定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣. ...文档交流仅供参考...
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方.
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2. ...文档交流仅供参考...
2、向量的数量积不满足消去律,即:由a•b=a• c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出a=b或a=-b。
2、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|•|b|•sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考...
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c。
注:向量没有除法,“向量AB/向量CD”是没有意义的.
3、向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①当且仅当a、b反向时,左边取等号;
②当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a—b∣≤∣a∣+∣b∣。
①当且仅当a、b同向时,左边取等号;
②当且仅当a、b反向时,右边取等号。
4、定比分点
定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。...文档交流仅供参考...
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公
式
5、三点共线定理
若OC=λOA +μOB,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.
a//b的重要条件是xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是a•b=0.
a⊥b的充要条件是 xx'+yy’=0.
零向量0垂直于任何向量。