水传递实例-2016
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 Water Management- Requirement of PEM hydration
Loading
H+
Proton current H 2 O …H + Humidified H2
Water electro-osmotic drag
H2 O
Produce water
Water diffusion
40%
Nafion 211 Pristine Nafion Nafion/Pt-LDHs
4 3 2 1 0 0.0 0.1 0.2 0.3 0.4
-2
Nafion 211 Pristine Nafion Nafion/Pt-LDHs
3000
Current density (mA cm )
-2
4000
Proton recombination Produce water
Anode
Nafion membrane
Cathode
2.2.1 Water Diffusion Rate Limiting Transport Process
Cathode Anode Water Flux k0 (aW aW )
• Difficult to be balanced in FC operations
Water Management Influence greatly on the performance of FCs
• Ohmic resistance both in membrane and in CL • Higher the contact resistance between CL and membrane • Drying out of membrane close to anode side
Desorption
~10-7 cm2/s
Problem: Diffusivity varies with aw and T
21
Water Self-Diffusion Probed by PG-SE NMR
•Captures random-walk of water in the membrane on molecular level •Sensitive to local environment in confined geometries.
Nafion112:50um, Nafion115:125um,
方法一:提高反扩散速度
措施2:提高阴阳两极的压差
需要平衡:膜的机械强度,阴极顺利排水
王诚,毛宗强,徐景明等,电源技术,2003,27(5):413-418.
方法一:提高反扩散速度
措施2:提高阴阳两极的压差
需要平衡:膜的机械强度,阴极顺利排水
Transport of water by diffusion Transport of water by electro-osmotic drag (EOD)
Loading H+
Proton generation
Humidified H2
Proton current H2O…H+ Water electro-osmotic drag H2 O Water diffusion
方法一:提高反扩散速度
措施3:亲水-疏水电极 • 阴极疏水,阳极亲水 • SiO2表面亲水、保水能 力很强,还能加强质子交 换膜与电极的结合力,促 进催化层与质子交换膜间 的质子、水的交换。
王诚,毛宗强,徐景明等,中国科学G辑,2003,33(2):132-138.
方法二:膜中原位生成少量水
质子交换膜中夹带少量电催化剂
Three steps • Sorption into membrane from feed • Diffusion across membrane • Desorption from membrane
Steady State Permeation
19
Majsztrik, et al. J. Phys. Chem. B (2008).
• Water flooding in cathode CL, deteriorating catalytic activation
• Dilution of reactants, difficult to maintain high RH at high temp • Liquid water causing un-uniform distribution of reactant gas in
• External humidification • Auto-humidification • Removing water to avoid flooding problem
• 有源增湿 需要从外界提供水源,多用于大型电池。 * 外部增---直接增湿法、间接增湿法、水蒸气注射法等 * 内部增湿 • 无源增湿(自增湿) 电池自身产物水是增湿的唯一水源,在微型电池大有应用。 * 膜的自增湿 * 扩散层 * 双极板
• 有源增湿 * 外部增湿---间接增湿法
70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 -1000
Nafion212
180 160
50 45
干气出口露点温度 饱 和湿气温度 干气,饱 和湿空气流 量
nafion膜 增湿器 PDMS/PP复合膜 增湿器
Simple model for water permeation 1. Based on Fick’s law
Water Flux k0 (a f ad )
Water Flux k f (a f am, f )
DC ( am , f am , d ) l d (ln aw ) or DC dx
* 双极板(流道)
①改变流道形状或流动方向
•阴阳极逆流进气;
•强制流动,提高水被带出量
②双极板两侧流道上铺设亲水 条(滤纸、玻璃纤维等)
③结构优化
阴极水循环回阳极
阴极反应区6生成的水被亲水区5吸收,穿过膜后,进入 阳极相应的反应区,实现水的循环。
2.2 Example of Water Transport in PEM i Cathode Anode Water Flux k 0 (a W aW ) F
Pressure driven
Anode
Nafion membrane Cathode
• Requirement of PEM hydration, research from 1950’s GE Co. • Water transport through:
– Electro-osmotic drag (EOD, electric field driven), anode to cathode – Back diffusion, cathode to anode (Concentration driven) – Hydraulic flow, high pressure to low (Pressure driven)
kd (am,d ad )
Assuming diffusivity= const. Simple Fick’s diffusion model is not enough!
activity dependent diffusivity activity dependent “porosity” interfacial mass transport BCs
2000
3000
-2
4000
0
1000
2000
3000
-2
4000
Current density (mA cm )
Current density (mA cm )
Nafion 211、pristine Nafion和Nafion/Pt-LDHs的极化曲线(干气)
阻气:Nafion/Pt-LDHs显著提高OCV 超低电阻:减少欧姆损失
有源增湿 * 外部增湿---直接增湿法
humidifiers
Temperature stabilizers Permeation cell • • • • • 气体与水(气或液)直接接触(鼓泡法、混合法等) 操作简单,适合实验室 增湿器须外部供热 相对湿度受增湿温度控制 气速大时,容易造成液沫夹带,以及增湿不足
缺点:
• 电化学反应向膜内移动, 方法 容易导致反应气体短路。 • 真空溅射Pt • 超声分散Pt/SiO2、Pt/LDHs等
Nafion/Pt-LDHs的电池性能
0.8 0.6
Voltage (V)
Voltage (V)
Nafion/Pt-LDHs (8.9µ m) Pristine Nafion Nafion 211(25 µ m) Nafion/Pt-LDHs Pristine Nafion (8.9 µ m)
140
空气流 量( l/min)
温度( ℃)
120 100 80 60 40
40
温度( ℃)
2m3/h
35 30 25
4m3/h 6m3/h 8m /h
3
20 15
10m3/h
20 0 1000 2000 3000 4000 5000 6000 7000
10 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
时 间
时 间
• 有源增湿
* 内部增湿
内增湿电池组
无源增湿(自增湿) 电池产物水是增湿的唯一水源
正常工作 阴极
水浓度梯度
阳极
(1) 膜的自增湿
方法一:提高反扩散速度
措施1:减薄质子交换膜的厚度 原理:提高水反扩散的浓度梯度 代价:膜的机械强度降低
生成水
反扩散
H2O
电渗作用
H2O/H+
质子交换膜
质子交换膜燃料电池中的水迁移
Nafion 211
0.8 0.6 0.4 0.2 0.0
Nafion 211 Pristine Nafion Nafion/Pt-LDHs
Nafion/Pt-LDHs (8.9µ m)
0.4 0.2 0.0
Pristine Nafion (8.9 µ m)
Nafion 211(25 µ m)
0
1000
20Байду номын сангаас
(1) In membrane
1) Diffusivity Measuring Water Diffusion in Nafion
Method NMR Permeation Adsorption Diffusivity 10-5–10-6 cm2/s 10-6–10-7 cm2/s ~10-8 cm2/s Comment Self-diffusion No gradient or interfacial effects Gradient effects present Interfacial contributions Dynamic Solvation, Structural Changes, swelling
• 无源增湿(自增湿)
电池自身产物水是增湿的唯一水源
* 扩散层
提高过水能力,减少液态水存量,防止阴极水淹 。 ①增大孔隙率(大孔排水,小孔走气) 或 孔隙率梯度(提高毛细压力差)
扩散层
②在催化层和扩散层基质之间增加水管理层
•水管理层 (WML) : PTFE粉 末和纳米碳粉混合分散在扩散 层基体上,从电池的进口到出 口的组成结构呈梯度递减分布。 •阴极进出口的相对湿度较均匀, 防止进口膜易被吹干、出口易 被水淹。
GDL, higher the mass transport resistance
• Local liquid water drops swelling excessively of partial membrane
Water Management
Strategies of water management
R. Wang, et al. J mater. chem. A, 2014, 2(39): 16416
Nafion/Pt-LDHs的电池性能
1200
5
Power density (mW cm )
-2
1000 800 600 400 200 0 0 1000 2000
Current density (mA cm )
0.5
0.6
0.7
Potential (V)
Nafion 211、pristine Nafion和Nafion/Pt-LDHs的极化曲线(干气)
增湿:延缓高电密区域阳极过干 无机复合:减少氢气渗透
R. Wang, et al. J mater. chem. A, 2014, 2(39): 16416
Loading
H+
Proton current H 2 O …H + Humidified H2
Water electro-osmotic drag
H2 O
Produce water
Water diffusion
40%
Nafion 211 Pristine Nafion Nafion/Pt-LDHs
4 3 2 1 0 0.0 0.1 0.2 0.3 0.4
-2
Nafion 211 Pristine Nafion Nafion/Pt-LDHs
3000
Current density (mA cm )
-2
4000
Proton recombination Produce water
Anode
Nafion membrane
Cathode
2.2.1 Water Diffusion Rate Limiting Transport Process
Cathode Anode Water Flux k0 (aW aW )
• Difficult to be balanced in FC operations
Water Management Influence greatly on the performance of FCs
• Ohmic resistance both in membrane and in CL • Higher the contact resistance between CL and membrane • Drying out of membrane close to anode side
Desorption
~10-7 cm2/s
Problem: Diffusivity varies with aw and T
21
Water Self-Diffusion Probed by PG-SE NMR
•Captures random-walk of water in the membrane on molecular level •Sensitive to local environment in confined geometries.
Nafion112:50um, Nafion115:125um,
方法一:提高反扩散速度
措施2:提高阴阳两极的压差
需要平衡:膜的机械强度,阴极顺利排水
王诚,毛宗强,徐景明等,电源技术,2003,27(5):413-418.
方法一:提高反扩散速度
措施2:提高阴阳两极的压差
需要平衡:膜的机械强度,阴极顺利排水
Transport of water by diffusion Transport of water by electro-osmotic drag (EOD)
Loading H+
Proton generation
Humidified H2
Proton current H2O…H+ Water electro-osmotic drag H2 O Water diffusion
方法一:提高反扩散速度
措施3:亲水-疏水电极 • 阴极疏水,阳极亲水 • SiO2表面亲水、保水能 力很强,还能加强质子交 换膜与电极的结合力,促 进催化层与质子交换膜间 的质子、水的交换。
王诚,毛宗强,徐景明等,中国科学G辑,2003,33(2):132-138.
方法二:膜中原位生成少量水
质子交换膜中夹带少量电催化剂
Three steps • Sorption into membrane from feed • Diffusion across membrane • Desorption from membrane
Steady State Permeation
19
Majsztrik, et al. J. Phys. Chem. B (2008).
• Water flooding in cathode CL, deteriorating catalytic activation
• Dilution of reactants, difficult to maintain high RH at high temp • Liquid water causing un-uniform distribution of reactant gas in
• External humidification • Auto-humidification • Removing water to avoid flooding problem
• 有源增湿 需要从外界提供水源,多用于大型电池。 * 外部增---直接增湿法、间接增湿法、水蒸气注射法等 * 内部增湿 • 无源增湿(自增湿) 电池自身产物水是增湿的唯一水源,在微型电池大有应用。 * 膜的自增湿 * 扩散层 * 双极板
• 有源增湿 * 外部增湿---间接增湿法
70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 -1000
Nafion212
180 160
50 45
干气出口露点温度 饱 和湿气温度 干气,饱 和湿空气流 量
nafion膜 增湿器 PDMS/PP复合膜 增湿器
Simple model for water permeation 1. Based on Fick’s law
Water Flux k0 (a f ad )
Water Flux k f (a f am, f )
DC ( am , f am , d ) l d (ln aw ) or DC dx
* 双极板(流道)
①改变流道形状或流动方向
•阴阳极逆流进气;
•强制流动,提高水被带出量
②双极板两侧流道上铺设亲水 条(滤纸、玻璃纤维等)
③结构优化
阴极水循环回阳极
阴极反应区6生成的水被亲水区5吸收,穿过膜后,进入 阳极相应的反应区,实现水的循环。
2.2 Example of Water Transport in PEM i Cathode Anode Water Flux k 0 (a W aW ) F
Pressure driven
Anode
Nafion membrane Cathode
• Requirement of PEM hydration, research from 1950’s GE Co. • Water transport through:
– Electro-osmotic drag (EOD, electric field driven), anode to cathode – Back diffusion, cathode to anode (Concentration driven) – Hydraulic flow, high pressure to low (Pressure driven)
kd (am,d ad )
Assuming diffusivity= const. Simple Fick’s diffusion model is not enough!
activity dependent diffusivity activity dependent “porosity” interfacial mass transport BCs
2000
3000
-2
4000
0
1000
2000
3000
-2
4000
Current density (mA cm )
Current density (mA cm )
Nafion 211、pristine Nafion和Nafion/Pt-LDHs的极化曲线(干气)
阻气:Nafion/Pt-LDHs显著提高OCV 超低电阻:减少欧姆损失
有源增湿 * 外部增湿---直接增湿法
humidifiers
Temperature stabilizers Permeation cell • • • • • 气体与水(气或液)直接接触(鼓泡法、混合法等) 操作简单,适合实验室 增湿器须外部供热 相对湿度受增湿温度控制 气速大时,容易造成液沫夹带,以及增湿不足
缺点:
• 电化学反应向膜内移动, 方法 容易导致反应气体短路。 • 真空溅射Pt • 超声分散Pt/SiO2、Pt/LDHs等
Nafion/Pt-LDHs的电池性能
0.8 0.6
Voltage (V)
Voltage (V)
Nafion/Pt-LDHs (8.9µ m) Pristine Nafion Nafion 211(25 µ m) Nafion/Pt-LDHs Pristine Nafion (8.9 µ m)
140
空气流 量( l/min)
温度( ℃)
120 100 80 60 40
40
温度( ℃)
2m3/h
35 30 25
4m3/h 6m3/h 8m /h
3
20 15
10m3/h
20 0 1000 2000 3000 4000 5000 6000 7000
10 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
时 间
时 间
• 有源增湿
* 内部增湿
内增湿电池组
无源增湿(自增湿) 电池产物水是增湿的唯一水源
正常工作 阴极
水浓度梯度
阳极
(1) 膜的自增湿
方法一:提高反扩散速度
措施1:减薄质子交换膜的厚度 原理:提高水反扩散的浓度梯度 代价:膜的机械强度降低
生成水
反扩散
H2O
电渗作用
H2O/H+
质子交换膜
质子交换膜燃料电池中的水迁移
Nafion 211
0.8 0.6 0.4 0.2 0.0
Nafion 211 Pristine Nafion Nafion/Pt-LDHs
Nafion/Pt-LDHs (8.9µ m)
0.4 0.2 0.0
Pristine Nafion (8.9 µ m)
Nafion 211(25 µ m)
0
1000
20Байду номын сангаас
(1) In membrane
1) Diffusivity Measuring Water Diffusion in Nafion
Method NMR Permeation Adsorption Diffusivity 10-5–10-6 cm2/s 10-6–10-7 cm2/s ~10-8 cm2/s Comment Self-diffusion No gradient or interfacial effects Gradient effects present Interfacial contributions Dynamic Solvation, Structural Changes, swelling
• 无源增湿(自增湿)
电池自身产物水是增湿的唯一水源
* 扩散层
提高过水能力,减少液态水存量,防止阴极水淹 。 ①增大孔隙率(大孔排水,小孔走气) 或 孔隙率梯度(提高毛细压力差)
扩散层
②在催化层和扩散层基质之间增加水管理层
•水管理层 (WML) : PTFE粉 末和纳米碳粉混合分散在扩散 层基体上,从电池的进口到出 口的组成结构呈梯度递减分布。 •阴极进出口的相对湿度较均匀, 防止进口膜易被吹干、出口易 被水淹。
GDL, higher the mass transport resistance
• Local liquid water drops swelling excessively of partial membrane
Water Management
Strategies of water management
R. Wang, et al. J mater. chem. A, 2014, 2(39): 16416
Nafion/Pt-LDHs的电池性能
1200
5
Power density (mW cm )
-2
1000 800 600 400 200 0 0 1000 2000
Current density (mA cm )
0.5
0.6
0.7
Potential (V)
Nafion 211、pristine Nafion和Nafion/Pt-LDHs的极化曲线(干气)
增湿:延缓高电密区域阳极过干 无机复合:减少氢气渗透
R. Wang, et al. J mater. chem. A, 2014, 2(39): 16416