8.2用加减消元法解二元一次方程组

合集下载

人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组

人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
1.教学重点
-理解消元的概念及其在解二元一次方程组中的应用;
-掌握通过加减法对二元一次方程组进行消元的具体步骤;
-学会运用加减消元法求解二元一次方程组,并能够正确验证结果;
-能够将实际问题转化为二元一次方程组,运用加减消元法解决问题。
举例说明:
(1)对于方程组:
\[
\begin{cases}
2x + 3y = 8 \\
在学生小组讨论的过程中,我也注意到有些小组在讨论时偏离了主题,这可能是因为他们对讨论的主题理解不够深入。为了改善这一点,我计划在今后的教学中,加强对学生讨论方向的引导,确保他们的讨论能够紧扣主题,提高讨论的效率。
-在验证解时,确保代入原方程组中的每个方程都满足,以避免漏解或多解。
举例说明:
(1)对于方程组:
\[
\begin{cases}
5x + 3y = 16 \\
3x - 5y = 23
\end{cases}
\]
学生可能会难以确定如何消去变量,需要指导他们通过乘以适当的数来调整系数,如将第一个方程乘以3,第二个方程乘以5,得到:
x - y = 2
\end{cases}
\]
然后应用加减消元法求解。
2.教学难点
-理解消元的本质,即如何通过变换使方程组中的某个变量的系数相同或互为相反数;
-在进行加减消元时,正确选择相加或相减的方程,避免计算错误;
-在消元过程中,注意保持等式两边的平衡,避免出现计算错误;
-对于系数不是整数倍的方程组,如何通过乘以适当的数使得系数相同或互为相反数;
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
一、教学内容
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组

8.2二元一次方程组的解法(加减消元)

8.2二元一次方程组的解法(加减消元)

5x 6
(4)
x

1
y
5 6

7
y
3 2
解:(1)xy

11(2)xy

3 2
(3)xy

8 x 4(4) y

11 2
14

3
(1)已知关于x、y的方程组( nmx mn)yx6y 5
的解是xy
1,求m, 2

y

2
,所用的消元法是 加减消元法 ,首先用①
Байду номын сангаас
减去 ②,求出 x ,再求出 y 。
2. 解方程组:
(1)22xx

5y 3y

7 1
(3) x
3
y

x
2
y

6
3(x y) 2(x y) 28
(2)32xx

3y 4y

12 17
∴ x y2 x y3 12 33 28
甲、乙两人同解方程组
Ax Cx

By 3y

2 2,
甲正确解得 xy

11,乙抄错C,解得xy

2 ,
6
求A、B、C的值。
(1)解三元一次方程组:
x z 4 (1)z 2 y 1
n的值。
解:将xy
12代入方程组得2mmnn3
, 6
解得:
m 3 n 0
(2)若22000054xx

2005 2004
y y

2003 ,
2006

七年级下册数学8.2解二元一次方程组 加减消元法

七年级下册数学8.2解二元一次方程组 加减消元法

23 y 35
y 12
y 12
误区一 用加减法消元时符号出错
1.解二元一次方程组4x 4 x源自 7 5y y
19,用加减法
17.
消去x,得到的方程是( )
A.2y=-2
B.2y=-36
C.12y=-36
D.12y=-2
错 解 A或B或D
正解 C
错因分析 当二元一次方程组的两个方程 中的某个未知数的系数相等时用减法消元, 当减数是负数时,注意符号不要出错.
5y) 2y)
3.6 , 8.
问题3 如何解这个方程组?
(2 2x 5y) 3.6, (5 3x 2y) 8.
解:化简得:
4x 10y 3.6, ① 15x 10y 8. ②
② - ①,消y 得
11x 4.4,
解得
代入①,解y
4 0.4 10 y 3.6 y 0.2 .
追问1 两个方程加减后能够实现消元的前提条 件是什么?
两个二元一次方程中同一未知数的系数相 反或相等.
追问2 加减的目的是什么? “消元”
追问3 关键步骤是哪一步?依据是什么? 关键步骤是两个方程的两边分别相加或相减,
依据是等式性质.
问题4 追问1
如何用加减消元法解下列二元一次方程组?
3x 4y 16, 5x 6y 33.
解:(2)整理得 82u4u9v25v6,①14.②①×3-②,得
2v=4.解得v=2.把v=2代入①,得8u+18=6.
解得
u


32.∴这个方程组的解为
u 3, 2 v 2.
课堂小结
加减消元法
条件:方程组中同一个未知数 的系数的绝对值相等或 成整数倍

8.2解二元一次方程组加减消元法(三)

8.2解二元一次方程组加减消元法(三)
数 学
新课标(RJ) 数学 七年级下册
8.2 消元——解二元一次方程组
加减消元法(三)
8.2
消元——解二元一次方程组
教材重难处理
教材【第111页第3题的第(2)小题】分层分析
2 ( x - y ) x + y - =-1,① 3 4 解方程组: 6(x+y)-4(2x-y)=16.②
[分析] (1)方程①去分母、去括号、合并同类项,得形如 a1x +b1y=c1 的方程:
5x-11y ____________ =-12.③
8.2
消元——解二元一次方程组
(2)方程②去括号、合并同类项、化简,得形如 a2x+b2y=c2 的方程:
-x+5y _______________ =8.④ 28 .解得 y=______ 2 . (3)③+④×5,得 14y=______ 2 2 代入方程④,解得 x=______ (4)将 y=______ . 2 , x= 2 所以原方程组的解是 2 y= 2 W . a1x+b1y=c1, a2x+b2y=c2 (5) 这类方程组需要先整理成形如 __________________ 的方
8.2
消元——解二元一次方程组
解:设灌溉用井打 x 口,生活用井打 y 口.由题意,得
x+y=58, 4x+0.2y=80, x=18, 解这个方程组,得 y=40,
答:灌溉用井和生活用井各打18口和40口. [归纳总结] 找出等量关系,构建方程组模型,是解决实际问
题的一种常用方法.
方程组
3x 5 y m 2 ① 2 x 3 y m
的解也是方
程 x y 8 的解,求m的值 解:①-②得: x 2y 2 ③

课题: 8.2 用加减法解二元一次方程组(2)

课题: 8.2  用加减法解二元一次方程组(2)
x y 3
3 1 x y 1 ⑥ 2 2 2 x y 3
2.运输 360t 化肥,装载了 6 节火车车厢和 15 辆汽车;运输 440t 化肥,装载了 8 节火车车厢和 10 辆汽车。每节火车车厢与每辆汽车平均各装多少吨化肥?
课题: 8.2 用加减法解二元一次方程组(2)
学习目标: 1. 熟练运用加减消元法解二元一次方程组。 2. 体会解二元一次方程组的基本思想---“消元” . 学习重难点: 重点:初步体验加减消元法解二元一次方程组.难点:会灵活运用加减法解二元一次方程组
导学指导
温故而知新
x 2 y 9 用消元法解方程组 3x 2 y 1
思考:你能用消元法解下面这个方程组吗? ................
2a 3b 2 解方程组 5a 2b 5
小结: 加减消元法的步骤: ① 将原方程组的两个方程化为有一个未知数的系数_____________的两个方程。 ② 把这两个方程____________,消去一个未知数。 ③ 解得到的___________方程。 ④ 将求得的未知数的值代入原方程组中的任意一个方程,求另一个未知数的值。 ⑤确定原方程组的解。 独立合作相结合 例题 3 用加减法解方程组
要点归纳 本节课你有哪些收获

解方程组得: 答: 展示反馈 1.用加减消元法解下列方程组
3x 2 y 13 ① 5 x 3 y 9

5 x 2 y 25 3x 4 y 15

2 x 5 y 8 3x 2 y 5

2 x 3 y 6 3x 2 y 2
3x 4 y 16 5 x 6 y 33

8.2消元——解二元一次方程组加减消元法解二元一次方程组(2)2024学年人教版数学七年级下册

8.2消元——解二元一次方程组加减消元法解二元一次方程组(2)2024学年人教版数学七年级下册
2



解第
方八
程章



加减消元法
3 + 5 = 21
2 − 5 = −11

2x-5y=7

2x+3y=-1 ②
由①+②得: 5x=10

由 ②-①得:8y=-8
两个二元一次方程中同一未知数的系数相反
或相等时,将两个方程的两边分别相加或相减,
就能消去这个未知数,得到一个一元一次方程,
这种方法叫做加减消元法,简称加减法.










= 0.2
答:1台大型收割机1小时收割小麦0.4公顷,1台小型收
割机1小时小麦0.2公顷.
达标检测
A组
1.利用加减消元法解方程组下列做法正确的是(
A.要消去y,可以将①×5+②×2
B.要消去x,可以将①×3+②×(-5)
C.要消去y,可以将①×5+②×3
D.要消去x,可以将①×(-5)+②×2
C组
达标检测
−− = − −


5、解方程组
+ =


6.一条船顺流航行,每小时行20km,道流航行,每
小时行16km求轮船在静水中的速度与水的流速。
1、某个未知数的系数相等或互为相反数,
即系数的绝对值相等的二元一次方程组如何
消元?
2、某个未知数的系数的绝对值不相等,但
成整数倍的二元一次方程组如何消元?
1、会运用加减消元法解
二元一次方程组.
2、体会解二元一次方程
组的基本思想----“消
元”。

8.2 消元——加减消元法解二元一次方程组(教案)

8.2 消元——加减消元法解二元一次方程组(教案)

8.2 消元——加减消元法解二元一次方程组(教案)一、教材分析“用加减消元法解二元一次方程组”是在学习了“用代入消元法解二元一次方程组”的基础上的进一步学习,同时又是后续学习“解三元一次方程组”的重要基础。

代入法和加减法是解二元一次方程组的两种有效途径,而且是解二元一次方程组的通法,“用加减消元法解二元一次方程组”是对“用代入消元法解二元一次方程组”的有力补充和完善,两者相辅相成,各见长处。

二、教学目标1、知识技能:掌握用加减消元法解二元一次方程组。

2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。

3、情感态度与价值观:在探索用加减法解二元一次方程组的过程中享受成功的快乐,感受数学知识的实际用价值,养成良好的学习习惯。

三、教学重点与难点(一)教学重点:用加减法解二元一次方程组。

(二)教学难点:如何运用加减法进行消元。

四、教学方法:本节课采用“探索---发现---比较”的教学法。

五、教学辅助手段教师采用多媒体PPT演示六、教学设计过程(一)温故而知新一〃1. 根据等式性质填空:<1>若a =b ,那么a ±c = . (等式性质1)<2>若a =b ,那么ac = . (等式性质2)<3>思考:若a =b ,c =d ,那么a ±c =b ±d 吗?2.用代入法解方程的关键是什么?3、解二元一次方程组的基本思路是什么?4.请你代入消元法解下面这个方程组:⎩⎨⎧=+=+40222y x y x具体步骤是:由①得 =y . ③,把③代入①得 .从而达到消元的目的。

(即把二元一次方程变成我们较熟悉的一元一次方程)(二)提出问题,阅读课本,得出加减法的定义。

1. 解这个方程组⎩⎨⎧=+=+40222y x y x 除了用代入法,还有别的方法吗? 2. 请大家认真阅读课本99面第二个思考前的内容。

8.2消元——二元一次方程组的解法(加减消元法2)

8.2消元——二元一次方程组的解法(加减消元法2)

3 x+y
3
+
xy 2
xy 2
1, 7;
3(x+y) 2(x y)பைடு நூலகம் 8,

x+y
6
x 3
y
4; 3
解二元一次方程组:
解:法1.整理,得

x
3
x
3
y 2 y 2
3, 1;
2x 3y 18,
解 2, 得xyx= =36y,
2.
6;
x
法2.令
3 y
设元 2
a, b
2x- y=8 ④
所以原方程组 的解是
由③-④得: y= -1
练习2.下列方程组各选择哪种消元法来解比
较简便?并用相应的方法求解。
(1) Y=2x
(2) x-2y=y-1
3x-4y=5
代入法
x y
1, 2.
(3) 2x+3y=9
4x-5y=7
2x-3y=10
代入或 x 11, 加减法 y 4. (4) 9x-5y=19
8.2.2 加减消元法(2)
1、解二元一次方程组的方法有哪些? 代入法和加减法
2、解二元一次方程组:
(1)32xx+2yy
1, 3;
(代入法)
(2)52xx63yy170,(; 加减法)
x 1, y 1 x 2, y 1
(3)53xx
2y 4y
1, 13.
(任意方法)
x y
1, 2.
解,得: m = 1
(3)
2(x 5
3(x 5
y) y)
3(x 2
(x y
y ) =8, )= 1.

消元用加减法解二元一次方程组

消元用加减法解二元一次方程组

8.2消元——用加减法解二元一次方程组一、教学目标1、知识技能:会运用加减消元法解二元一次方程组。

2、过程与方法:经历探究与归纳总结加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。

3、情感态度与价值观:让学生在探究中能运用到生活的知识,深刻感受数学知识的实际价值,养成良好的学习习惯。

二、教学重点:加减消元法解二元一次方程组。

三、教学难点:如何运用加减法进行消元。

四、教学方法:本节课采用“比较---------探索------发现----------归纳”的教学法。

五、教学过程:(一)温故而知新1、用代入消元法解方程组(比比看,看谁写得又对又快)x+y=2 ①2x-y=4 ②2、总结在利用代入消元法解方程组经常会遇到哪些问题?(生:复杂而又容易出错!)师:今天我们将要学习一种更简单又不容易出错的方法来帮助你们解决刚刚提出来的这些“疑难杂症”!!!(二)尝试发现、探究新知1、解方程组:x +y=2 ①2x - y=4 ②思考:还有别的更简洁的方法吗?认真观察此方程组中各个未知数的系数有什么特点,并分组讨论还有没有其他的解法,并尝试一下能否求出它的解。

师生共同探讨,讲解解题格式。

同步练习:解方程组:x-y= 1 ①2x+y=-7 ②2、解方程组:2x+y=21 ①2x-2y=-11 ②思考:(1)未知数x的系数又有什么关系?你有何想法吗?想一想怎样解方程组。

同步练习:解方程组:x+3y= 6 ①2x+3y=12 ②思考:从上面的解答过程中,你发现了二元一次方程组的新解法吗?以小组为单位讨论并发言.学生发言,教师适时点拨。

3、归纳:通过将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解的.这种解法叫做加减消元法,简称加减法.(板书课题)想一想:能用加减消元法解二元一次方程组的前提是什么?两个二元一次方程中出现同一末知数的系数相等或互为相反数。

那么大家能不能用简单的语句来概括今天所学知识的重点呢?小组谈论,研究,最后评出“最佳语句”:同号相加(这个想法来源于孩子们生活中经常玩的异号相减磁石的原理:“同性相斥,异性相吸”)(三)类比应用、闯关练习(班上一共有六个小组,每组一个题,进行小组竞赛!)掌握解题格式。

8.2.2 消元-解二元一次方程组(加减消元法)

8.2.2 消元-解二元一次方程组(加减消元法)

B.6x=18 C.6x=5
D.x=18
三、用加减法解下列方程组 用加减法解下列方程组
3x + 2 y = 8 (1) 3x − 4 y = 2 ② x + 2 y = 9 ( 2) 3x − 2 y = −1 ②
例3:解方程组
当两个方程 中的同一未 阅读课本思考: 知数的系数 知数的系数 1、①×3的具体步骤是什么? 不相同且不 3(3x+ 4y) = 3× 16 ( ) × 互为相反数 则应将 时,则应将 9x+ 12y = 48 ③ 两个方程变 2、②×2的具体步骤是什么? 形,将某个 2(5x - 6y) = 2× 33 ( ) × 未知数的系 数变为相同 数变为相同 10x - 12y = 66 ④ 或互为相反 3、以上两个步骤的目的是什么? 数再进行加 使两方程未知项y 的系数互为相反数, 减消元。 使两方程未知项 的系数互为相反数, 减消元。 从而使用③ ④消去y. 从而使用③+④消去
次方程,这种方法叫做加减消元法 加减消元法,简称加减法 加减法。 加减消元法 加减法
方法解读: 方法解读:
利用加减消元法解方程组时,在方程组的两 利用加减消元法解方程组时 在方程组的两 加减消元法解方程组时 个方程中: 个方程中 (1)某个未知数的系数互为相反数,则可以直接 某个未知数的系数互为相反数 某个未知数的系数互为相反数, 把这两个方程中的两边分别相加, 把这两个方程中的两边分别相加, 消去这个未知数; 消去这个未知数 (2)如果某个未知数系数相等,则可以直接 如果某个未知数系数相等 如果某个未知数系数相等, 把这两个方程中的两边分别相减, 把这两个方程中的两边分别相减, 消去这个未知数。 消去这个未知数
《恒谦教育教学资源库》 恒谦教育教学资源库》

人教版七年级数学下册第八章8.2 第2课时 用加减消元法解方程组

人教版七年级数学下册第八章8.2 第2课时 用加减消元法解方程组

知识点 用加减法解二元一次方程组
1.
(2018·怀化)二 Nhomakorabea元





x+y=2,

x-y=-2
的解是
( B)
A.x=y=0,-2
B.x=y=0,2
C.x=y=2,0
D.x=y=-02,
2. 用“加减消元法”解方程组33xx+ -75yy= =- 1620,① ②的步骤 如下:(1)由①-②得 12y=-36,y=-3,(2)由①×5+②×7 得 36x=12,x=13,则下列说法正确的是( B )
A.(1)①-②
B.(2)②-①
C.(3)①-②
D.(4)②-①
10. 用加减法解方程组23xx+-32yy==18,时,要使两个方程中 同一未知数的系数相等或互为相反数,有以下四种变形结果:
①66xx+ -94yy= =18, ;②49xx+-66yy==18,; ③6-x+6x9+y=4y3=,-16;④49xx+-66yy==22,4. 其中变形正确的是( B )
9. 用加减法解下列四个方程组:
2.5x+3y=1①, 3x-4y=7①, (1)-2.5x+2y=4②;(2)4x-4y=8②;
(3)y12-x+0.55yx==321①0., 5②;(4)33xx--56yy==78①②,.
其中方法正确且最合适的是( B )
第八章 二元一次方程组 8.2 消元——解二元一次方程组
第2课时 用加减消元法解方程组
1. 代入消元法 和 加减消元法 是解二元一次方程组的 基本方法,其基本思想是“ 消元 ”,运用 消元 的思想 把方程组逐渐转化为 一元一次方程 求解.
2. 消元时一般选取系数较为简单的未知数作为消元对 象.

8.2解二元一次方程组—加减消元法

8.2解二元一次方程组—加减消元法

2.已知方程组
25x+6y=10 只要两边 分别相减 就可以消去未知数 x
两个方程
二.选择题
6x+7y=-19①
1. 用加减法解方程组
6x-5y=17②
应用( B )
A.①-②消去y B.①-②消去x C. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
1、解二元一次方程组的基本思路是什么? 消元: 二元 一元 2、用代入法解方程的步骤是什么?
基本思路:
主要步骤: 用含有一个未知数的代数式 表 示 另 一 个 未 知 数 , 写 成 1、变形
y=ax+b或x=ay+b
2、代入 3、求解 4、写解
把变形后的方程代入到另一个方程中, 消去一个元 分别求出两个未知数的值 写出方程组的解
x5
将y=-2代入①,得 3x 5 2 5
解方程组: 3x 5 y 5 3x 4 y 23
① ②
解:由①-②得: (3x 5 y) (3x 4 y) 5 23
将y=-2代入①,得: 3x 5 2 5
3x 5 y 3x 4 y 18 9 y 18 y 2 即
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1) <2>若a=b,那么ac= bc . (等式性质2)
思考:若a=b,c=d,那么a±c=b±d吗? 2、用代入法解方程的关键是什么? 二元
代入 转化
一元
3、解二元一次方程组的基本思路是什么?
消元: 二元
一元

课题: 8.2 用加减法解二元一次方程组(1)

课题: 8.2  用加减法解二元一次方程组(1)

(1) (2)
阅读 94 页思考:想一想还有其它方法可以直接消去未知数吗? 合作探究 看一看:上述方程组中,未知数 y 的系数有何特征? 做一做:把两个方程的左边与左边相减,右边与右边相减你发现了什么? 写一写:尝试解上述方程组
用上述方法解方程组:
3x 7 y 9, 4 x 7 y 5. (1) (2)
展示反馈 用加减消元法解下列方程组
2 x 3 y 1 ① 2 x 5 y 2

2 x 3 y 5 2 x 8 y 3

x 3 y 6 2 x 3 y 3

7 x 8 y 5 7 x y 4
x 2 y 9 ⑤ 3x 2 y 1
3u 2t 7 ⑥ 6u 2t 11
2a b 3 ⑦ 3a b 4
3x y 5 ⑧ 5 y 1 3x 5
要点归纳 本节课你有哪些收获
课题: : 1.会运用加减消元法解二元一次方程组。2.体会解二元一次方程组的基本思想----“消元” . 学习重难点: 重点:初步体验加减消元法解二元一次方程组.难点:会灵活运用加减法解二元一次方程组
导学指导
温故而知新 用代人法解方程组
3x 3 y 7 x 3 y 7
看一看: x , y 的系数有什么特点? 想一想:先消去哪一个比较方便呢?用什么方法来消去这个未知数呢? 写一写:
小结:两个二元一次方程中,同一个未知数的系数_______或______ 时,把这两个方程的两边分 别 _______或________ ,就能________这个未知数,得到一个____________方程,这种方法叫做 ________________,简称_________

《8.2.2加减消元法——解二元一次方程组》说课稿

《8.2.2加减消元法——解二元一次方程组》说课稿

《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。

一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。

通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。

2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。

理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。

而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。

难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学三、说学法本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验,并相应的进行小组加分和个人加分,以增加学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变式训练
根据时间,教师可临场变题,也可 编题。
8.2用加减消元法解二元一次方程 组
体验收获
今天我们学习了哪些知识?
1.解二元一次方程组的基本思路是消元. 2.消元的方法有:代入消元和加减消元. 3.解二元一次方程组的一般步骤:消元、求解、写解.
8.2用加减消元法解二元一次方程 组
布置作业
教材98页习题8.2第3(2)(4)、5、6题.
8.2用加减消元法解二元一次方程 组
未知数x的 练习1 如何用加系减数消相元同法消去未知数x,求出未知数y?
x3y 13 ①
2x5y6 ①
(1)x2y 10 ②
(2) 4y2x4

பைடு நூலகம்
解:(1)①-②,得 x+3y-(x+2y)=13-10 y=3 (2)①+②,得
未知数x的 系数相反
2x-5y+(4y-2x )=-6+4
① ②
,①-②得(B

A、5y 8 B、5y 8 C、5y8 D、5y8
2、用加减法解方程组32xx
-4y 8 4y 2
① ②
得——5x—=1—0 ——

时,①+②
8.2用加减消元法解二元一次方程 组
3.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是

【解析】先观察3y与-3y互为相反数,再用①+②,
得3x=15,x=5.最后把x=5代入①,得y= -1.
【答案】
x y
5
, 1
8.2用加减消元法解二元一次方程 组
(中考)若3aa22bb48
①,

则a+b等于_3__

分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
8.2用加减消元法解二元一次方程 组
-y=-2
y=2
8.2用加减消元法解二元一次方程 组
练习2
x2y 9 ①
用加减消元法解方程组:(1) 3x2y
1

解:(1)
①+② ,得: 4x=8
x=2
把 x=2代入①,得:
2+2y=9
y 7
2 x 2
所以这个方程组的解是:
y 8.2用加减消元法解二元一次方程
7 2

1、方程组
2x 3y 5 2x 8y 3
所以这个方程组的解是:
y
4
等式两边加(或减)8.2用同加减一消元个法解数二元(一次或方程式子),结果仍相等.

探究2 联系刚才的解法,想一想怎样解方程组:
3x10y 2.8 ① 15x10y 8 ②
未知数y的系数互为相反数, 由①+②,可消去未知数y, 从而求出未知数x的值.
解:①+②,得
3x+
除了用代入法 求解外,还有 其他方法吗?
1x y 11 00 ①
22 xx
yy
11 66

这两个方程 中 有去用, 什未②么知y-的关数①系系y可数吗?消?
两个方程中 y的系数相等
解:②-①,得
-( 解得: x=6
)-
① - ②也能 消去未知数y ,
把 x=6代入①得: y=4 x 6 求出x吗?
10y+(15x-10y) 18x=10.8
=2.这据8 +一是8步什的么依 ?
x=0.6
把x=0.6代入①,得
等式的性质1
3×0.6+10y=2.8
y=0.1 所以这个方程组8.2用的加减解消元是法解:二元xy 一次方00程..61

探究3 你能归纳刚才的解法吗?
加减消元法的概念 从上面方程组中的解法可以看出:当二元 一次方程组中的两个方程中同一未知数的 系数相反或相等时,把这两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程。这种方法叫做加 减消元法,简称加减法。
8.2.2加减消元法解二元一次方程组
8.2用加减消元法解二元一次方程 组
知识回顾
1. 解二元一次方程组的基本思想:
二元一次 方程组
消元
一元一次 方程
2. 用代入法解二元一次方程组的关键? 用含一个未知数的代数式表示另一个未知数.
8.2用加减消元法解二元一次方程 组
探究1 还记得等式的性质1吗?
如果a=b,那么a±c=b ±c
8.2用加减消元法解二元一次方程 组
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
相关文档
最新文档