) in the reference with an S , example: GV AS025.(5) Visible isolation of the 3 poles upstream of circuit breaker GV2 P and GV2 L .Visible isolation block GV2 AK00 cannot be used with motor circuit breakers GV2 P32 and GV2 L32 (Ith max = 25 A).(6) Ie Max = 32 A.ReferencesTeSys protection componentsThermal-magnetic and magnetic motor circuit breakers GV2 with screw clamp connectionsAdd-on blocks and accessoriesCharacteristics:pages B6/89 and B6/94Dimensions, schemes:pages B6/70 to B6/82LA9LB920D B 126629.e p sC i r c u i t b r e a k e r sTeSys GVTerminal blockfor supply to one or more GV2 G busbar setsConnection from the top1GV1G09Can be fitted with current limiter GV1 L3 (GV2 ME and GV2 P)1GV2G05Cover for terminal block For mounting in modular panels10LA9E07Flexible 3-pole connection for connecting a GV2 to a contactor LC1-D09…D25 Centre distance between mounting rails: 100…120 mm10GV1G02Set of connections upstream/downstream For connecting GV2 ME to a printed circuit board 10GV2GA01“Large Spacing” adapter UL 508 type EFor GV2 P pp H7 (except 32 A)1GV2GH7Clip-in marker holders (supplied with each circuit breaker)For GV2 P , GV2 L, GV2 LE and GV2 RT (8 x 22 mm)100LA9D92ReferencesTeSys protection componentsThermal-magnetic and magnetic motor circuit breakers GV2 with screw clamp connectionsAccessoriesDimensions, schemes:pages B6/70 to B6/82D B 417942.e p sTeSys GVD B 126631.e p sD B 126630.e p sD B 126632.e p s7P B 106297_45.e p sExtended Rotary HandleAllows a circuit breaker or a starter-controller installed in back of an enclosure to be operated from the front of the enclosure.A rotary handle can be black or red/yellow, IP54 or IP65. It includes a function for locking the circuit breaker or the starter in the O (Off) or I (On) position(depending of the type of rotary handle) by means of up to 3 padlocks with a shank diameter of 4 to 8 mm. The extended shaft must be adjusted to use in different size enclosures. The IP54 rotary handle is fixed with a nut (Ø22) to make easierthe assembling. The new Laser Square tool brings the accuracy to align the circuit breaker and the rotary handle.device(padlocks not included)ReferencesTeSys protection componentsThermal-magnetic and magnetic motor circuit breakers GV2 with screw clamp connectionsC i r c u i t b r e a k e r sTeSys GVDescriptionMounting Maximum number Type of contacts Sold inlots of Unitreference Instantaneous auxiliary contactsFront1N/O or N/C (1)10GVAE1N/O + N/C 10GVAE11 (2)N/O + N/O10GVAE20 (2)Side (LH)2N/O + N/C1GVAN11 (2)N/O + N/O1GVAN20 (2)Fault signalling contact + instantaneous auxiliary contactFront 1N/O (fault)+ N/O1GVAED101 (2)N/O (fault)+ N/C1GVAED011 (2)Side (3) (LH)1N/O (fault)+ N/O1GVAD1010+ N/C1GVAD1001N/C (fault)+ N/O1GVAD0110+ N/C1GVAD0101Short-circuit signalling contact Side (LH)1C/O common point 1GVAM11(4)MountingVoltage ReferenceSide(1 block on RH side of circuit breaker)24 V 50 Hz GVA p 02560 Hz GVA p 02648 V 50 Hz GVA p 05560 Hz GVA p 05610050 Hz GVA p 107100…110 V 60 Hz GVA p 107110…115 V 50 Hz GVA p 11560 Hz GVA p 116120…127 V 50 Hz GVA p 125127 V 60 Hz GVA p 115200 V50 Hz GVA p 207200…220 V 60 Hz GVA p 207220…240 V 50 Hz GVA p 22560 Hz GVA p 226380…400 V 50 Hz GVA p 38560 Hz GVA p 386415…440 V 50 Hz GVA p 415415 V 60 Hz GVA p 416440 V 60 Hz GVA p 385480 V 60 Hz GVA p 415500 V 50 Hz GVA p 505600 V60 HzGVA p 505AccessoriesDescription Reference Sets of 3-pole 115 A busbars Pitch: 64 mm2 tap-off GV3 P pp and GV3 L pp GV3G2643 tap-off GV3 P pp and GV3 L pp GV3G364Cover “Large Spacing” UL 508 type E (Only one cover required on supply side)GV3 P ppGV3G66(1) Choice of N/C or N/O contact operation, depending on which way round the reversible block is mounted.(2) Contact blocks available in version with spring terminal connections. Add a figure 3 at the end of the references selected above. Example: GV AED101 becomes GV AED1013.(3) The GV AD pp is always mounted next to the circuit breaker.(4) To order an undervoltage trip: replace the dot (p ) in the reference with a U , example: GV AU025. To order a shunt trip: replace the dot (p ) in the reference with an S , example: GV AS025.Add-on blocks and accessoriesGV3 G66D F 537424.e p sTeSys GVD B 126637.e p sD B 126636.e p sD B 126632.e p s7P B 106297_45.e p sExtended Rotary HandleAllows a circuit breaker or a starter-controller installed in back of an enclosure to be operated from the front of the enclosure.A rotary handle can be black or red/yellow, IP54 or IP65. It includes a function for locking the circuit breaker or the starter in the O (Off) or I (On) position(depending of the type of rotary handle) by means of up to 3 padlocks with a shank diameter of 4 to 8 mm. The extended shaft must be adjusted to use in different size enclosures. The IP54 rotary handle is fixed with a nut (Ø22) to make easierthe assembling. The new Laser Square tool brings the accurency to align the circuit breaker and the rotary handle.For English 10-GVAPSEN For German 10-GVAPSDE For Spanish10-GVAPSES For Chinese 10-GVAPSCN For Portuguese 10-GVAPSPT For Russian 10-GVAPSRU For Italian10-GVAPSITD F 526342.e p sB6/21C i r c u i t b r e a k e r sTeSys GVfor locking the Start button (on open-mounted product)using up to 3 padlocks(padlocks to be ordered separately)External operator for mounting on enclosure door.Red Ø40 knob on yellow plate, padlockable in position O (with up to 3 padlocks). Door locked when knob in position I, and when knob padlocked in position O.GK3AP03(1) 1 voltage trip OR 1 fault signalling contact to be fitted inside the motor circuit breaker.Other versions24 to 690 V, 50 or 60 Hz voltage trips for circuit breakers GV3 ME80.Please consult your Regional Sales Office.ReferencesTeSys protection componentsMotor circuit breakers GV3 ME80 and GK3 EF80Add-on blocks and accessoriesCharacteristics:pages B6/89 and B6/92Dimensions:page B6/47B6/22D F 526344.e p sB6/23C i r c u i t b r e a k e r sTeSys GVThese allow remote indication of the circuit breaker contact states. They can be used for signalling, electrical locking, relaying, etc. They are available in two versions: standard and low level. They include a terminal block and the auxiliary circuits leave the circuit breaker through a hole provided for this purpose.They perform the following functions, depending on where they are located in the circuit breaker:Low levelGV7AB11Fault discrimination devicesThese make it possible to:b either differentiate a thermal fault from a magnetic fault,b or open the contactor only in the event of a thermal fault.VoltageReference a 24...48 and c 24…72 V GV7AD111 (1)z 110…240 VGV7AD112 (1)Electric tripsThese allow the circuit breaker to be tripped via an electrical control signal.b Undervoltage trip GV7 AUv Trips the circuit breaker when the control voltage drops below the tripping threshold, which is between 0.35 and 0.7 times the rated voltage.v Circuit breaker closing is only possible if the voltage exceeds 0.85 times the rated voltage. Circuit breaker tripping by a GV7 AU trip meets the requirements of IEC 60947-2.b Shunt trip GV7 ASTrips the circuit breaker when the control voltage rises above 0.7 times the rated voltage.b Operation (GV7 AU or GV7 AS)v When the circuit breaker has been tripped by a GV7 AU or AS, it must be reset either locally or by remote control. (For remote control, please consult your Regional Sales Office).v Tripping has priority over manual closing: if a tripping instruction is present, manual action does not result in closing, even temporarily, of the contacts.v Durability: 50 % of the mechanical durability of the circuit breaker.TypeVoltageReference Undervoltage trip48 V, 50/60 HzGV7AU055 (1)110…130 V, 50/60 Hz GV7AU107 (1)200…240 V, 50/60 Hz GV7AU207 (1)380…440 V, 50/60 Hz GV7AU387 (1)525 V, 50 HzGV7AU525 (1)Shunt trip48 V, 50/60 HzGV7AS055 (1)110…130 V, 50/60 Hz GV7AS107 (1)200…240 V, 50/60 Hz GV7AS207 (1)380…440 V, 50/60 Hz GV7AS387 (1)525 V, 50 HzGV7AS525 (1)(1) For mounting of a GV7 AD or a GV7 AU or AS.ReferencesTeSys protection componentsThermal-magnetic motor circuit breakers GV7 R with screw clamp connectionsAdd-on blocks and accessoriesCharacteristics:pages B6/51, B6/52 and B6/56Dimensions:pages B6/79 to B6/81Schemes:page B6/83B6/24B6/25C i r c u i t b r e a k e r sTeSys GVDescription ApplicationFor use on contactors Sold in lots of Unitreference Clip-on connectors for GV7 RUp to 150 A, 1.5…95 mm 2–3GV7AC021Up to 220 A, 1.5…185 mm 2–3GV7AC022Spreader 3-pole (1)To increase the pitch to 45 mm–1GV7AC03Terminal shields IP 405 (1)Supplied with sealing accessory–1GV7AC01Phase barriersSafety accessories used when fitting of shields is impossible –2GV7AC04Insulating screens Ensure insulation between the connections and the backplate –2GV7AC05Kits for combination with contactor (2)Allowing link between thecircuit breaker and the contactor. The cover provides protection against direct finger contactLC1 F115…F1851GV7AC06LC1 F225 and F2651GV7AC07LC1 D115 and D1501GV7AC08Replaces the circuit breaker front cover; secured by screws. It includes a device for locking the circuit breaker in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included). A conversion accessory allows the direct rotary handle to be mounted on the enclosure door. In this case, the door cannot be opened if the circuit breaker is in the “ON” position. Circuit breaker closing is inhibited if the enclosure door is open.Description TypeDegree of protection Reference Direct rotary handleBlack handle, black legend plate IP 40GV7AP03Red handle, yellow legend plateIP 40GV7AP04Adapter plate (3)Four mounting direct rotary handle on enclosure doorIP 43GV7AP05Allows a circuit breaker installed in the back of an enclosure to be operated from the front of the enclosure. It comprises:b a unit which screws onto the front cover of the circuit breaker,b an assembly (handle and front plate) to be fitted on the enclosure door,b an extension shaft which must be adjusted (distance between the mounting surface and the door: 185 mm minimum, 600 mm maximum). It includes a device for locking the circuit breaker in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included). This prevents the enclosure door from being opened.DescriptionTypeDegree of protection Reference Extended rotary handleBlack handle, black legend plate IP 55GV7AP01Red handle, yellow legend plateIP 55GV7AP02Allows circuit breakers not fitted with a rotary handle to be locked in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included).Description ApplicationReference Locking deviceFor circuit breaker not fitted with a rotary handleGV7V01(1) Terminal shields cannot be used together with spreaders.(2) The kit comprises links, a protective shield and a depth adjustable metal bracket for the breaker.(3) This conversion accessory makes it impossible to open the door if the device is closed and prevents the device from being closed if the door is open.ReferencesTeSys protection componentsThermal-magnetic motor circuit breakers GV7 R with screw clamp connectionsAccessoriesGV7 AC07D F 537429.e p sGV7 AC08D F 537428.e p sDimensions:pages B6/79 to B6/81B6/260.5 6.63GB2DB051143GB2DB062263GB2DB073403GB2DB084503GB2DB095663GB2DB106833GB2DB1281083GB2DB14101383GB2DB16121653GB2DB20162203GB2DB21202703GB2DB22(1) Conforming to IEC 60947-1.GB2 CBppD F 526243.t i fGB2 CD ppD F 526244.t i fGB2 DBppD F 526245.t i fPresentation, selection :page B6/84Characteristics :pages B6/85 to B6/87Dimensions :page B6/88Schemes :page B6/88B6/27C i r c u i t b r e a k e r s(1) Conforming to IEC 60947-1.Accessories for circuit breakers GB2-CB, DB and CSDescriptionSold in lots of Unitreference Busbar set for supply to 10 GB2 DB or20 GB2 CB or GB2 CS with 2 connectors1GB2G210Supply connector 10GB2G01GB2 CS ppD F 526246.t i fPresentation, selection :page B6/84Characteristics :pages B6/85 to B6/87Dimensions :page B6/88Schemes :page B6/88B6/28B6/29B6/30TeSys GVCharacteristicsTeSys protection componentsMagnetic motor circuit breakers GV2 LE and GV2 LReferences:pages B6/2 and B6/3Dimensions:pages B6/43 to B6/47Schemes:page B6/48add-on contact blocks. Side by side mounting is possible up to 40 °C.(2) When mounting on a vertical rail, fit a stop to prevent any slippage.(1) As % of Icu.Average operating times at 20 °C related to multiples of the setting currentD F 534092.e p s1 3 poles from cold state2 2 poles from cold state3 3 poles from hot stateDynamic stressI peak = f (prospective Isc) at 1.05 Ue = 435 VD F 534093.e p s1 Maximum peak current2 32 A3 25 A4 18 A5 14 A6 10 A7 6.3 A8 4 A9 2.5 A 10 1.6 A11 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).Dynamic stressI peak = f (prospective Isc) at 1.05 Ue = 435 VD F 534094.e p s1 Maximum peak current2 32 A3 25 A4 18 A5 14 A6 10 A7 6.3 A8 4 A9 2.5 A 10 1.6 A11 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).Thermal limit in kA 2s in the magnetic operating zone Sum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V22Prospective Isc (kA)D F 534095.e p s1 32 A 2 25 A3 18 A4 14 A5 10 A6 6.3 A7 4 A8 2.5 A9 1.6 AThermal limit in kA 2s in the magnetic operating zone Sum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V22D F 534096.e p s1 25 A and 32 A 2 18 A3 14 A 4 10 A5 6.3 A6 4 A7 2.5 A8 1.6 AThermal limit in kA 2s in the magnetic operating zone Sum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V22D F 534097.e p s1 32 A (GV2 LE32)2 25 A and 32 A (GV2 L32)3 18 A4 14 A5 10 A6 6.3 A7 4 A8 2.5 A9 1.6 A10 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).Average operating time at 20 °C without prior current flowx the setting current (Ir)D F 534098.e p s1 3 poles from cold state2 2 poles from cold state3 3 poles from hot stateA Thermal overload relay protection zoneB GV3 L protection zoneDynamic stressI peak = f (prospective Isc) at 1.05 Ue = 435 VProspective Isc (kA)D B 418280.e p s1 Maximum peak current2 GV3 L653 GV3 L504 GV3 L405 GV3 L326 GV3 L25Thermal limit in A 2sSum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V2Prospective Isc (kA)D B 418279.e p s1 GV3 L652 GV3 L503 GV3 L404 GV3 L325 GV3 L25TeSys GVDimensions, mountingD F 537440.e p sD F 537441.e p sD F 537444.e p sTeSys protection componentsMagnetic motor circuit breakers GV2 L and GV2 LETeSys GVDimensions, mounting TeSys protection componentsMagnetic motor circuit breakers GV2 L and GV2 LED B 127415.e p sD B 127414.e p sa b Mini Maxi Mini Maxi GV2 APN pp140250GV2 APN pp + GV APH02151250GV2 APN pp + GV APK11250434--GV2 APN pp + GV APH02 + GV APK11--250445TeSys GVDimensions,mounting Sets of busbars GV2 G445, GV2 G454, GV2 G472, with terminal block GV2 G05D F 537451.e p sGV2 G445224269314359GV2 G454260314368422GV2 G472332404476548D F 537452.e p sD F 537454.e p sGV2 G345 (3 x 45 mm)134GV2 G354 (3 x 54 mm)152TeSys protection componentsMagnetic motor circuit breakers GV2 L and GV2 LED F 537480.e psD F 537435.e p sD F 510637.e p sD F 510638.e p sD B 127416.e p sD B 127417.e p sa b Mini Maxi Mini Maxi GV3 APN pp189300--GV3 APN pp + GV APK12300481GV3 APN pp + GV APH03--200300GV3 APN pp + GV APH03 + GV APK12--300492TeSys GVSchemesTeSys protection componentsMagnetic motor circuit breakers GV2 L, GV2 LE, GV3 LD F 537474.e p sD F 537475.e p sD F 537476.e p sGV2 ME, GV2 P , GV3 ME, GV3 P and GV7 R motor circuit breakers are 3-pole thermal-magnetic circuit breakers specifically designed for the control and protection of motors , conforming to standards IEC 60947-2 and IEC 60947-4-1.Connection GV2GV2 ME and GV2 P circuit breakers are designed for connection by screw clamp terminals.Circuit breaker GV2 ME can be supplied with lugs or spring terminal connections.Spring terminal connections ensure secure, permanent and durable clamping that is resistant to harsh environments, vibration and impact and are even more effective when conductors without cable ends are used. Each connection can take two independent conductors.GV3GV3 circuit breakers feature connection by BTR screws (hexagon socket head), tightened using a n° 4 Allen key.This type of connection uses the Ever Link ® system with creep compensation (1) (Schneider Electric patent).This technique makes it possible to achieve accurate and durable tightening torque, in order to avoid cable creep.GV3 circuit breakers are also available with connection by lugs. This type of connection meets the requirements of certain Asian markets and is suitable for applications subject to strong vibration, such as railway transport.GV7GV7 circuit breakers: with connection by screw clamp terminals (for bars and lugs) and by clip-on connectors.OperationControl is manual and local when the motor circuit breaker is used on its own.Control is automatic and remote when it is associated with a contactor.GV2 ME and GV3 ME80Pushbutton control.Energisation is controlled manually by operating the Start button “I” 1.De-energisation is controlled manually by operating the Stop button “O” 2, or automatically by the thermal-magnetic protection elements or by a voltage trip attachment.GV2 P , GV3 P and GV7 Rb Control by rotary knob: for GV2 P and GV3 P b Control by rocker lever: for GV7 R.Energisation is controlled manually by moving the knob or rocker lever to position “I” 1.De-energisation is controlled manually by moving the knob or rocker lever to position “O” 2.De-energisation due to a fault automatically places the knob or rocker lever in the “Trip” position 3.Re-energisation is possible only after having returned the knob or rocker lever to position “O”.(1) Creep: normal crushing phenomenon of copper conductors, that is accentuated over time.GV2 MEwith screw clamp terminals124D F 526134.t i fGV2 MEwith spring terminals connections124D F 526135.t i fGV3 P1324D F 526136.t ifGV2 P1342D F 526137.t i fGV7 R132D F 526138.t i f。
MAX3313EEUB-T中文资料
General DescriptionThe MAX3311E/MAX3313E are low-power, 5V EIA/TIA-232-compatible transceivers. All transmitter outputs and receiver inputs are protected to ±15kV using the Human Body Model, making these devices ideal for applications where more robust transceivers are required.Both devices have one transmitter and one receiver.The transmitters have a proprietary low-dropout trans-mitter output stage enabling RS-232-compatible opera-tion from a +5V supply with a single inverting charge pump. These transceivers require only three 0.1µF capacitors and will run at data rates up to 460kbps while maintaining RS-232-compatible output levels.The MAX3311E features a 1µA shutdown mode. In shutdown the device turns off the charge pump, pulls V- to ground, and the transmitter output is disabled.The MAX3313E features an INVALID output that asserts high when an active RS-232 cable signal is connected,signaling to the host that a peripheral is connected to the communication port.________________________ApplicationsDigital Cameras PDAs GPS POSTelecommunications Handy Terminals Set-Top BoxesFeatureso ESD Protection for RS-232-Compatible I/O Pins±15kV—Human Body Modelo 1µA Low-Power Shutdown (MAX3311E)o INVALID Output (MAX3313E)o Receiver Active in Shutdown (MAX3311E)o Single Transceiver (1Tx/1Rx) in 10-Pin µMAX PackageMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX________________________________________________________________Maxim Integrated Products1Pin Configurations19-1910; Rev 0; 1/01Ordering InformationFor price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642,or visit Maxim’s website at .Typical Operating CircuitM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND.............................................................-0.3V to +6V V- to GND................................................................+0.3V to -7V V CC + |V-|............................................................................+13V Input VoltagesTIN, SHDN to GND...............................................-0.3V to +6V RIN to GND......................................................................±25V Output VoltagesTOUT to GND................................................................±13.2V ROUT, INVALID to GND.....................…-0.3V to (V CC + 0.3V)Short-Circuit DurationTOUT to GND.........................................................ContinuousContinuous Power Dissipation10-Pin µMAX (derate 5.6mW/°C above +70°C)..........444mW Operating Temperature RangesMAX331_ECUB.................................................0°C to +70°C MAX331_EEUB..............................................-40°C to +85°C Junction Temperature.....................................................+150°C Storage Temperature Range............................-65°C to +150°C Lead Temperature (soldering, 10s)................................+300°CMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)TIMING CHARACTERISTICSM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 4_______________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, 0.1µF capacitors, transmitter loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)0428612101410001500500200025003000SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )-5-4-3-2-10123456050010001500200025003000TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )010001500500200025003000SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)Detailed DescriptionSingle Charge-Pump Voltage ConverterThe MAX3311E/MAX3313E internal power supply has a single inverting charge pump that provides a negative voltage from a single +5V supply. The charge pump operates in a discontinuous mode and requires a flying capacitor (C1) and a reservoir capacitor (C2) to gener-ate the V- supply.RS-232-Compatible DriverThe transmitter is an inverting level translator that con-verts CMOS-logic levels to EIA/TIA-232 compatible lev-els. It guarantees data rates up to 460kbps with worst-case loads of 3k Ωin parallel with 1000pF. When SHDN is driven low, the transmitter is disabled and put into tri-state. The transmitter input does not have an internal pullup resistor.RS-232 ReceiverThe MAX3311E/MAX3313E receiver converts RS-232signals to CMOS-logic output levels. The MAX3311E receiver will remain active during shutdown mode. The MAX3313E INVALID indicates when an RS-232 signal is present at the receiver input, and therefore when the port is in use.The MAX3313E INVALID output is pulled low when no valid RS-232 signal level is detected on the receiver input.MAX3311E Shutdown ModeIn shutdown mode, the charge pump is turned off, V- is pulled to ground, and the transmitter output is disabled (Table 1). This reduces supply current typically to 1µA.The time required to exit shutdown is less than 25ms.Applications InformationCapacitor SelectionThe capacitor type used for C1 and C2 is not critical for proper operation; either polarized or nonpolarized capacitors are acceptable. If polarized capacitors are used, connect polarity as shown in the Typical Operating Circuit . The charge pump requires 0.1µF capacitors. Increasing the capacitor values (e.g., by a factor of 2) reduces power consumption. C2 can beincreased without changing C1’s value. However, do not increase C1’s value without also increasing the value of C2 and C BYPASS to maintain the proper ratios (C1 to the other capacitors).When using the minimum 0.1µF capacitors, make sure the capacitance does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor ’s equivalent series resis-tance (ESR) usually rises at low temperatures and influ-ences the amount of ripple on V-.To reduce the output impedance at V-, use larger capacitors (up to 10µF).Bypass V CC to ground with at least 0.1µF. In applica-tions sensitive to power-supply noise generated by the charge pump, decouple V CC to ground with a capaci-tor the same size as (or larger than) charge-pump capacitors C1 and C2.Transmitter Output when ExitingShutdownFigure 1 shows the transmitter output when exiting shutdown mode. The transmitter is loaded with 3k Ωin parallel with 1000pF. The transmitter output displays no ringing or undesirable transients as the MAX3311E comes out of shutdown. Note that the transmitter is enabled only when the magnitude of V- exceeds approximately -3V.High Data RatesThe MAX3311E/MAX3313E maintain RS-232-compati-ble ±3.7V minimum transmitter output voltage even atMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX5Figure 1. Transmitter Output when Exiting Shutdown or Powering Up10µs/divSHDNTOUT5V/div1.5V/divTIN = GNDTIN = V CCM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 6_______________________________________________________________________________________high data rates. Figure 2 shows a transmitter loopback test circuit. Figure 3 shows the loopback test result at 120kbps, and Figure 4 shows the same test at 250kbps.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The MAX3311E/MAX3313E driver outputsand receiver inputs have extra protection against static discharge. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim ’s E versions keep working without latchup; whereas, competing products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the product family are characterized for protection to ±15kV using the Human Body Model.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 5 shows the Human Body Model, and Figure 6shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing, not just RS-232 inputs and outputs. Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Figure 4. Loopback Test Results at 250kbps2µs/divTOUTTINROUTFigure 3. Loopback Test Results at 120kbps 5µs/divTOUTTINROUTMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX_______________________________________________________________________________________7Figure 5. Human Body ESD Test ModelFigure 6. Human Body Current WaveformPin Configurations (continued)Chip InformationTRANSISTOR COUNT: 278M A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.______________________________________________________________Pin Description。
泰勒士自动化科技有限公司 TS-TWI4 壁挂式温度变送器使用说明书
TS-TWI4系列温度传感器产品使用说明书厦门泰勒士自动化科技有限公司版本号V1.2产品概述※TS-TWI4型壁挂式温度变送器采用原装进口的数字型温度传感模块,通过高性能单片机的信号处理,性能远优于普通热电阻和电偶型温度传感器产品。
※该系列变送器采用灵活的壁挂式安装,使用方便,输出标准4-20mA电流信号,适用于大多数工控设备。
※该系列产品为一体化温度变送器,内置温度探头,直接输出工控模拟量信号,精度高,传输距离远,稳定性更高。
已广泛应用于楼宇自动化、气候与暖通信号采集、博物馆和宾馆的气候站、大棚温室以及医药行业等。
产品参数量程:0~+50℃/-20~+80℃/-40~+60℃(可设置)准确度:±0.5℃(全量程均值)产品功耗:15mA(典型值)分辨率:0.1℃响应时间6τ(63%):min=5s,max=30s长期稳定性:<0.1℃/年输出信号:4-20mA电流负载电阻:<500ohm供电电源:15~36VDC(建议值24VDC)建议校对年限:两年工作和存储环境工作环境温度:-20~+80℃工作环境湿度:0~99.9%无冷凝存储温度:10–50°C(0–125°C peak)存储湿度:20–60%RH工作环境注意防尘措施,产品安装位置应该避免进出风口、临近机柜等发热体,以及远离强电磁干扰源等。
测量点应选择温湿度状态值相对稳定,能代表区域状况的位置。
上电一段时间后,方能得到现场准确温度数值。
(注:以上各项参数如没特殊说明,均在25℃条件下测量)外形尺寸单位mm(本品无显示窗口部分)注意:为保证传感器有良好的散热效果和测量精度,请按正确方向安装壁挂式仪表,以仪表面板logo为准,上下方向不可倒置。
电气接线图TV+GND仪表端子接线定义实物接线示意图温度模拟量输出电源正极电源负极典型应用电气接线示意图注意:此变送器输出信号为4-20mA 电流,如采用电流型检测设备,请将检测设备并联接入输出电路中(见典型应用电路中电流表的位置),如采用其它检测设备,请作相应处理。
SB3044-Ex使用手册
注意:提醒需要特别注意的信息。
ATTENTION: Identifies information that requires special consideration.
提示:标记对用户的建议或提示。 TIP:Identifies advice or hints for the user.
目
录
隔离式安全栅 SB3044-Ex.............................................................................................................................. 1 1 基本说明..................................................................................................................................................... 1 2 性能指标..................................................................................................................................................... 1 3 使用说明..................................................................................................................................................... 2 4 资料版本说明............................................................................................................................................. 2
ELT3044(S1)(TB)-V中文资料(everlight)中文数据手册「EasyDatasheet - 矽搜」
概要
应用
电磁阀/阀门控制 光控 静态电源开关 交流电机驱动器
引脚配置
1.阳极 2.阴极 3.终端 4.终端
E.M.接触
温度控制 交流电动机起动器
芯片中文手册,看全文,戳
4引脚 DIP零交叉可控硅驱动器
光耦合器
绝对最大额定值( T
a =25° C)
ELT304X系列 ELT306X系列 ELT308X系列
芯片中文手册,看全文,戳
4引脚 DIP零交叉可控硅驱动器
光耦合器
产品特点:
ELT304X系列 ELT306X系列 ELT308X系列
• 峰值击穿电压
- 400V: ELT304X - 600V: ELT306X - 800V: ELT308X
• 输入之间高隔离电压
和输出(维索= 5000 V有效值)
280
3 µA
防护持电流
*在T典型值
a
= 25°C
芯片中文手册,看全文,戳
4引脚 DIP零交叉可控硅驱动器
光耦合器
典型性能曲线
ELT304X系列 ELT306X系列 ELT308X系列
芯片中文手册,看全文,戳
4引脚 DIP零交叉可控硅驱动器
光耦合器
ELT304X系列 ELT306X系列 ELT308X系列
V
输出 峰值重复浪涌电流 功耗 隔离电 总功耗 工作温度 储存温度 焊接温度
*2 *1
A mW V有效值 mW °C °C °C
T sol
注释*
1交流进行1分钟,RH = 40〜60%RH在本试验中,销1,2短接在一起,销3,4被短接在一起.
* 2为10秒.
芯片中文手册,看全文,戳
MAX4665ESE中文资料
MAX4664CPE MAX4664ESE MAX4664EPE
0°C to +70°C -40°C to +85°C -40°C to +85°C
16 Plastic DIP 16 Narrow SO 16 Plastic DIP
SO/DIP
MAX4665
LOGIC
SWITCH
0
OFF
1
ON
SWITCHES SHOWN FOR LOGIC “0” INPUT
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
IN1 1 COM1 2
NO1 3 V- 4
MAX4664/MAX4665/MAX4666
5Ω, Quad, SPST, CMOS Analog Switches
ABSOLUTE MAXIMUM RATINGS
V+ to GND ..............................................................-0.3V to +44V V- to GND ..............................................................+0.3V to -44V V+ to V-...................................................................-0.3V to +44V VL to GND ........................................(GND - 0.3V) to (V+ + 0.3V) All Other Pins to DGND (Note 1) ......... (V- - 0.3V) to (V+ + 0.3V) Continuous Current (COM_, NO_, NC_) ........................±100mA Peak Current (COM_, NO_, NC_)
MAX3086ECSD-T中文资料
The MAX3080E–MAX3089E are ±15kV electrostatic discharge (ESD)-protected, high-speed transceivers for RS485/RS-422 communication that contain one driver and one receiver. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). The MAX3080E/MAX3081E/MAX3082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 115kbps. The MAX3083E/MAX3084E/MAX3085E offer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX3086E/MAX3087E/ MAX3088Es’ driver slew rates are not limited, making transmit speeds up to 10Mbps possible. The MAX3089E’s slew rate is selectable between 115kbps, 500kbps, and 10Mbps by driving a selector pin with a single three-state driver. All devices feature enhanced ESD protection. All transmitter outputs and receiver inputs are protected to ±15kV using the Human Body Model. These transceivers typically draw 375µA of supply current when unloaded, or when fully loaded with the drivers disabled. All devices have a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus. The MAX3082E/MAX3085E/MAX3088E are intended for halfduplex communMAX3083E/MAX3084E/MAX3086E/MAX3087E are intended for full-duplex communications. The MAX3089E is selectable between half-duplex and full-duplex operation. It also features independently programmable receiver and transmitter output phase via separate pins.
MAX490EESA+资料
Supply Control
Voltage (VCC) Input Voltage
.(.–R—..E.–..,..D..E..)........................................-.0....5..V...t.o...(.V..C...C...+...0...152VV)
♦ For Low-Voltage Applications: MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
施耐德 RM4TR34三相网络控制继电器RM4-T range 360 V 数据表
Product data sheetCharacteristicsRM4TR34three-phase network control relay RM4-T -range 360 V产品状态停止销售 : 四月 02, 2021i 停止销售主要信息产品系列Harmony Relay 继电器类型控制继电器产品类型工业测量和控制继电器应用领域用于三相电源继电器名称RM4-T继电器监测参数相位故障监测 过压与欠压监测相位顺序延时类型可调的 0.1...10 s 输出触头 2 C/O 触点类型 2 OC 极数3P补充信息额定工作电流 [Ie]2 A 在…上 70 °C 24 V DC-13 符合 IEC 60947-5-1/1991 2 A 在…上 70 °C 24 V DC-13 符合 VDE 06603 A 在…上 70 °C 115 V AC-15 符合 IEC 60947-5-1/1991 3 A 在…上 70 °C 115 V AC-15 符合 VDE 06603 A 在…上 70 °C 24 V AC-15 符合 IEC 60947-5-1/1991 3 A 在…上 70 °C 24 V AC-15 符合 VDE 06603 A 在…上 70 °C 250 V AC-15 符合 IEC 60947-5-1/1991 3 A 在…上 70 °C 250 V AC-15 符合 VDE 06600.1 A 在…上 70 °C 250 V DC-13 符合 IEC 60947-5-1/1991 0.1 A 在…上 70 °C 250 V DC-13 符合 VDE 06600.3 A 在…上 70 °C 115 V DC-13 符合 IEC 60947-5-1/1991 0.3 A 在…上 70 °C 115 V DC-13 符合 VDE 0660最大开关电压440 V AC 抑制限界过电压440 V 开关阈值能量设定+/-3 %开关阈误差<= 0.06 % / 摄氏度 基于许可的环境空气温度而定 <= 0.5 % 在测量范围内延时准确性设置10 P延时误差<= 0.07 % / 摄氏度 基于额定运行温度而定 <= 0.5 % 在测量范围内迟滞5 % 固定式 的 断电阈值通电时的上涨延迟650 Ms Maximum measuring cycle 80 Ms额定绝缘电压 [Ui]500 V 符合 IEC 供电频率50/60 Hz +/- 5 %操作位置任何位置 无降容T h e i n f o r m a t i o n p r o v i d e d i n t h i s d o c u m e n t a t i o n c o n t a i n s g e n e r a l d e s c r i p t i o n s a n d /o r t e c h n i c a l c h a r a c t e r i s t i c s o f t h e p e r f o r m a n c e o f t h e p r o d u c t s c o n t a i n e d h e r e i n .T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n s .I t i s t h e d u t y o f a n y s u c h u s e r o r i n t e g r a t o r t o p e r f o r m t h e a p p r o p r i a t e a n d c o m p l e t e r i s k a n a l y s i s , e v a l u a t i o n a n d t e s t i n g o f t h e p r o d u c t s w i t h r e s p e c t t o t h e r e l e v a n t s p e c i f i c a p p l i c a t i o n o r u s e t h e r e o f .N e i t h e r S c h n e i d e r E l e c t r i c I n d u s t r i e s S A S n o r a n y o f i t s a f f i l i a t e s o r s u b s i d i a r i e s s h a l l b e r e s p o n s i b l e o r l i a b l e f o r m i s u s e o f t h e i n f o r m a t i o n c o n t a i n e d h e r e i n .接线能力螺钉端子, 2 x 1.5 mm²软线 带接线端子螺钉端子, 2 x 2.5 mm²软线 不带接线端子紧固扭矩0.6…1.1 N.M机械寿命30000000 次约定发热电流 [Ith]8 A开关能力以 mA10 mA 在…上 12 V最小切换容量 [U min]250 V 交流触点材料90/10 镀镍银触线电缆数量2高度78 Mm宽度22.5 Mm深度80 MmISO n°1端子(15-16-18)OC(25-26-28)OC(L1-L2-L3)CO输出继电器状态故障出现,脱扣宽度 (9mm的倍数) 2.5净重0.11 Kg环境电磁兼容性抗静电干扰 - test level: 6 kV 3级 (接触放电) conforming to IEC 61000-4-2抗静电干扰 - test level: 8 kV 3级 (空气放电) conforming to IEC 61000-4-2静电放电抗扰 - test level: 6 kV (触点) conforming to IEC 61000-4-2 级别 3静电放电抗扰 - test level: 8 kV (空气) conforming to IEC 61000-4-2 级别 3符合标准EN/IEC 60255-6产品认证UL[RETURN]GL[RETURN]CSA标识CE符合指令73/23/EEC - 电压指令89/336/EEC - 电磁兼容性贮存环境温度-40…85 °C环境温度-20…65 °C相对湿度15…85 % 3K3 符合 IEC 60721-3-3抗振动0.35 ms (f= 10…55 Hz) 符合 IEC 60068-2-6抗冲击15 gn 适用 11 ms 符合 IEC 60068-2-27IP 保护等级IP20 符合 IEC 60529 (螺钉端子)IP50 符合 IEC 60529 (套管)污染等级 3 符合 IEC 60664-1过电压种类III 符合 IEC 60664-1介电测试绕组与绕组、绕组对地电压 2.5 KV浪涌 4.8 KV抗静电放电6 KV 触点 符合 IEC 61000-4-2 级别 38 KV 空气 符合 IEC 61000-4-2 级别 3抗电磁域10 V/M 符合 IEC 61000-4-3 级别 3抗瞬时脉冲能力2 KV 符合 IEC 61000-4-4 级别 3辐射式/传导式干扰CISPR11 1组- A等级CISPR22 - A级包装单位Unit Type of Package 1PCENumber of Units in Package 11合同保修保修单18 monthsProduct Life Status :End of commerc. - BlockRM4TR34可替换为以下任意产品:RM22TR33RM22控制继电器,三相监测,380…480Vac, 2 C/O数量 1替代日期: |。
赛米控丹佛斯电子 SEMiX453GB17E4Ip 数据表
Rev. 2.0–25.01.20171SEMiX ®3p shuntGB + shuntSEMiX453GB17E4Ip Features•Homogeneous Si•Trench = Trenchgate technology •V CE(sat) with positive temperature coefficient•High short circuit capability•Press-fit pins as auxiliary contacts •Current sensing shunt resistor •UL recognized, file no. E63532Typical Applications*•AC inverter drives •UPS•Renewable energy systemsRemarks•Product reliability results are valid for T j =150°C•V isol between temperature sensor and power section is only 2500V•For storage and case temperature with TIM see document “TP(*) SEMiX 3p”Absolute Maximum Ratings SymbolConditions Values UnitIGBT V CES T j =25°C 1700V I C T j =175°CT c =25°C 731A T c =80°C555A I Cnom 450A I CRMI CRM = 3xI Cnom 1350A V GES -20 (20)V t psc V CC =1000V V GE ≤ 15V V CES ≤ 1700V T j =150°C10µs T j -40...175°C Inverse diodeV RRM T j =25°C 1700V I F T j =175°CT c =25°C 557A T c =80°C412A I Fnom 450A I FRM I FRM = 2xI Fnom900A I FSM t p =10ms, sin 180°, T j =25°C2565A T j -40...175°C Module I t(RMS)210A T stg module without TIM -40...125°C V isolAC sinus 50Hz, t =1min4000VCharacteristics SymbolConditionsmin.typ.max.UnitIGBT V CE(sat)I C =450A V GE =15V chiplevel T j =25°C 1.90 2.20V T j =150°C 2.26 2.45V V CE0chiplevel T j =25°C 1.10 1.20V T j =150°C 1.00 1.10V r CE V GE =15V chiplevelT j =25°C 1.78 2.2m ΩT j =150°C2.83.0m ΩV GE(th)V GE =V CE , I C =18mA5.2 5.86.4V I CES V GE =0V,V CE =1700V, T j =25°C 5mA C ies V CE =25V V GE =0Vf =1MHz 36.0nF C oes f =1MHz 1.50nF C res f =1MHz1.14nF Q G V GE =- 8 V...+ 15 V 3600nC R Gint T j =25°C 1.7Ωt d(on)V CC =900V I C =450AV GE =+15/-15V R G on =2.7ΩR G off =2.7Ωdi/dt on =4300A/µs di/dt off =2200A/µs du/dt =3200V/µs L s =21nH T j =150°C 270ns t r T j =150°C 90ns E on T j =150°C 153mJ t d(off)T j =150°C 815ns t f T j =150°C 200ns E off T j =150°C 150mJR th(j-c)per IGBT0.06K/W R th(c-s)per IGBT (λgrease =0.81 W/(m*K))0.029K/W R th(c-s)per IGBT, pre-applied phase change material0.02K/W2Rev. 2.0–25.01.2017© by SEMIKRONSEMiX ®3p shuntGB + shuntSEMiX453GB17E4Ip Features•Homogeneous Si•Trench = Trenchgate technology •V CE(sat) with positive temperature coefficient•High short circuit capability•Press-fit pins as auxiliary contacts •Current sensing shunt resistor •UL recognized, file no. E63532Typical Applications*•AC inverter drives •UPS•Renewable energy systemsRemarks•Product reliability results are valid for T j =150°C•V isol between temperature sensor and power section is only 2500V•For storage and case temperature with TIM see document “TP(*) SEMiX 3p”Characteristics SymbolConditionsmin.typ.max.UnitInverse diodeV F = V EC I F =450AV GE =0V chiplevelT j =25°C 1.98 2.37V T j =150°C 2.11 2.52V V F0chiplevel T j =25°C 1.32 1.56V T j =150°C 1.08 1.22V r FchiplevelT j =25°C 1.46 1.80m ΩT j =150°C2.3 2.9m ΩI RRM I F =450A di/dt off =4850A/µs V GE =-15VV CC =900VT j =150°C 350A Q rr T j=150°C130µC E rr T j =150°C 73mJR th(j-c)per diode0.1K/W R th(c-s)per diode (λgrease =0.81 W/(m*K))0.048K/W R th(c-s)per diode, pre-applied phase change material0.038K/W Module L CE 20nH R CC'+EE'measured per switch, shuntexcludedT C =25°C 1.2m ΩT C =125°C 1.65m ΩRth (c-s)1calculated without thermal coupling 0.009K/W Rth (c-s)2including thermal coupling,Ts underneath module (λgrease =0.81 W/(m*K))0.014K/W Rth (c-s)2including thermal coupling,Ts underneath module, pre-applied phase change material 0.011K/W M s to heat sink (M5)36Nm M t to terminals (M6)36Nm Nm w350g Temperature Sensor R 100T c =100°C (R 25=5 k Ω)493 ± 5%ΩB 100/125R (T)=R 100exp[B 100/125(1/T-1/T 100)]; T[K];3550 ±2%KCharacteristics SymbolConditionsmin.typ.max.UnitShunt I Shunt T c =100°C, T Shunt,max =170°C, R th =4.0K/W210A R Shunt Tolerance = ±1 %0.40m Ωα50ppm/K© by SEMIKRON Rev. 2.0–25.01.201734Rev. 2.0–25.01.2017© by SEMIKRONSEMiX 3p shuntpinoutRev. 2.0–25.01.20175This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.*IMPORTANT INFORMATION AND WARNINGSThe specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.6。
西门子SIWAREX R称重传感器重点
西门子目录表:安全注意事项...................................................................................................... 3 总体信息 ............................................................................................................4 关于产品责任的说明........................................................................................... 4 1 技术描述.................................................................................................. 5 1.1 应用领域.................................................................................................. 5 1.2 结构......................................................................................................... 5 1.3 系统配置.................................................................................................. 7 2 安装/组装............................................................................................... 10 2.1 安装....................................................................................................... 10 2.2 组装....................................................................................................... 13 2.3 拆卸....................................................................................................... 16 3 调试....................................................................................................... 17 4 维护....................................................................................................... 19 4.1 管理和维护............................................................................................. 19 4.2 故障查找................................................................................................ 19 5 技术数据................................................................................................ 22 5.1 功能数据................................................................................................ 22 5.2 单元型式................................................................................................ 25 5.3 防爆....................................................................................................... 25 5.4 电磁兼容性(EMC ).............................................................................. 26 5.5 尺寸....................................................................................................... 27 6订货数据 (34)安全注意事项危险意思是:如果未能采取相应的安全预防措施,将肯定会导致死亡、严重的人身伤害、或实质性的财产损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX3040–MAX3045 is a family of 5V quad RS-485/RS-422 transmitters designed for digital data trans-mission over twisted-pair balanced lines. All transmitter outputs are protected to ±10kV using the Human Body Model. In addition the MAX3040–MAX3045 withstand ±4kV per IEC 1000-4-4 Electrical Fast Transient/Burst Stressing. The MAX3040/MAX3043 (250kbps) and the MAX3041/MAX3044 (2.5Mbps) are slew-rate limited transmitters that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free transmission.The MAX3040–MAX3045 feature a hot-swap capability*that eliminates false transitions on the data cable during power-up or hot insertion. The MAX3042B/MAX3045B are optimized for data transfer rates up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps.The MAX3040–MAX3045 offer optimum performance when used with the MAX3093E or MAX3095 5V quad differential line receivers or MAX3094E/MAX3096 3V quad differential line receivers.The MAX3040–MAX3045 are ESD-protected pin-compat-ible, low-power upgrades to the industry-standard ‘SN75174 and ‘DS26LS31C. They are available in space-saving TSSOP, narrow SO, and wide SO packages.*Patent pendingApplicationsTelecommunications Equipment Industrial Motor ControlTransmitter for ESD-Sensitive Applications Hand-Held Equipment Industrial PLCs NetworkingFeatureso ESD Protection: ±10kV—Human Body Model o Single +5V Operationo Guaranteed Device-to-Device Skew(MAX3040/MAX3041/MAX3043/MAX3044)o Pin-Compatible with ‘SN75174, ‘26LS31C and LTC487o Hot-Swappable for Telecom Applications o Up to 20Mbps Data Rate (MAX3042B/MAX3045B)o Slew-Rate Limited (Data Rates at 2.5Mbps and 250kbps)o 2nA Low-Power Shutdown Mode o 1mA Operating Supply Currento ±4kV EFT Fast Transient Burst Immunity per IEC 1000-4-4o Level 2 Surge Immunity per IEC 1000-4-5,Unshielded Cable Model o Ultra-Small 16-Pin TSSOP, 16-Pin Narrow SO, and Wide 16-Pin SOMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters________________________________________________________________Maxim Integrated Products1Pin ConfigurationsSelector GuideOrdering Information19-2143; Rev 1; 12/01Ordering Information continued at end of data sheet.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All voltages referenced to ground (GND).Supply Voltage (V CC ).............................................................+7V Control Input Voltage (EN, EN , EN_) .........-0.3V to (V CC + 0.3V)Driver Input Voltage (T_IN).........................-0.3V to (V CC + 0.3V)Driver Output Voltage (Y_, Z_)(Driver Disabled).............................................-7.5V to +12.5V Driver Output Voltage (Y_, Z_)(Driver Enabled).................................................-7.5V to +10V Continuous Power Dissipation (T A = +70°C)16-Pin TSSOP (derate 9.4mW/°C above +70°C)..........755mW16-Pin Narrow SO (derate 8.70mW/°C above +70°C)..696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW Operating Temperature RangeMAX304_C_E.......................................................0°C to +70°C MAX304_E_E....................................................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersSWITCHING CHARACTERISTICS —MAX3040/MAX3043SWITCHING CHARACTERISTICS —MAX3041/MAX3044M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 4_______________________________________________________________________________________Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the transmitter input changes state.Note 3:This input current level is for the hot-swap enable (EN_, EN, EN ) inputs and is present until the first transition only. After thefirst transition the input reverts to a standard high-impedance CMOS input with input current I IN . For the first 20µs the input current may be as high as 1mA. During this period the input is disabled.Note 4:Maximum current level applies to peak current just prior to foldback-current limiting. Minimum current level applies duringcurrent limiting.SWITCHING CHARACTERISTICS —MAX3041/MAX3044 (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.)OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )54-6-5-4-2-1012-3310203040506070800-76OUTPUT CURRENT vs. TRANSMITTEROUTPUT HIGH VOLTAGE0.70.81.00.91.11.220103040506070SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U RR E N T (m A )10010000105152025353040450.1110MAX3040/MAX3043SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )4000.1110100100010,000MAX3041/MAX3044SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )1052015353025MAX3042B/MAX3045BSUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)0.1100100010,000110100,000S U P P L Y C U R R E N T (m A )60010203050400201040306050700426810OUTPUT CURRENT vs. TRANSMITTEROUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)020104030605070021345OUTPUT CURRENTvs. DIFFERENTIAL OUTPUT VOLTAGEM A X 3040 t oc 07DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )2.102.202.152.352.302.252.502.452.402.5520301040506070TRANSMITTER DIFFERENTIAL OUTPUTVOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 6_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters7Detailed DescriptionThe MAX3040–MAX3045 are quad RS-485/RS-422 trans-mitters. They operate from a single +5V power supply and are designed to give optimum performance when used with the MAX3093E/MAX3095 5V quad RS-485/RS-422 receivers or MAX3094E/MAX3096 3V quad RS-485/RS-422 receivers. The MAX3040–MAX3045 only need 1mA of operating supply current and consume 2nA when they enter a low-power shutdown mode. The MAX3040–MAX3045 also feature a hot-swap capability allowing line insertion without erroneous data transfer.The MAX3042B/MAX3045B are capable of transferring data up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps. All transmitter outputs are pro-tected to ±10kV using the Human Body Model.±10kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges (ESD) encountered during handling and assembly. The MAX3040–MAX3045 transmitter outputs have extra protection against electrostatic dis-charges found in normal operation. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against the application of ±10kV ESD (Human Body Model), without damage.ESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. Of course, all pins (not just RS-485inputs) require this protection during manufacturing.Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model.±4kV Electrical Fast Transient/Burst Testing(IEC 1000-4-4)IEC 1000-4-4 Electrical Fast Transient/Burst (EFT/B) is an immunity test for the evaluation of electrical and electronic systems during operating conditions. The test was adapted for evaluation of integrated circuits with power applied. Repetitive fast transients with severe pulsed EMI were applied to signal and control ports. Over 15,000 distinct discharges per minute are sent to each interface port of the IC or equipment under test (EUT) simultaneously with a minimum test duration time of one minute. This simulates stress due to dis-placement current from electrical transients on AC mains, or other telecommunication lines in close prox-imity. Short rise times and very specific repetition rates are essential to the validity of the test.Stress placed on the EUT is severe. In addition to the controlled individual discharges placed on the EUT,extraneous noise and ringing on the transmission line can multiply the number of discharges as well as increase the magnitude of each discharge. All cabling was left unterminated to simulate worst-case reflections.The MAX3040–MAX3045 were setup as specified in IEC 1000-4-4 and the Typical Operating Circuit of this data sheet. The amplitude, pulse rise time, pulse dura-tion, pulse repetition period, burst duration, and burst period (Figure 8)of the burst generator were all verified with a digital oscilloscope according to the specifica-tions in IEC 1000-4-4 sections 6.1.1 and 6.1.2. A simpli-fied diagram of the EFT/B generator is shown in Figure 7. The burst stresses were applied to Y1–Y4 and Z1–Z4simultaneously.IEC 1000-4-4 provides several levels of test severity (see Table 1). The MAX3040–MAX3045 pass the 4000V stress, a special category “X ” beyond the highest level for severe (transient) industrial environments for telecommunication lines.M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 8_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________9IEC 1000-4-4 Burst/Electrical FastTransient Test Levels (For Communication Lines)The stresses are applied while the MAX3040–MAX3045are powered up. Test results are reported as:1)Normal performance within the specification limits.2)Temporary degradation or loss of function or perfor-mance which is self-recoverable.3)Temporary degradation, loss of function or perfor-mance requiring operator intervention, such as sys-tem reset.4)Degradation or loss of function not recoverable due to damage.The MAX3040–MAX3045 meets classification 2 listed above. Additionally, the MAX3040–MAX3045 will not latchup during the IEC burst stress events.Hot-Swap CapabilityHot-Swap InputsWhen circuit boards are plugged into a “hot ” back-plane, there can be disturbances to the differential sig-nal levels that could be detected by receivers connected to the transmission line. This erroneous data could cause data errors to an RS-485/RS-422 system.To avoid this, the MAX3040–MAX3045 have hot-swap capable inputs.When a circuit board is plugged into a “hot ” backplane there is an interval during which the processor is going through its power-up sequence. During this time, the processor ’s output drivers are high impedance and will be unable to drive the enable inputs of the MAX3040–MAX3045 (EN, EN , EN_) to defined logic lev-els. Leakage currents from these high impedance dri-vers, of as much as 10µA, could cause the enable inputs of the MAX3040–MAX3045 to drift high or low.Additionally, parasitic capacitance of the circuit board could cause capacitive coupling of the enable inputs to either G ND or V CC . These factors could cause the enable inputs of the MAX3040–MAX3045 to drift to lev-els that may enable the transmitter outputs (Y_ and Z_).To avoid this problem, the hot-swap input provides a method of holding the enable inputs of the MAX3040–MAX3045 in the disabled state as V CC ramps up. This hot-swap input is able to overcome the leakage currents and parasitic capacitances that may pull the enable inputs to the enabled state.Hot-Swap Input CircuitryIn the MAX3040–MAX3045 the enable inputs feature hot-swap capability. At the input there are two NMOSdevices, Q1 and Q2 (Figure 9). When V CC is ramping up from 0, an internal 10µs timer turns on Q2 and sets the SR latch, which also turns on Q1. Transistors Q2, a 700µA current sink, and Q1, an 85µA current sink, pull EN to GND through a 5.6k Ωresistor. Q2 is designed to pull the EN input to the disabled state against an exter-nal parasitic capacitance of up to 100pF that is trying to enable the EN input. After 10µs, the timer turns Q2 off and Q1 remains on, holding the EN input low against three-state output leakages that might enable EN. Q1remains on until an external source overcomes theM A X 3040–M A X 3045required input current. At this time the SR latch resets and Q1 turns off. When Q1 turns off, EN reverts to a standard, high-impedance CMOS input. Whenever V CC drops below 1V, the hot-swap input is reset.The EN12 and EN34 input structures are identical to the EN input. For the EN input, there is a complimentary cir-cuit employing two PMOS devices pulling the EN input to V CC .Hot-Swap Line TransientThe circuit of Figure 10 shows a typical offset termina-tion used to guarantee a greater than 200mV offset when a line is not driven. The 50pF represents the mini-mum parasitic capacitance which would exist in a typi-cal application. In most cases, more capacitance exists in the system and will reduce the magnitude of the glitch. During a “hot-swap ” event when the driver is connected to the line and is powered up, the driver must not cause the differential signal to drop below 200mV. Figures 11 and 12 show the results of the MAX3040–MAX3045 during power-up for two different V CC ramp rates (0.1V/µs and 1V/µs). The photos show the V CC ramp, the single-ended signal on each side of the 100Ωtermination, the differential signal across the termination, and shows the hot-swap line transient stays above the 200mV RS-485 specification.Operation of Enable PinsThe MAX3040–MAX3045 family has two enable-func-tional versions:The MAX3040/MAX3041/MAX3042B have two transmit-ter enable inputs EN12 and EN34. EN12 controls the transmitters 1 and 2, and EN34 controls transmitters 3and 4. EN12 and EN34 are active-high and the part will enter the low-power shutdown mode when both are pulled low. The transmitter outputs are high impedance when disabled (Table 2).The MAX3043/MAX3044/MAX3045B have two transmit-ter enable inputs EN and EN , which are active-high and active-low, respectively. When EN is logic high or EN is logic low all transmitters are active. When EN is pulled low and EN is driven high, all transmitters are disabled and the part enters the low-power shutdown mode. The transmitter outputs are high impedance when disabled (Table 3).Applications InformationTypical ApplicationsThe MAX3040–MAX3045 offer optimum performance when used with the MAX3093E/MAX3095 5V quad receivers or MAX3094E/MAX3096 3V quad differential line receivers. Figure 13 shows a typical RS-485 con-nection for transmitting and receiving data and Figure 14 shows a typical multi-point connection.±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 10______________________________________________________________________________________Figure 9. Simplified Structure of the Driver Enable Pin (EN)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters______________________________________________________________________________________11V CC 2V/div Y-Z(20mV/div)238mVY200mV/div Z200mV/div Figure 11. Differential Power-Up Glitch (0.1V/µs)V CC 2V/div Y-Z(5mV/div)238mVY50mV/div Z50mV/div 1µs/divFigure 12. Differential Power-Up Glitch (1V/µs)Figure 10. Differential Power-Up Glitch (Hot Swap)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 12______________________________________________________________________________________Typical Multiple-Point ConnectionFigure 14 shows a typical multiple-point connection for the MAX3040–MAX3045 with the MAX3095. Because of the high frequencies and the distances involved, high attention must be paid to transmission-line effects while using termination resistors. A terminating resistor (RT)is simply a resistor that should be placed at the extreme ends of the cable to match the characteristic impedance of the cable. When the termination resis-tance is not the same value as the characteristic impedance of the cable, reflections will occur as the signal is traveling down the cable. Although some reflections are inevitable due to the cable and resistor tolerances, large mismatches can cause significant reflections resulting in errors in the data. With this in mind, it is very important to match the terminating resis-tance and the characteristic impedance as closely as possible. As a general rule in a multi-drop system, termi-nation resistors should always be placed at both ends of the cable.Figure 13. Typical Connection of a Quad Transmitter and a Quad Receiver as a PairMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters13Pin Configurations (continued)Figure 12. Typical Connection for Multiple-Point RS-485 BusChip InformationTRANSISTOR COUNT: 545PROCESS: CMOSOrdering Information (continued)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/422Transmitters 14______________________________________________________________________________________Ordering Information (continued)Pin Configurations (continued)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersM axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。