离散型随机变量及其分布列分析
概率论与数理统计3.2 离散型随机变量及其分布律
(2)每次试验中事件 A 发生的概率相等, P( A) p
且 0 p1
则称这样的试验为n重伯努利(Bernoulli)试验
定理 (伯努利定理) 设在一次试验中,事件 A
发生的概率为 p(0 p 1), 则在 n 重贝努利
试验中,事件A恰好发生k次的概率为
P{ X
k}
C
k n
pk (1
解 设X:该学生靠猜测能答对的题数
则 X ~ B 5, 1
4
P至少能答对4道题 P X 4
P X 4 P X 5
C
4 5
1 4
4
3 4
1 5
4
1 64
某人进行射击,设每次射击的命中率 为0.02,独立射击400次,求至少击中 两次的概率。
称
pi P{ X xi } i 1,2,3,
为离散型随机变量X的概率分布或概率函数,也 称为分布列或分布律
表格形式
X x1 pi p1
x2 xn p2 pn
分布列的性质:
(1) pi 0 , k 1,2,
(2) pi 1
i
用这两条性质 判断一个函数 是否是分布律
解:将每次射击看成一次试验,设击中的次数 为X,则X~B(400,0.02),
P{ X
k}
C
k 400
(0.02)
k
(0.98)400
k
(k
0,1,2,..., 400)
所求概率为
P{X 2} 1 P{X 0} P{X 1}
1 (0.98)400 400(0.02)(0.98)399
离散型随机变量及分布列
离散型随机变量的分布列应注意问题:
X
P
x1
P1
x2
P2
…
…
xi
Pi
…
…
1、分布列的构成: (1)列出了离散型随机变量X的所有取值; (2)求出了X的每一个取值的概率; 2、分布列的性质:
(1)pi 0, i 1, 2,
(2) pi p1 p2 pn 1
离散型随机变量及其分布列
一、随机变量的概念:
我们把随机试验的每一个可能的结果都对应于一 数字来表示,这样试验结果的变化就可看成是这些数 字的变化。 若把这些数字当做某个变量的取值,则这个变量 就叫做随机变量,常用X、Y、x、h 来表示。
注意:有些随机试验的结果虽然不具有数量性质,但还是 可以用数量来表达,如在掷硬币的试验中,我们可以定义 “X=0,表示正面向上,X =1,表示反面向上”
(4)某品牌的电灯泡的寿命X; [0,+∞) (5)某林场树木最高达30米,最低是0.5米,则此林场 任意一棵树木的高度x. [0.5,30]
思考:前3个随机变量与最后两个有什么区别?
二、随机变量的分类:
1、如果可以按一定次序,把随机变量可能取的值一一 列出,那么这样的随机变量就叫做离散型随机变量。 (如掷骰子的结果,城市每天火警的次数等等) 2、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做连续型随机变量。 (如灯泡的寿命,树木的高度等等) 注意: (1)随机变量不止两种,我们只研究离散型随机变量; (2)变量离散与否与变量的选取有关; 比如:对灯泡的寿命问题,可定义如下离散型随机变量
按照我们的定义,所谓的随机变量,就是随机试验 的试验结果与实数之间的一个对应关系。那么,随机变量 与函数有类似的地方吗?
离散型随机变量及其分布列
教学设计一、教材分析概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。
“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是概率的延伸,也是学习统计学的理论基础,能起到承上启下的作用,是本章的关键知识之一。
引入随机变量的目的是研究随机现象发生的统计规律及所有随机事件发生的概率。
离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象,对随机变量的概率分布的研究,可以实现随机现象数学化的转化。
离散型随机变量的分布列反映了随机变量的概率分布,将实验的各个孤立事件联系起来,从整体上研究随机现象,也是为定义离散型随机变量的数学期望和方差奠定基础。
二、学情分析在必修三的教材中,学生已经学习了有关统计概率的基本知识在本书的第一章也全面学习了排列组合的有关内容,有了知识上的准备。
并且通过古典概型的学习,基本掌握了离散型随机变量取某些值时对应的概率,有了方法上的准备。
但并未系统化。
处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,在日常的学习中也培养了小组合作学习的好习惯,学生的动手能力运算能力也较好,但是个别同学基础上薄弱,处理抽象问题的能力还有待于提高。
三、教学目标从知识上,使学生能了解离散型随机变量的分布列,会求某些简单的离散型随机变量的分布列;从能力上,通过教学渗透“数学化”的研究思想,发展学生的抽象、概括能力;从情感上,通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学的“零距离”,从而激发学生学习数学的热情。
四、教学重难点学习重点:离散型随机变量的概念及其分布列的概念学习难点:离散型随机变量分布列的表示及性质五、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会。
本课以具体情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。
引导学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、解决问题的能力。
专题06 离散型随机变量及其分布列、数字特征(解析版)
06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。
2.1.2 离散型随机变量的分布列
2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。
离散型随机变量及其分布列-超几何分布
THANKS
感谢观看
离散型随机变量及其 分布列-超几何分布
目录
• 离散型随机变量 • 超几何分布 • 超几何分布的实例分析 • 超几何分布与其他分布的关系 • 超几何分布在统计学中的应用
01
离散型随机变量
定义与性质
定义
离散型随机变量是在一定范围内取有 限个值的随机变量,通常用大写字母 X表示。
性质
离散型随机变量的取值范围是离散的, 并且可以一一列举出来。
超几何分布考虑了总体和样本的有限性,以及样本中每个个 体被选中的概率不同等因素,因此能够更准确地描述实际情 况。在样本统计中,超几何分布的应用非常广泛,如样本均 值的分布、样本比例的分布等。
在决策理论中的应用
决策理论是统计学的一个重要分支,它涉及到如何根据已知的信息做出最优的决 策。超几何分布在决策理论中也有着广泛的应用。
彩Байду номын сангаас中奖概率分析
在彩票游戏中,如果彩票数量有限,且每个彩票中 奖的概率相同,可以使用超几何分布来计算中奖的 概率。
遗传学中的基因频率分析
在遗传学中,当研究一个种群中某一种基因 的频率时,可以使用超几何分布来描述该基 因在种群中的分布情况。
03
超几何分布的实例分析
实例一:彩票中奖概率
总结词
彩票中奖概率符合超几何分布,因为彩票的购买者数量是有限的,且每个彩票中奖的概 率相同。
详细描述
在彩票中奖概率的场景中,假设彩票池中有N张彩票,其中M张为中奖彩票。一个购买 者在购买彩票时,他中奖的概率即为M/N。这个概率不随他购买的彩票数量的增加而
改变,因此符合超几何分布。
实例二:有限总体抽样
总结词
在有限总体抽样中,每个样本被抽中的概率 是相等的,因此也符合超几何分布。
离散型随机变量及其分布列知识点
离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。
离散型随机变量可以用分布列来描述其概率分布特征。
离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。
其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。
离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。
2. 取值之间具有间隔或间距。
3. 每个取值对应一个概率,概率分布可用概率分布列来体现。
4. 概率之和为1。
离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。
其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。
其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。
3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。
其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。
总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。
掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。
§2.2离散型随机变量及其分布列
2.联合分布的性质
容易证明二维离散型随机变量的联合分布具有下面 的性质:
1)非负性: , ,
2)规范性: pij 1
ij
3.边际分布(边缘分布)
定义2.3.4 设( )为二维离散随机变量,它 们的每一个分量 的分布称为关于( )的边际分
布,记为
与
若( )的联合分布列为 P( ai ,, bj ) pij
5000k
这时如果直接计算P 5 ,计算量较大。由于n很大
,p较小,而np=5不很大 ,
可以利用 Poisson定理
P( 5)
1 P 5
1
5
5k 5 e
k0 k !Βιβλιοθήκη 查Poisson分布表得:
5
5k
5
e
0.616.
k0 k !
于是,
P 5 1 0.616 0.384
例2.2.7 由该商店过去的销售记录知道,某中商品 每月销售数可以用参数的Poisson分布来描述,为了 以95%以上的把握保证不脱销,问商店在月底至少 应进某种商品多少件?
布列中,要计算b(k;n,p)= Cnk p k q nk ,当n和k
都比较大时,计算量比较大。
若此时np 不太大(即p较小),那么由Poisson定理
就有
b(k;n;p) k e
k!
其中 np
k
而要计算
e
有Poisson分布表可查.
k!
例2.2.6. 已知某中疾病的发病率为1/1000,某单位共
P( k) Cnk pk qnk
k 1, 2,L , n
显然,(1) pk 0 k 1, 2,L , n
n
n
(2) pk
离散型随机变量的概念及分布列
3.几何分布 称ξ服从几何分布,并记g(k,p)=p·qk-1 在次独立重复试验中,某事件A第一次发生时所作的试 验次数ξ也是一个取值为正整数的随机变量。 “ξ =k”表 示在第k次独立重复试验时事件A第一次发生。如果把第 k次实验时事件A发生记为Ak, p( Ak )=p,那么
P( k) P( A1 A2 A3 AK1 Ak )
二、离散型随机变量的分布列
教学要求:理解并会求某些简单的离散型随机变量 的分布列;理解分布列的两个基本性质; 能根据分布列求事件的概率;理解与实 际相关的二项分布,二项分布是离散型 随机变量的最重要的分布之一。
教学重点:分布列的两个基本性质;理解二项分布。
引例: 抛掷一个骰子,设得到的点数为ξ ,则ξ可能取
1、定义 :如果随机试验的结果可以用一个变量来表示, 那么这样的变量叫做随机变量。随机变量常用 希腊字母 ξ、η等表示。
比如: 例1中,射击的命中环数ξ是一个随机变量 ξ =0, 表示命中0环 ξ =1, 表示命中1环
…… ξ =10,表示命中10环
问1:请你说明一下例2中的随机变量及它所表示的意义。 问2:抛一枚硬币,可能出现的结果能用随机变量表示吗?
由题知: η=
5 0 3 2( 3) 5 3
若 ξ是随机变量, η=a ξ+b, 其中 a , b 是常数, 则η也是随机变量。
例4: 写出下列各随机变量可能取的值,并说明随 机变量所取的值所表示的随机试验的结果
1)、五次天气预报中准确的次数ξ; 2)、一口袋中装有15个白球,5个黑球,每次任摸一 球,直到摸出的是黑球为止的次数;
1.定义:
一般地,设离散型随机变量ξ可能取的值为 x1,x2,…,xi,…, ξ取每一个值xi(i=1,2,…)的概率P( ξ =xi)=pi,则称表
第五节 离散型随机变量及其分布列
1.判断正误.(正确的画“√”,错误的画“×”)
(1)离散型随机变量是指某一区间内的任意值.(
)
答案:(1)×
(2)若随机变量X服从两点分布,则P(X=1)=1-P(X=0).
(
)
答案:(2)√
(3)超几何分布的总体里只有两类物品.
(
)
答案:(3)√
(4)从4名男演员和3名女演员中选出4人,其中女演员的人数X服从超几何分
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
①求2X+1的分布列;
②求随机变量η=|X-1|的分布列.
目录
(2)解 ①由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.
列表为
X
0
1
2
3
4
2X+1
1
3
5
7
9
2X+1
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
从而2X+1的分布列为
目录
ξ
-1
0
1
2
3
P
1
10
1
5
1
10
1
5
2
5
则下列各式正确的是
2
5
(
)
4
5
A.P(ξ<3)=
B.P(ξ>1)=
2
C.P(2<ξ<4)=
5
D.P(ξ<0.5)=0
目录
解析:C
1
1
1
1 3
1 2 3
离散型随机变量及其分布列
离散型随机变量及其分布列离散型随机变量是概率论中的一种重要概念。
它是指取有限或无限个数值的随机变量,其可能取值的集合是离散的。
离散型随机变量可以用分布列来描述其取值和对应的概率。
离散型随机变量的分布列是一个表格,其中包含了随机变量的所有可能取值和对应的概率。
这个表格可以用来表示离散型随机变量的分布情况。
每个取值对应的概率是该取值发生的可能性大小。
为了更好地理解离散型随机变量及其分布列,我们可以通过一个简单的例子来说明。
假设有一个掷硬币的实验,正面朝上记为1,反面朝上记为0。
这个实验的随机变量X可以取到的值只能是0或1,因此X是一个离散型随机变量。
通过多次实验,我们记录下了X的取值和对应的频率,得到如下的分布列:| X | 0 | 1 || :--: | :-: | :-: || P(X) | 0.4 | 0.6 |在这个例子中,分布列告诉我们当硬币扔出来后,有40%的可能性出现反面朝上,有60%的可能性出现正面朝上。
离散型随机变量的分布列具有以下性质:1. 所有可能取值的概率大于等于0:对于所有可能取值xi,P(X=xi)大于等于0。
2. 所有可能取值的概率之和为1:所有的概率值P(X=xi)的和等于1,即ΣP(X=xi) = 1。
离散型随机变量的分布列可以通过实验或者推理来确定。
在实验中,可以通过重复进行一定次数的实验,记录下随机变量的取值和对应的频率,从而近似估计出分布列。
在推理中,可以根据问题的给定条件和假设,利用概率论的理论和方法来推导出分布列。
离散型随机变量的分布列对于概率计算和统计分析非常重要。
通过分布列,可以计算出随机变量的期望、方差和其他重要统计量。
同时,分布列也可以用来描述随机变量的概率分布,从而进一步研究随机现象的规律和性质。
常见的离散型随机变量及其分布列有很多,例如二项分布、泊松分布、几何分布等。
这些分布在概率论、统计学和应用领域中都有广泛的应用。
对于每种离散型随机变量,都有其特定的分布列形式和计算方法。
离散型随机变量及其分布列
故 X 的分布列为
X
2
3
P
1 4
3 4
X 的数学期望为 E(X)=2×14+3×34=141.
X 0 10 20 50 60
P
1 3
2 5
1 15
2 15
1 15
某校高三年级某班的数学课外活动小组中有6名 男生,4名女生,从中选出4人参加数学竞赛考试,用 X表示其中的男生人数,求X的分布列.
解:依题意,随机变量 X 服从超几何分布, 所以 P(X=k)=Ck6CC41440-k(k=0,1,2,3,4). ∴P(X=0)=CC06C14044=2110,P(X=1)=CC16C14034=345,
P(X=2)=CC26C14024=37,P(X=3)=CC36C14014=281, P(X=4)=CC46C14004=114,∴X 的分布列为
考题 (2011·湖南高考)某商店试销某种商品20天,获得如
下数据: 日销售量(件) 0 1 2 3
频数
1595
试销结束后(假设该商品的日销售量的分布规律不变),设 某天开始营业时有该商品3件,当天营业结束后检查存货.若 发现存量少于2件,则当天进货补充至3件,否则不进货,将频 率视为概率.
(1)求当天商店不进货的概率; (2)记X为第二天开始营业时该商品的件数,求X的分 布列和数学期望.
【解】 (1)P(当天商店不进货)=P(当天商品销售量为 0
件)+P(当天商品销售量为 1 件)
=210+250=130.
(2)由题意知,X 的可能取值为 2,3. P(X=2)=P(“当天商品销售量为 1 件”)=250=14; P(X=3)=P(“当天商品销售量为 0 件”)+P(“当天商 品销售量为 2 件”)+P(“当天商品销售量为 3 件”)=210+ 290+250=34.
离散型随机变量的分布列,期望与方差
1、随机变量:
如果随机试验的结果可以用一个变量来表示, 那么这样的变量叫做随机变量.随机变量常用 希腊字母 ξ、η 等表示.
随机变量将随机事件的结果数量化.
问题:某人射击一次,可能出现哪些结果?
若设射击命中的环数为ξ, 则ξ是一个随机变量. ξ可取0,1,2,…,10. ξ=0,表示命中0环;
(1). pi 0, i 1,2,3,
(2). p1 p2 p3 1
例1、某一射手射击所得环数的分布列如下:
ξ 4 5 6 7 8 9 10
p 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手“射击一次命中环数≥7”的概 率
一般地,离散型随机变量在某一范围内的概 率等于它取这个范围内各个值的概率之和。
例1.设p是 非 负 实 数, 随 机 变 量的 概 率 分 布为
0
1
2
P
1 p 2
p
1 2
则E的 最 大 值 为______,D的 最 大 值 为______
例2.A、B是 治 疗 同 一 种 疾 病 的 两种 药 , 用 若 干 实 验 组 进 行 对 比 实 验 。每 个 试 验 组 由4个 小 白 鼠 组 成 , 其 中2只 服 用A, 另2只 服 用B, 然 后 观 察 疗 效 。 若 在 一 个 试 验 组中 , 服 用A有 效 的 小 白 鼠 的 只 数 比 服 用B有 效 的 多 , 就 称 该 试 验组 为 甲 类
写出ξ的分布列. 解: 随机变量ξ的可取值为 1,2,3.
当ξ=1时,即取出的三只球中的最小号码为1,则其它
两只球只能在编号为2,3,4,5的四只球中任取两只,故
有P(ξ=1)=
离散型随机变量及其分布列
离散型随机变量及其分布列如果随机试验每一个可能结果e ,都唯一地对应着一个实数X(e),则这个随着试验结果不同而变化的变量称为随机变量.随机变量通常用X ,Y…表示。
如果随机变量X 的所有取值都可以逐个列举出来,则称X 为离散型随机变量。
一般地,设离散型随机变量X 的可能取值为n x x x ,,,...21,其相应的概率为n p p p ,,,...21,记:)...2,1()(n i p x X P i i ,,===或把上式列成下表:上表或上式称为离散型随机变量X 的概率分布列(简称X 的分布列).离散型随机变量的分布列具有如下性质:(1)n i p i ,,,,...210=≥;(2)1...21=+++n p p p 【例题1】全班有40名学生,某次综合素质单项测评的成绩(满分5分)如下:现从该班中任选一名学生,用X 表示这名学生的单项测评成绩,求随机变量X 的分布列.【例题2】设随机变量X 的分布列为4,321)1()(,,,=+==k k k c k X P ,其中c 为常数,求2521(<<X P 的值。
【练习】1.写出下列各随机变量可能的取值,并说明随机变量的取值所表示的随机试验的结果:(1)将10个质地、大小一样的球装入袋中,球上依次编号1~10,现从袋中任取1个球,被取出的球的编号为X;(2)将15个质地、大小一样的球装入袋中,其中10个红球,5个白球,现从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和为X.2.用X表示某人进行10次射击击中目标的次数,分别说明下列随机事件的含义.(1){X=8};(2){1<X≤10};(3){X≥1};(4){X<1}3.离散型随机变量X的分布列如下表所示,求p的值4.将6个质地、大小一样的球装入袋中,球上依次编号1~6.现从中任取3个球,以X表示取出球的最大号码,(1)求X的分布列;(2)求X>4的概率.两点分布如果随机变量X 只取值0或1,且其概率分布是)1,0(1)0(,)1(∈-====p p X P p X P ,则称随机变量X 服从两点分布,记作:)1(~p B X ,两点分布又称0-1分布,是我们在现实生活中经常会遇到的一种分布,例如,检查产品是否合格,投篮是否命中,一粒种子是否发芽,等等,当只考虑成功与否时,都可以用服从两点分布的随机变量米描述。
离散型随机变量及其分布列
某射击运动员在射击训练中,其中某次射击可 某射击运动员在射击训练中, 能出现命中的环数情况有哪些? 能出现命中的环数情况有哪些? (0环、1环、2环、···、10环)共11种结果
问题 2
某纺织公司的某次产品检验,在可能含有次品 某纺织公司的某次产品检验, 的100件产品中任意抽出4件,那么其中含有的次 品数可能是哪几种结果? 品数可能是哪几种结果? (0件、1件、2件、3件、4件)共5种结果
连 续 型
某人去商场为所在公司买玻璃水杯若干只, 某人去商场为所在公司买玻璃水杯若干只, 公司要求至少要买50只,但不得超过80 只.商场有优惠规定:一次购买这种小于或等 商场有优惠规定: 于50只不优惠,大于50只的,超出部分按原价的7折 只不优惠, 只的, 优惠,已知原来的水杯价格是每只6元.这个人一次 优惠, 购买水杯的只数 ξ 是一个随机变量,那么他所付的款 是一个随机变量, 额是否也是一个随机变量呢?这两个随机变量有什么 额是否也是一个随机变量呢? 关系? 关系?
中 a 、是常数) b 是常数)
写出下列各随机变量可能的取值,并说明随机变量所取值所表 写出下列各随机变量可能的取值, 示的随机试验的结果: 示的随机试验的结果: (1)从10张已编号的卡片(从1号到10号)中任取1张, 张已编号的卡片( 被取出的卡片的号数 ξ . ( ξ =1、2、3、···、10)
一、随机变量
1、பைடு நூலகம்义
随机试验的结果可以用一个变量来表示,则称此 随机试验的结果可以用一个变量来表示, η等表示﹒ 变量为随机变量,常用 ξ 、等表示﹒ 变量为随机变量,
2、随机变量的分类 ①离散型随机变量: ξ 的取值可一一列出 离散型随机变量: ②连续型随机变量: ξ 可以取某个区间内的一切值 连续型随机变量: 3、随机变量的运算 若 ξ 是随机变量,则 η = aξ + b 也是随机变量. (其 是随机变量, 也是随机变量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散型随机变量
1.试验与随机试验
凡是对现象的观察或为此而进行的实验,都称之为试验,一个试验如果满足下述条件:
(1)试验可以在相同的情形下重复进行;
(2)试验的所有可能结果是明确可知的,并且不止一个;
(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验
会出现哪一个结果.
它就被称为一个随机试验.
2.随机变量
(1)随机变量的定义
在随机试验的结果与实数之间,自然地或人为地建立起一种对应关系,使每一个可能的结果都对应着一个实数,那么随机试验的结果就可以用取值为这些实数的一个变量来表示,这个变量叫随机变量,随机变量常用希腊字母X、Y、ξ、η等表示.
(2)离散型随机变量
如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
(3)若ξ是一个随机变量,a、b是常数,则η=aξ+b也是一个随机变量.注意掌握这一点,对于某些问题的解决往往会有比较直接的帮助.
一般地,若ξ是随机变量,f(x)是连续函数或单调函数,则f(ξ)也是随机变量.也就是说,随机变量的某些函数也是随机变量.
3.随机变量的理解
随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果所对应的数,但这些数是预先知道的所有可能的值,而不知道究竟是哪一个值,这便是“随机”的本源.
题型一随机变量的概念
例1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.
(1)某人射击一次命中的环数;
(2)任意掷一枚均匀硬币5次,出现正面向上的次数;
(3)投一颗质地均匀的骰子出现的点数(最上面的数字);
(4)某个人的属相随年龄的变化.
探究1解答本类题目的关键在于分析变量是否满足随机试验的结果,预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.
思考题1 将一颗骰子掷两次,不能作为随机变量的是( )
A.两次点数之和
B.两次点数差的绝对值
C.两次的最大点数
D.掷骰子的次数
题型二离散型随机变量的判定
例2指出下列随机变量是否是离散型随机变量,并说明理由:
(1)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数;
(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;
(3)郑州至武汉的电气化铁道线上,每隔50 m有一电线铁塔,从郑州至武汉的电气化铁道线上将电线铁塔进行编号,而其中某一电线铁塔的编号ξ;
(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.
规律解答此类问题的关键是掌握离散型随机变量的关键点是可以“一一罗列出”,这就说明试验的结果是有限的,这点是区别于非离散型随机变量的关键.
探究2 离散型随机变量和连续型随机变量都是用来刻画随机试验所出现的结果的,它们的区别是:对于离散型随机变量,能将它的可能取值按次序一一列出,而连续型随机变量可取某一区间内的一切值,我们无法对其中的值一一列举.
思考题2判断下列变量是不是随机变量,如果是,判断该随机变量是不是离散型随机变量.
(1)2013年世乒赛,从开幕到闭幕的总天数;
(2)京广高速公路某收费站在一天内经过的车辆数;
(3)北京市在国庆节这一天的温度数;
(4)某小朋友在明天一天内的洗手次数.
题型三随机变量的取值及表示的事件
例3 写出下列各随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;
(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;
(3)投掷两枚骰子,所得点数之和为X,所得点数之和是偶数Y.
探究3随机变量把随机试验的结果映为实数.试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.
思考题3抛掷两枚骰子,所得点数之积记为ξ,那么ξ=4表示的随机试验结果是( ) A.2枚都是4点
B.1枚是1点,另1枚是4点
C.2枚都是2点
D.1枚是1点,另1枚是4点,或者2枚都是2点
离散型随机变量的分布列
1.(1)分布列的定义
设离散型随机变量X 可能取的值为,,...,...,,21n i x x x x X 取每一个值i x (i =1,2,…,n)的概率P(X =i x )=i p ,则称表
为离散型随机变量X 的概率分布列,简称X 的分布列.
(2)分布列的性质
由概率的性质可知,任一离散型随机变量的分布列都具有下面两个性质: ①i p 0,(i =1,2,3,…,n); ②
∑=n i i p 1 = .
2.两个特殊分布列
(1)两点分布列
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称P(X =1)= 为成功概率.
(2)超几何分布列
在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X =k}发生的概率为P(X =k)= ,k =0,1,2,…,m ,其中m =min{M ,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*.称分布列
为超几何分布列.此时称随机变量X 服从超几何分布.
几点说明:
1.离散型随机变量的分布列
(1)离散型随机变量分布列不仅能清楚地反映其所取的一切可能值,而且能清楚地看到取每个值时所对应概率的大小,反映了随机变量在随机试验中取值的分布情况,是以后学习均值和方差的基础.
(2)一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.
2.两点分布列
两点分布列是一种比较特别的分布列,它反映出随机试验的结果只有两种可能,且其概率和为1.两点分布能清晰的反应出事件的正反两面.
3.超几何分布列
超几何分布列给出了一类用数学模型解决的问题,对该类问题直接套用公式即可.但在
解决相关问题时,首先确定随机变量X是否服从超几何分布.应用超几何分布时要找准N、M和n.
题型一求离散型随机变量的分布列
例1一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号码,写出随机变量ξ的分布列.
探究1 求离散型随机变量的分布列的步骤:
(1)找出随机变量所有的可能值X i(i=1,2,3,…,n);
(2)求出相应的概率P(X=X i)=P i(i=1,2,3,…,n);
(3)列成表格形式.
解决此类问题的关键是根据题设条件找到X的可能取值,再利用概率的有关知识求出相应的概率,最后根据分布列的定义写出分布列并利用性质检验分布列的正确性.
思考题1将一颗骰子掷两次,求出两次掷出的最大点数X的分布列.
题型二 离散型随机变量分布列的性质
例2 设随机变量ξ的分布列P (ξ=k 5
)=ak (k =1,2,3,4,5). (1)求常数a 的值;
(2)求P (ξ≥35
); (3)求P (110<ξ<710
).
探究2 要充分注意到分布列的两条重要的性质:
(1)p i ≥0,i =1,2,…;
(2)p 1+p 2+…+p n =1.它是离散型随机变量的分布列所必须要遵循的原则.
思考题2 若离散型随机变量X 的分布列为 X
0 1 P
9c 2-c 3-8c
试求出常数c 的值.
题型三 两点分布问题
例3 一个盒子中装有5个白色玻璃球和6个红色玻璃球,从中摸出两球,记
X =⎩⎪⎨⎪⎧ 0 两球全红 ,1 两球非全红 ,求X 的分布列.
探究3 两点分布中只有两个对应的结果,随机变量的取值必须是0与1,否则,不是两点分布.
思考题3 若随机变量X 只能取两个值x 1和x 2,又知ξ取x 1的概率是取x 2的概率的3倍,写出ξ的分布列,并说明是不是两点分布?
题型四 超几何分布
例4 设10件产品中,有3件次品,7件正品,现从中抽取5件,求抽得次品件数ξ的分布列.
探究4 如何求超几何分布:一般地,设有总数为N 件的两类物品,其中一类有n 件,从所有物品中任取M 件(M ≤N ),这M 件中所含这类物品件数X 是一个离散型随机变量,它取值为
m 时的概率为P (X =m )=C m n C M -m N -n C M N
①(0≤m ≤L ,L 为n 和M 中较小的一个),则称离散型随机变量X 的这种形式的概率分布为超几何分布,也称Z 服从参数为N ,M ,n 的超几何分布,在超几何分布中只要知道N ,M 和n ,就可以由①求出Z 取不同值时的概率,从而得到Z 的分布列.
思考题4 设有产品100件,其中有次品5件,正品95件,现从中随机抽取20件,求抽得次品件数ξ的分布列.。