ASTM材料与实验标准.E127
ASTM美国试验与材料协会标准(纺织)
ASTM美國試驗與材料協會標準(紡織部分)標準代號標準名稱ASTM D1059-2001基於短長度樣品的紗線支數試驗方法ASTM D1060-1996為測定淨毛纖維百分率從成包原毛中心取樣的標準操作規程ASTM D1113a-1990洗淨羊毛中植物性物質和其它鹼性不溶雜質的標準測試方法ASTM D1117-2001無紡織物評價的標準指南ASTM D1230-1994服裝紡織品的易燃性的標準測試方法ASTM D1230-1994服裝紡織品的易燃性的標準測試方法ASTM D123-2002與紡織品相關的標準術語ASTM D1234-1985含脂羊毛的手扯長度的取樣和試驗方法ASTM D1244-1998紗線結構的名稱與符號ASTM D1282-1996用氣流阻力表示羊毛毛條,生條和洗淨羊毛的平均纖維直經的標準測試方法ASTM D1283-1985羊毛堿溶性的測試方法ASTM D1294a-19951英寸(25.4毫米)長度的羊毛纖維束拉伸強度和斷裂強度的標準試驗方法ASTM D1334-1996原毛毛含量的標準試驗方法.商業尺度ASTM D1422-1999退撚加撚法測定單細紗撚數的標準試驗方法ASTM D1423-2002直接計數法測定紗線撚數的標準試驗方法ASTM D1424-1996埃爾曼多夫落錘儀測定機織物抗撕裂的標準試驗方法ASTM D1425-1996用電容測試設備測定紗線條幹不勻度的標準試驗方法ASTM D1440-1996棉纖維長度和長度分佈的標準試驗方法(列陣法)ASTM D1441-2000試驗用棉纖維取樣的標準操作規程ASTM D1442-2000棉纖維成熟度的標準試驗方法(燒鹼膨脹與偏振光法)ASTM D1445-1995棉纖維的斷裂強度和延伸率的標準試驗方法(扁纖維束法)ASTM D1447-2000用纖維照影機測量法測定棉纖維的長度和長度均勻度的標準試驗方法ASTM D1448-1997棉纖維的馬克隆尼讀數的標準試驗方法ASTM D1464-1990棉花染色差異性的標準試驗方法ASTM D1518-1985紡織材料的熱傳導的標準試驗方法ASTM D1571-1995石棉布的標準規範ASTM D1575-1990洗淨羊毛及生條中羊毛纖維長度的測試方法ASTM D1576-1990用爐烘乾法測定羊毛內水分的試驗方法ASTM D1578-1993絞紗形式下紗線的斷裂強度的試驗方法ASTM D1684-1996顏色分級用棉分級室的照明的標準操作規程ASTM D1770-1994羊毛條中毛結,植物性物質與有色纖維含量標準測試方法ASTM D1776-1998試驗用調濕織物ASTM D1777-1996測量紡織材料的厚度的標準試驗方法ASTM D1909-1996紡織纖維商品回潮率標準表ASTM D1913-2000服裝革抗濕性的標準試驗方法(噴霧法)ASTM D1987-1995土工織物或泥土/土工織物的生物阻塞的標準試驗方法ASTM D204-2002縫紉線的標準試驗方法ASTM D2052-2001拉鍊耐乾洗色牢度的測試方法ASTM D2052-2001拉鍊耐乾洗色牢度的測試方法ASTM D2053-1999拉鍊耐光照色牢度的試驗方法ASTM D2053-1999拉鍊耐光照色牢度的試驗方法ASTM D2062-1987拉鍊可用性的試驗方法ASTM D2062-1987拉鍊可用性的試驗方法ASTM D2118-1996羊毛及其製品中標準水份含量的確定ASTM D2130-1990顯微投影法測定羊毛和其它動物纖維直徑的標準試驗方法ASTM D2165-1994羊毛及類似動物纖維的水萃取物pH值的標準測試方法ASTM D2252-1996各類阿爾帕卡毛細度的標準規範ASTM D2257-1998紡織材料中可萃取物的試驗方法ASTM D2258-1999試驗用紗線的抽樣ASTM D2259-2002紗線收縮性的標準試驗方法ASTM D2260-2002各種支數標定制中測得的對等紗線支數表和換算標準係數表ASTM D2261-1996切口(單幅撕裂)法(恒速拉伸試驗機)測定紡織物撕裂強度的標準試驗方法ASTM D2402-2001紡織纖維保水性的標準試驗方法(離心機法)ASTM D2462-1990用甲苯蒸餾法測定羊毛中水分的試驗方法ASTM D2475-2001毛氈標準規範ASTM D2494-2002紗線或人造纖維或纖維束貨包的商業品質的標準試驗方法ASTM D2495-2001用烘乾法測定棉花中水分的標準試驗方法ASTM D2497-2001人造有機長絲單紗標準公差ASTM D2497-2001人造有機長絲單紗標準公差ASTM D2524-1995毛纖維抗斷裂強度的試驗方法.平列纖維束法.1/8英寸(3.2毫米)規範長度的標準試驗方法ASTM D2525-1990測定羊毛水分的取樣的標準操作規程ASTM D2589-1988石棉纖維的麥克涅特濕法分類的標準試驗方法ASTM D2590-1998溫石棉取樣的試驗方法ASTM D2594a-1999低彈針織物彈性的標準試驗方法ASTM D2612-1999靜態試驗條件下紗條和毛條中纖維粘附力的標準試驗方法ASTM D2644-2002毛織品系統的細紗標準公差ASTM D2645-1995棉紗或毛紗系統中的細紗的標準公差ASTM D2646-1996背襯織物的標準試驗方法ASTM D2692-1998輪胎簾布織物、輪胎簾布、輪胎簾線及紗線氣體芯吸效應的試驗方法ASTM D2720-1994商業用各種洗淨羊毛、毛條及短毛的商業公定重量和產量計算的標準實施規程ASTM D2724-1987粘結的、熔合的和疊層衣用織物的標準試驗方法ASTM D2752-1988石棉纖維透氣性的測試方法ASTM D276a-2000識別紡織品中纖維的標準試驗方法ASTM D2812-1995棉花中含雜量的試驗方法ASTM D2816-1995開士米毛線中粗毛節含量的標準試驗方法ASTM D2817-1991開士米毛線中最大粗毛節含量的測定ASTM D2859-2002精製紡織地板覆蓋物著火特性的標準試驗方法ASTM D2904-1997產生正常分佈資料的紡織試驗法的實驗室間試驗的標準實施規程ASTM D2905-1997紡織品樣品的數值表的標準實施規程ASTM D2906-1997織物精密度和偏差表的標準實施規程ASTM D2947-1988石棉纖維篩選分析的試驗方法ASTM D2968-1995用顯微投影法測定羊毛和其它動物纖維中的有髓纖維和死毛纖維的標準試驗方法ASTM D2985-1992石棉顏色的試驗方法ASTM D2987-1988石棉纖維水分含量的標準測試方法ASTM D3025-2001校正棉花標準用標準棉花纖維試驗結果ASTM D3106-2001彈性紗永久變型的標準試驗方法ASTM D3108-2001紗與固體材料磨擦係數的標準試驗方法ASTM D3135-1987粘合的、熔凝纖維的及疊層衣料的性能ASTM D3136-2000服裝、紡織品、傢俱織物和皮革製品用保養說明標籤的標準術語ASTM D3136-2000服裝、紡織品、傢俱織物和皮革製品用保養說明標籤的標準術語ASTM D3181-1995在紡織品上進行磨損試驗的標準指南ASTM D3217-2001線圈或打結的人造紡織纖維斷裂強度標準試驗方法ASTM D3217-2001a線圈或打結的人造紡織纖維斷裂強度標準試驗方法ASTM D3218-2001聚烯烴單絲標準規範ASTM D3333-2001試驗用人造短纖維、次等化學纖維或亞麻短纖維的取樣標準實施規程ASTM D3333-2001試驗用人造短纖維、次等化學纖維或亞麻短纖維的取樣標準實施規程ASTM D3374-1999乙烯塗覆的玻璃絲標準規範ASTM D3412-2001紗與紗之間摩擦係數的標準試驗方法ASTM D3511-2002用刷型起球試驗器測定紡織物纖維的抗起球性及其有關的表面變化的標準試驗方法ASTM D3512-2002用隨機轉筒起球試驗器測定紡織物表面的抗起球性及其它有關表面變化的試驗方法ASTM D3513-1996人造短纖維中超長纖維含量的標準試驗方法ASTM D3513-1996人造短纖維中超長纖維含量的標準試驗方法ASTM D3514-2002用彈性護墊試驗器測定紡織物表面的抗起球性及其它有關表面變化的試驗方法ASTM D3562-1999機織耐乾洗外套織物的標準性能規範ASTM D3655-2002男子及婦女用梳條編織外衣和夾克織物的標準性能規範ASTM D3656-1997塗乙烯的玻璃纖維紗編的防蟲罩及排氣孔遮布ASTM D3657-1988拉鍊尺寸ASTM D3691-2002機織帶狀針織家用窗簾和帶皺折編織物的標準性能規範ASTM D3692-1989標籤標明衣物及家用裝飾物用拉鍊的選擇規定ASTM D3692-1989標籤標明衣物及家用裝飾物用拉鍊的選擇規定ASTM D3773-1990紡織品長度的試驗方法ASTM D3774-1996紡織品寬度的標準試驗方法ASTM D3775-2002機織物經緯密度的標準測試方法ASTM D3776-1996紡織品單位面積(重量)品質的標準試驗方法ASTM D3777-1997紡織品記錄規範ASTM D3779a-2002婦女及女孩用機織雨衣與適合各種用途的防水上膠織物的標準性能規範ASTM D3780a-2002男人及男孩用機織套裝織物及機織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3781-2002男人及男孩用針織雨衣和適合各種用途防水上膠織物的標準性能規範ASTM D3781-2002男人及男孩用針織雨衣和適合各種用途防水上膠織物的標準性能規範ASTM D3782-2002男人及男孩用針織套裝織物和針織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3782-2002男人及男孩用針織套裝織物和針織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3782-2002男人及男孩用針織套裝織物和針織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3783a-2002男人及男孩衣服用機織平紋襯裡織物的標準性能規範ASTM D3784a-2002男人及男孩用機織浴衣及睡衣織物的標準性能規範ASTM D3785-2002機織領帶及圍巾織物的標準性能規範ASTM D3787-2001針織品破裂強度測試方法.恒速橫向移動球式破裂試驗ASTM D3787-2001針織品破裂強度測試方法.恒速橫向移動球式破裂試驗ASTM D3787-2001針織品破裂強度測試方法.恒速橫向移動球式破裂試驗ASTM D3819a-1995男人及男孩用機織睡衣織物的標準性能規範ASTM D3820a-2002男人及男孩用機織內衣織物的標準性能規範ASTM D3822-2001單支紡織品纖維張力性能的標準試驗方法ASTM D3823-2001測定縫紉線標籤數目的標準實施規程ASTM D3882-1999機織和針織織物中弓緯和緯斜的試驗方法ASTM D3882-1999機織和針織織物中弓緯和緯斜的試驗方法ASTM D3883-1999機織織物中紗線捲曲性或捲繞性的標準試驗方法ASTM D3884-2001紡織品耐磨性的標準試驗方法(旋轉平臺,雙頭法)ASTM D3885-2002紡織纖維的耐磨性的標準試驗方法(撓曲及磨損法)ASTM D3886-1999紡織品耐磨性的標準試驗方法(充氣膜法)ASTM D3887-1996針織物公差的標準規範ASTM D3887-1996針織物公差的標準規範ASTM D3888-1995自由端紡紗的相關標準術語ASTM D3937-2001人造短纖維捲曲率的標準試驗方法ASTM D3937-2001人造短纖維捲曲率的標準試驗方法ASTM D3938-2000服裝和其它紡織消費產品用提示標籤的確定或確認標準指南ASTM D3938-2000服裝和其它紡織消費產品用提示標籤的確定或確認標準指南ASTM D3939a-1997織物的抗鉤絲標準試驗方法(MACE試驗法)ASTM D3990-1999紡織品缺陷的相關標準術語ASTM D3991-1994羊毛和馬海毛細度及分級的標準規範ASTM D3992-1994羊毛條和馬海毛條細度及分級的標準規範ASTM D3994a-2002機織泳裝織物的標準性能規範ASTM D3995-2002男人及婦女用針織職員工作服織物的標準性能規範ASTM D3995-2002男人及婦女用針織職員工作服織物的標準性能規範ASTM D3996-2002針織泳裝織物的標準性能規範ASTM D3996-2002針織泳裝織物的標準性能規範ASTM D4029-1997精整機織玻璃織物標準實施規程ASTM D4030-1999玻璃纖維繩和縫紉線規格ASTM D4031-2001變形紗線膨松特性的標準試驗方法ASTM D4032-1994用圓形彎曲法測定織物挺度的標準試驗方法ASTM D4035-2002針織領帶和圍巾織物的標準性能規範ASTM D4035-2002針織領帶和圍巾織物的標準性能規範ASTM D4037-2002機織、針織或植絨床罩織物的標準性能規範ASTM D4038a-1995婦女及女孩用機織服裝和襯衫織物的標準性能規範ASTM D4038a-1995婦女及女孩用機織服裝和襯衫織物的標準性能規範ASTM D4109a-2002男人及男孩用機織連衣褲工作服、勞動布工作服、工裝褲及車間塗層織物的標準性能規範ASTM D4110-2002男人及男孩用針織浴衣、晨衣和睡衣的標準性能規範ASTM D4110-2002男人及男孩用針織浴衣、晨衣和睡衣的標準性能規範ASTM D4111-2002家用及公共機構用機織餐巾和臺布織物的標準性能規範ASTM D4112a-2002機織傘布織物的標準性能規範ASTM D4114a-2002婦女及女孩衣服用機織平面襯裡織物的標準性能規範ASTM D4115-2002婦女及女孩用針織和機織服裝、手套織物的標準性能規範ASTM D4115-2002婦女及女孩用針織和機織服裝、手套織物的標準性能規範ASTM D4115-2002婦女及女孩用針織和機織服裝、手套織物的標準性能規範ASTM D4116-2001婦女及女孩用針織和機織緊身束腰胸衣織物的標準性能規範ASTM D4116-2001婦女及女孩用針織和機織緊身束腰胸衣織物的標準性能規範ASTM D4117-2001婦女及女孩用機織浴衣、長睡衣、睡衣、長襯裙、帶肩帶長內衣和內衣織物的標準性能規範ASTM D4118-2001婦女用機織工作服、勞動布、工裝褲及車間塗層織物的標準性能規範ASTM D4119-2001男人及男孩用針織襯衫織物的標準性能規範ASTM D4119-2001男人及男孩用針織襯衫織物的標準性能規範ASTM D41-1994鋪屋面、防潮及防水用瀝青底層的標準規範ASTM D4120-2001粗紗、梳條和毛條中纖維內聚力動態試驗的標準試驗方法ASTM D4154-2001男人和男孩用針織和機織海濱服和運動衫織物的標準性能規範ASTM D4155-2001婦女和女孩用機織運動服裝、短褲、寬鬆的長褲和套服織物的標準性能規範ASTM D4156-2001婦女和女孩用針織運動服織物的標準性能規範ASTM D4158-2001針織織物的耐磨損性的標準試驗方法(均勻磨損法)ASTM D4232-2001男人和婦女用服裝及職業工作人員工作服織物的標準性能規範ASTM D4232-2001男人和婦女用服裝及職業工作人員工作服織物的標準性能規範ASTM D4233-2001婦女和女孩用針織和機織胸罩織物的標準性能規範ASTM D4233-2001婦女和女孩用針織和機織胸罩織物的標準性能規範ASTM D4234-2001婦女和女孩用針織浴衣、便服、長睡衣、睡衣、長襯裙和女內衣織物的標準性能規範ASTM D4234-2001婦女和女孩用針織浴衣、便服、長睡衣、睡衣、長襯裙和女內衣織物的標準性能規範ASTM D4235-2001婦女和女孩用針織女襯衫和服裝織物標準性能規範ASTM D4235-2001婦女和女孩用針織女襯衫和服裝織物標準性能規範ASTM D4235-2001婦女和女孩用針織女襯衫和服裝織物標準性能規範ASTM D4270-1995制定和編寫試驗方法用現行規則的標準指南ASTM D4271-1988紡織品測試取樣的編寫規程ASTM D4356-1984建立一致的試驗方法公差的規程ASTM D4389-1999粗紗精製玻璃布標準規範ASTM D4391a-1993紡織品燃燒特性的標準術語ASTM D4466-2002多成分紡織纖維的標準術語ASTM D4467-1994獲得非正式分佈資料的紡織品試驗方法的實驗室間試驗的標準實施規程ASTM D4522-1986羽絨填充製品的性能規範ASTM D4524-1986羽衣成分的標準試驗方法ASTM D461-1993氊子的試驗方法ASTM D4686-1991頻率分佈的識別和轉換ASTM D4697-1995在用戶實驗室中維護試驗方法的標準指南ASTM D4720-1987軟窗簾性能評定的標準實施規程ASTM D4721-1989可機器洗滌的和乾洗的床罩與附屬品性能的評定ASTM D4723-1999紡織品耐熱性和易燃性試驗方法和性能規範的描述和標準索引ASTM D4769-1988紡織品和較舒適經紗針織品ASTM D4769-1988紡織品和較舒適經紗針織品ASTM D4772-1997絲絨紡織品表面吸水性的標準試驗方法(水流試驗法)ASTM D4845-1996有關羊毛的標準術語ASTM D4848-1998紡織品的強度、變形性及其有關特性的標準規範ASTM D4849b-2002與紗和纖維相關的標準術語ASTM D4851-1997建築用塗層織物和層壓織物的標準試驗方法ASTM D4852-1988懸掛的裝飾織物的評定ASTM D4853-1997還原試驗變異性的標準指南ASTM D4854-1995從取樣方案的期望原始資料中估算變異性幅度的標準指南ASTM D4911-1994平行精紡式開良精紡系統中手工織短纖維紗線的公差ASTM D4920-1998有關紡織材料水分的標準術語ASTM D4966-1998紡織品耐磨性的標準試驗方法(馬丁代爾磨擦試驗儀法)ASTM D4970-2002紡織纖維品的耐起球和其他有關表面變化的標準試驗方法(馬丁戴爾壓力檢驗機法) ASTM D5034-1995紡織品的伸長和斷裂強度的標準試驗方法(織物抓樣強力試驗)ASTM D5035-1995紡織纖維的伸長率和斷裂力的標準測試方法(剝離法)ASTM D5038-2001紡織材料保存的標準術語ASTM D5070-1990用電位測量滴定法對紡織品軟化劑中合成季銨鹽的試驗方法ASTM D5103-2001人造短纖維長度和長度分配的標準試驗方法(單纖維試驗)ASTM D5104-2002紡織纖維收縮的標準測試方法(單纖維試驗)ASTM D5141-1996使用特定場地土壤的淤泥柵欄用土工織物的篩選效益和流動率測定的標準試驗方法ASTM D519-1990羊毛條中纖維長度的標準試驗方法ASTM D5219-1999服裝量度用與人體尺寸相關的標準術語ASTM D5253-1996鋪地織物和傢俱裝飾布用的書寫管理指令和一般刷新程式標準術語ASTM D5264-1998用蘇瑟蘭德-板印試驗機對印刷材料抗磨性的標準試驗方法ASTM D5278-1992窄幅織物深長的試驗方法(靜態負載試驗)ASTM D5344-1999部分取向紗延展力的標準試驗方法ASTM D5362a-1997織物耐鉤私性的標準試驗方法(豆袋試驗法)ASTM D5378-1993單位和家用編織和針織浴簾的標準性能規範ASTM D5430-1993織物目視檢驗分級的標準試驗方法ASTM D5431-1993公共機構和家用編織及針織薄片製品的標準性能規範ASTM D5431-1993公共機構和家用編織及針織薄片製品的標準性能規範ASTM D5432-1993公共機構和家用毛毯製品的標準性能規範ASTM D5433-2000公共機構和家用毛巾製品的標準性能規範ASTM D5446-2002測定在充氣減振中用的織物、紗線和縫合線的物理性能的標準試驗方法ASTM D5489-2001a紡織品提示標籤用提示符號的標準指南ASTM D5497-1994c鈕扣術語ASTM D5585-1995成年女子號型的人體測量標準表,2號規格ASTM D5586-200155歲以上婦女人體測量的標準表(全部號型)ASTM D5684-2002絨面地板覆蓋物標準術語ASTM D5733-1999非織造織物抗撕裂強度的梯形法標準試驗方法ASTM D5735-1995非織造織物的榫舌(單撕裂)抗撕裂強度標準試驗方法(恒定伸長率拉伸試驗機) ASTM D579-1997本色布紡織玻璃布標準規範ASTM D5793-1995絨頭紗線地板覆蓋物每單位長度或寬度結接點的標準試驗方法ASTM D580-1999本色布機織玻璃纖維帶ASTM D581-1999玻璃纖維編織套管ASTM D584-1996原毛中羊毛含量實驗室標準試驗方法ASTM D5848-1998絨頭紗線地板覆蓋物單位面積品質的標準試驗方法ASTM D5884-2001內增強土工薄膜扯裂強度測定的標準試驗方法ASTM D6192-1998女孩人體測量的標準表,尺碼為7-16ASTM D6193-1997針角和縫合的標準操作規程ASTM D6240-1998尺寸為34至60的男性身體測量的標準表ASTM D629-1999紡織品定量分析標準試驗方法ASTM D6413-1999織物火焰抗性的標準試驗方法(垂直試驗)ASTM D6544-2000紫外線(UV)透射試驗前紡織品製作的標準實施規程ASTM D6545-2000兒童睡衣用紡織品易燃性的標準試驗方法ASTM D6613-2002測定尼龍或聚脂纖維尺寸的標準實施規程ASTM D6614-2000紡織織物拉伸性能的標準試驗方法.CRE法ASTM D6650-2001測定淨室中使用的無紡織物動擦除效率、濕顆粒去除能力和織物粒子作用的標準試驗方法ASTM D6651-2001無紡織物吸附率和吸附能力測定的標準試驗方法ASTM D6652-2001測定無紡織物留下的纖維狀碎屑的標準試驗方法ASTM D6663-2001單位和家用編織和針織蓋被及附屬品的標準規範ASTM D6664-2001單位和家用編織、針織和棉的床褥品的標準規範ASTM D6767-2002用毛細管流量試驗測定紡織物的標準試驗方法ASTM D6775-2002測定紡織品厚邊帶、線帶和飾帶的拉伸和撕裂強度的標準試驗方法ASTM D681-1987電氣與包裝用黃麻粗紗和合股線的規格ASTM D737-1996紡織纖維透氣率的試驗方法ASTM D76-1999紡織材料的拉伸試驗機ASTM D861-1995用特克斯制命名纖維,紗的半製品,紗和其它紡織品線度的標準操作規程ASTM D885-2002人造有機纖維制輪胎簾子線、輪胎簾布和工業長紗線的試驗ASTM D885-2002人造有機纖維制輪胎簾子線、輪胎簾布和工業長紗線的試驗ASTM E1684-2000顏色分級用棉分級室的照明的標準操作規程ASTM E1716-1995使用可呼吸碳化矽金屬須的人用的人身保護設備選擇與使用標準規範ASTM E2016-1999工業紡織金屬絲布規範ASTM E2225-2002紡織品和繩索檢驗論證用標準指南ASTM E2228-2002紡織纖維的顯微鏡檢驗用標準指南ASTM F1001a-1999防護服裝材料評估用化學試劑的選擇標準指南ASTM F1002-1996防止工人遭受特種熔化物質和有關高溫侵害用防護服裝的性能規範ASTM F1045-1999冰球運動用頭盔的性能規範ASTM F1060-2001表面接觸熱的防護服裝材料的熱防護性能的標準試驗方法ASTM F1117-1993介電防護鞋ASTM F1163-2001騎馬運動和騎馬行駛用防護帽的標準規範ASTM F1194-1999防護服裝材料化學試劑滲透性檢驗結果的報告編制ASTM F1291-1999通過加熱的人體模型測量服裝隔熱性能的試驗方法ASTM F1301-1990化工防護套服用標籤的標準實施規程ASTM F1342-1991防護服裝耐穿刺能力的測試方法ASTM F1358-2000主要不是用於耐火的防護服用材料遇火效應的標準試驗方法ASTM F1359a-1999淋噴狀態下人體模型上防護服裝或套裝耐液體滲透性的標準試驗方法ASTM F1383a-1999間斷接觸條件下防護服裝材料耐液體或氣體滲透性的標準試驗方法ASTM F1407a-1999化學防護服裝材料耐液體滲透性的標準試驗方法.滲透杯法ASTM F1407a-1999化學防護服裝材料耐液體滲透性的標準試驗方法.滲透杯法ASTM F1414-1999測量矮身材者(短腿)穿防護服裝耐鏈鋸切割性的標準試驗方法ASTM F1446a-2001評估防護帽性能特徵的設備和程式的標準試驗方法ASTM F1449-2001耐燃燒、耐熱、耐電弧性防護服裝的養護和維修標準指南ASTM F1458-1998測量護腳設備的鏈鋸切割阻力的標準試驗方法ASTM F1461-1993化工防護服的設計ASTM F1506-2000遭受暫態電弧和相關熱危害的電工用耐磨服裝紡織材料的標準性能規範ASTM F1506a-2002暴露到暫態電弧和相關熱危害環境的電工用耐磨服裝紡織材料抗燃的標準性能規範ASTM F1506a-2002暴露到暫態電弧和相關熱危害環境的電工用耐磨服裝紡織材料抗燃的標準性能規範ASTM F1518-2000紡織材料的熱傳導的標準試驗方法ASTM F1671b-1997使用Φ-X174噬菌體穿透率的試驗系統測試防護服裝材料抗血液攜帶病原體穿透率的標準試驗方法ASTM F1731-1996消防和救援人員制服及其他隔熱保護服裝的人體測量與尺寸標注的標準規程ASTM F1790-1997測量防護服用材料的耐切割的標準試驗方法ASTM F1816-1997兒童外上衣上綜線的標準安全規範ASTM F1819-1998用機械壓力技術測定防護服裝材料抗人造血滲透性的標準試驗方法ASTM F1868-1998用焊接熱板測定服裝材料耐熱和耐蒸發的標準試驗方法ASTM F1891b-2002雨衣耐電弧和耐火的標準規範ASTM F1932-1998測量睡袋紡織纖維回彈力的標準試驗方法ASTM F1939a-1999耐火服裝材料的抗輻射性能的標準試驗方法ASTM F1958/F1958M-1999使用人體模型的電弧暴露法測定服裝用不耐火焰材料易燃性的標準試驗方法ASTM F1959/F1959M-1999測定服裝材料電弧熱性能值的標準試驗方法ASTM F2050-2001有關拉鍊的名詞術語ASTM F2050-2001有關拉鍊的名詞術語ASTM F429-2001橄欖球運動用防護頭盔的減衝擊性能的標準試驗方法ASTM F739a-1999連續接觸條件下防護服材料耐液體或氣體滲透的標準試驗方法ASTM F903a-1999防護服材料耐液體滲透的標準試驗方法ASTM F914-1998航空人員隔音裝置用聲發射的試驗方法ASTM F955-1996評定通過接觸熔融物質的防護服裝材料的傳熱性的試驗方法ASTM G24-1997自然光透過玻璃進行曝光Standard Practice for Conducting Exposures to Daylight Filtered Through Glass。
国内外标准翻译清单
ANSI A137-中文版翻译.pdfANSI A137.2-2021-中文版翻译.pdfANSI B109.1-2019-中文版翻译.pdfANSI B74.3-2002 R 2008 中文版翻译.pdfANSI C78377-2008-中文版翻译.pdfANSI Common Lisp 中文版翻译.pdfANSI ESD S 541-2008-中文版翻译.pdfANSI K62.132-1973-中文版翻译.pdfANSI-ESDS20-20-2007-中文版翻译.pdfANSI-S3.19-1974-中文版翻译.pdfANSI ICEA S-94-649-中文版翻译.pdfANSI API5L-2007-中文版翻译.pdfAOAC 2011-11-中文版翻译.pdfAP17069-4-中文版翻译.pdfAPI SPEC 8C-2012-中文版翻译.pdfAS NZS 1337.1-2010-中文版翻译.pdfAS NZS 1337.1-2010-中文版翻译繁体翻译.pdfAS NZS 1850-2009-中文版翻译.pdfASME B1.1-2003-中文版翻译.pdfASME B1.20.1-2013 (R2018)-中文版翻译.pdfASME B1.20.1-2013-中文版翻译.pdfASME B16.11-92-中文版翻译.pdfASME B16.25-1997-中文版翻译.pdfASME B16.25-2003-中文版翻译.pdfASME B16.34-2004-中文版翻译.pdfASME B16.5-中文版翻译.pdfASME B18.2.1-1999a-中文版翻译.pdfASME B18[1].2.1-1999a-中文版翻译.pdfASME B31.1-2004-中文版翻译.pdfASME BPVC VIII-2 2010-中文版翻译.pdfASME II A篇2010-中文版翻译.pdfasme pvho 1993-中文版翻译版扫描.pdfASME PVHO-2-2012-中文版翻译.pdfASME Y14.100-2013-中文版翻译.pdfASME 第V卷2008增补-中文版翻译.pdfASME 核电规范与标准BPVC-III 核设施部件构造规则第1册NB分卷1级部件2004-中文版翻译.pdfASME 核电规范与标准BPVC-III 核设施部件构造规则第1册NC分卷2级部件2004-中文版翻译.pdfASME 核电规范与标准BPVC-III 核设施部件构造规则第1册ND分卷3级部件2004-中文版翻译.pdfASME 核电规范与标准BPVC-Ⅲ-核设施部件构造规则第1册NH分卷1级部件2004-中文版翻译.pdfASME-B1.20.1-2013 中文版翻译.pdfASME锅炉及压力容器规范国际性规范Ⅱ材料B篇非铁基材料2007中文版翻译.pdf ASME锅炉及压力容器规范国际性规范Ⅱ材料C篇焊条、焊丝及填充金属2007中文版翻译版.pdfASME锅炉及压力容器规范国际性规范Ⅱ材料D篇性能(公制) 2007中文版翻译版.pdf ASME锅炉及压力容器规范国际性规范Ⅷ第1册压力容器建造规则2010中文版翻译版.pdfASME锅炉及压力容器规范国际性规范Ⅷ第1册压力容器建造规则-2010-中文版翻译版.pdfASTM A193-2011-中文版翻译.pdfASTM A352M-2006-中文版翻译.pdfASTM A580-18 -中文版翻译.pdfASTM A671A671M-2010-中文版翻译.pdfASTM A709-中文版翻译.pdfASTM B504-1990(2007)-中文版翻译.pdfASTM C1026-2013-中文版翻译.pdfASTM C1027-09(R 2017)-中文版翻译.pdfASTM C1185-08(2012)-中文版翻译.pdfASTM C1243-1993(R 2015) (E 2017)-中文版翻译.pdfASTM C126-2011-中文版翻译.pdfASTM C1329-2015-中文版翻译.pdfASTM C1378-2004(R2014)-中文版翻译.pdfASTM C1396-2013-中文版翻译.pdfASTM C1442 2014-07-中文版翻译.pdfASTM C1572-17-中文版翻译.pdfASTM C370 - 12(2016)-中文版翻译.pdfASTM C372-94(2016)-中文版翻译.pdfASTM C373-17(2017)-中文版翻译.pdfASTM C424-93(2016)-中文版翻译.pdfASTM C482-2002(R2014)-中文版翻译.pdfASTM C484-1999(R2014)-中文版翻译.pdfASTM C485-16-中文版翻译.pdfASTM C499-2009(R2014)-中文版翻译.pdfASTM C502-2016中文版翻译-中文版翻译.pdfASTM C609-2007(R2014)-中文版翻译.pdfASTM C648-2004(R2014)-中文版翻译.pdfASTM C650-2004(R2014)-中文版翻译.pdfASTM C666 C666M-03(2008)-中文版翻译.pdfASTM C717 REV A 2014-05 13P-中文版翻译.pdfASTM C792 2015-03 3P-中文版翻译.pdfASTM D1003-21-中文版翻译.pdfASTM D1044 2013-09 中文版翻译.pdfASTM D1970-13-中文版翻译.pdfASTM D2394-05(2011)-中文版翻译pdfASTM D2624-21-中文版翻译.pdfASTM D2794-93(2019)-中文版翻译.pdfASTM D2863-13-中文版翻译.pdfASTM D3175 2018-中文版翻译.pdfASTM D3175-2017-中文版翻译.pdfASTM D3359-17-中文版翻译.pdfASTM D3746-85R2008-中文版翻译.pdfASTM D3912-2010-中文版翻译.pdfASTM D4239 2018-中文版翻译.pdfASTM D4239-2017-中文版翻译.pdfASTM D4272-09-中文版翻译.pdfASTM D4292-2017-中文版翻译.pdfASTM D4422 2019-中文版翻译.pdfASTM D4541-17-中文版翻译.pdfASTM D4541-2009e1-中文版翻译.pdfASTM D4930-06(R 2017)-中文版翻译.pdfASTM D5003 2019-中文版翻译.pdfASTM D5003 REV A-06(R 2017)-中文版翻译.pdf ASTM D5178 - 98(2002)-中文版翻译.pdfASTM D522-17-中文版翻译.pdfASTM D570-1998(R 2018)-中文版翻译.pdf ASTM D637-1990-中文版翻译.pdfASTM D6374 2012-中文版翻译.pdfASTM D6374-12(R 2017) (E 2017)-中文版翻译.pdf ASTM D638 - 14-中文版翻译.pdfASTM D6791 2011-中文版翻译.pdfASTM D6866-20-中文版翻译.pdfASTM D779-03-中文版翻译.pdfASTM D792-20-中文版翻译.pdfASTM D870-15(2020)-6-7-8-中文版翻译.pdf ASTM D97-96a-中文版翻译.pdfASTM D974 - 21-中文版翻译.pdfASTM E1070-17a-中文版翻译.pdfastm E1091-2008-中文版翻译.pdfASTM E127-19e1-中文版翻译.pdfASTM E127-2020-中文版翻译.pdfASTM E1951-14(2019)-中文版翻译.pdfastm E1978-2005-中文版翻译.pdfASTM E220-19-中文版翻译.pdfASTM E2273-03R2011-中文版翻译.pdf ASTM E2309-20-中文版翻译.pdfASTM E2484-08-中文版翻译.pdfASTM E2658-2015-中文版翻译.pdfASTM E283-2019-中文版翻译.pdfASTM E317-16-中文版翻译.pdfASTM E4-2014-中文版翻译.pdfASTM E467 - 08 (2014)-中文版翻译.pdf ASTM E83-10a-中文版翻译.pdfASTM E84-13a-中文版翻译.pdfASTM F 925–02-中文版翻译.pdfASTM F1816-1997(R2009)-中文版翻译.pdf ASTM F733-2009-中文版翻译.pdfASTM F893-2010-中文版翻译.pdfASTM G151 2010-中文版翻译.pdfASTM G152-13-10-中文版翻译.pdfASTM G152-13-中文版翻译.pdfASTM G154-12a-12-中文版翻译.pdfASTM G154-12a-中文版翻译.pdfASTM G155 2013-06-中文版翻译.pdfASTM G155 2013-中文版翻译.pdfASTM G21-2015-中文版翻译.pdfASTM+E119-中文版翻译.pdfASTM+G155-13-中文版翻译.pdfASTM_A182-2006-中文版翻译.pdfASTM_A312-2004-中文版翻译.pdfASTM_D570-98-中文版翻译.pdfASTM_D648-07-中文版翻译.pdfASTM_D882-02-中文版翻译.pdfATT_001F93.dat-中文版翻译.pdfAWWA D104-2011-中文版翻译.pdfAFNOR NF EN 13523-27-2009-中文版翻译.pdf AFNOR NF F00-072-1990_中文版翻译.pdf AFNOR NF F00-363-1995-中文版翻译.pdf AFNOR NF F19-211-1990-中文版翻译.pdf AFNOR NF F19-216-1993-中文版翻译.pdf AFNOR NF F19-217-1994-中文版翻译.pdf AFNOR NF F19-218-1993-中文版翻译.pdfAFNOR NF F19-219-1994-中文版翻译.pdf AFNOR NF F19-220-1992-中文版翻译.pdf AFNOR NF F19-222-1992-中文版翻译.pdf AFNOR NF F19-223-1992-中文版翻译.pdf AFNOR NF F19-290-2002-中文版翻译.pdf AFNOR NF F19-291-2002-中文版翻译.pdf AFNOR NF F19-293-1997-中文版翻译.pdf AFNOR NF F19-295-1997-中文版翻译.pdf AFNOR NF F19-296-1998-中文版翻译.pdf AFNOR NF F19-352-1996-中文版翻译.pdf AFNOR NF F19-355-1995-中文版翻译.pdf AFNOR NF F19-447-1997-中文版翻译.pdf AFNOR NF F19-449-1992-中文版翻译.pdf AFNOR NF F19-477-1991-中文版翻译.pdf AFNOR NF F19-478-1989-中文版翻译.pdf AFNOR NF F31-11-1994-中文版翻译.pdf AFNOR NF F31-112-1994-中文版翻译.pdf AFNOR NF T30-124-1991-中文版翻译.pdf AFNOR NF X08-014-2005-中文版翻译.pdf AFNOR_NFEN_ISO_2813-1999-中文版翻译.pdf AFNOR_NF_F19-216-1993-中文版翻译.pdf AFNOR_NF_F19-217-1994-中文版翻译.pdf AFNOR_NF_F19-218-1993-中文版翻译.pdf AFNOR_NF_F19-219-1994-中文版翻译.pdf AFNOR_NF_F19-220-1992-中文版翻译.pdf AFNOR_NF_F19-222-1992-中文版翻译.pdf AFNOR_NF_F19-223-1992-中文版翻译.pdf AFNOR_NF_F19-283-1990-中文版翻译.pdf AFNOR_NF_F19-290-2002-中文版翻译.pdf AFNOR_NF_F19-291-2002-中文版翻译.pdf AFNOR_NF_F31-112-1994_中文版翻译.pdfB155050-K-中文版翻译.pdfB217110-C-中文版翻译.pdfB217120-B-中文版翻译.pdfB217130-A-中文版翻译.pdfB620030-E-中文版翻译.pdfB620300-E-中文版翻译.pdfBC1-2012-中文版翻译.pdfBS 1363-3-1995-AMD-2003-中文版翻译.pdfBS 159-1992-中文版翻译.pdfBS 1742-5.2-1991-中文版翻译.pdfBS 1868-中文版翻译.pdfBS 3900 F4-1968-中文版翻译.pdfBS 4255-1-1986-中文版翻译.pdfBS 4873-2009-中文版翻译.pdfbs 5228-1-中文版翻译.pdfBS 5228-2-2009-中文版翻译.pdfBS 5228-4-1992-中文版翻译.pdfBS 5427-1-1996-中文版翻译.pdfBS 5911-4-2002+A2-2010-中文版翻译.pdfBS 6375-2-2009-中文版翻译.pdfBS 6783-14-1994-中文版翻译.pdfBS 6783-15-1994-中文版翻译.pdfBS 7385-1-中文版翻译.pdfBS 7385-2-中文版翻译.pdfBS 8405-2003+A1-2009-中文版翻译.pdfBS 952-1-1995-中文版翻译.pdfBS 9999-2008-中文版翻译.pdfBS EN 10002-1-2001-中文版翻译.pdfBS EN 10025-2-2004-中文版翻译.pdfBS EN 10034-1993-中文版翻译.pdfBS EN 10034-1994-中文版翻译.pdfBS EN 10056-1-1999-中文版翻译.pdfBS EN 10056-1-2000-中文版翻译.pdfBS EN 10056-2-1993-中文版翻译.pdfBS EN 10083-3-2006-中文版翻译.pdfBS EN 10163-3-2004-中文版翻译.pdfBS EN 10210-1994-中文版翻译.pdfBS EN 10216-2-2002-中文版翻译.pdfBS EN 10253-2-中文版翻译.pdfBS EN 1026-2000-中文版翻译.pdfBS EN 10279-2000-中文版翻译.pdfBS EN 10339-2007-中文版翻译.pdfBS EN 1090-2-2008-中文版翻译.pdfBS EN 1147-2010-中文版翻译.pdfBS EN 12199-2010-中文版翻译.pdfBS EN 12201-2 2011 + A1 2013-中文版翻译.pdfBS EN 12201-3 2011 + A1 2012(2013)-中文版翻译.pdf BS EN 12207-2000-中文版翻译.pdfBS EN 12208-2000-中文版翻译.pdfBS EN 12210-2000-中文版翻译.pdfBS EN 12246-1999-中文版翻译.pdfBS EN 12430_2013-中文版翻译.pdfBS EN 12668-1-2010-中文版翻译.pdfBS EN 12668-2-2010-中文版翻译.pdfBS EN 12697-23-2003 中文版翻译.pdfBS EN 1279-1-2004-中文版翻译.pdfBS EN 1279-2-2002-中文版翻译.pdfBS EN 1279-3-2002-中文版翻译.pdfBS EN 12791-2005-中文版翻译.pdfBS EN 12953-1-2002-中文版翻译.pdfBS EN 12953-11-2003-中文版翻译.pdfBS EN 12953-2-2002-中文版翻译.pdfBS EN 12953-3-2002-中文版翻译.pdfBS EN 12953-4-2002-中文版翻译.pdfBS EN 12953-5-2002-中文版翻译.pdfBS EN 12953-6-2011-中文版翻译.pdfBS EN 13100-1-2000-中文版翻译.pdfBS EN 13100-2-2004-中文版翻译.pdfBS EN 13100-3-2004-中文版翻译.pdfBS EN 13146-8-2012-中文版翻译.pdfBS EN 13262-2004-中文版翻译.pdfBS EN 13369-中文版翻译.pdfBS EN 1337-11-1998-中文版翻译.pdfBS EN 1337-8-2007-中文版翻译.pdfBS EN 1342 2013 中文版翻译.pdfBS EN 13445-2 2014-中文版翻译.pdfBS EN 13445-4-2009-中文版翻译.pdfBS EN 13450-2013-中文版翻译.pdfBS EN 13481-4-2012-中文版翻译.pdfBS EN 1349-2000-中文版翻译.pdfBS EN 13529-中文版翻译.pdfBS EN 13566-2-2005(2006)-中文版翻译.pdf BS EN 13709-2002-中文版翻译.pdfBS EN 1372 2015-中文版翻译.pdfBS EN 1373 2015-中文版翻译.pdfBS EN 13803-2-2006+A1-2009 -中文版翻译.pdf BS EN 13848-2-2006-中文版翻译.pdfBS EN 13892-4-2002-中文版翻译.pdfBS EN 1408-2008-中文版翻译.pdfBS EN 14411-2016-中文版翻译.pdfBS EN 14728-2005-中文版翻译.pdfBS EN 14730-2-2006-中文版翻译.pdfBS EN 14749-2005-中文版翻译.pdfBS EN 1475-1996-中文版翻译.pdfBS EN 14752-2015-中文版翻译.pdfBS EN 14969-2006-中文版翻译.pdfBS EN 1527-2013-中文版翻译.pdfBS EN 15332-2007-中文版翻译.pdfBS EN 1536-2010+A1-2015 (35-50页)中文版翻译.pdf BS EN 15427-2008+A1-2010-中文版翻译.pdfBS EN 15594-2009-中文版翻译.pdfBS EN 166-2002-中文版翻译.pdfBS EN 1670-2007-中文版翻译.pdfBS EN 179-1998-中文版翻译.pdfBS EN 1793-1 2013-中文版翻译.pdfBS EN 1841-1999-中文版翻译.pdfBS EN 1846-2 -2010-中文版翻译.pdfBS EN 1846-3-2002+A1-2008-中文版翻译.pdfBS EN 1888-2003-中文版翻译.pdfBS EN 1903 2015-中文版翻译.pdfBS EN 1991-4-2006-中文版翻译.pdfBS EN 1993-1-6-2007-中文版翻译.pdfBS EN 1996-2-2006-中文版翻译.pdfBS EN 287-2-1997-中文版翻译.pdfBS EN 410-2011-中文版翻译.pdfBS EN 485-1-2008-中文版翻译.pdfBS EN 515-1993-中文版翻译.pdfBS EN 520-2004+A1-2009-中文版翻译.pdfBS EN 545-中文版翻译.pdfBS EN 60617-8-1996-中文版翻译.pdfBS EN 60900-2012-中文版翻译.pdfBS EN 71-1 2014+A1 2018-中文版翻译.pdfBS EN 71-2-2011+ A1 2014-中文版翻译.pdfBS EN 71-3 2019-中文版翻译.pdfBS EN 755-8-2008-中文版翻译.pdfBS EN 771-3-2003-中文版翻译.pdfBS EN 837-1-中文版翻译.pdfBS EN 837-2-中文版翻译.pdfBS EN 866-1-1997-中文版翻译.pdfBS EN 866-7-2000-中文版翻译.pdfBS EN IEC 60900-2018-中文版翻译.pdfBS EN ISO 17892-1-2014-中文版翻译.pdfBS EN ISO 17892-12-2018-中文版翻译.pdfBS EN ISO 20345-2011-中文版翻译.pdfBS EN ISO 22232-1-2020-中文版翻译.pdfBS EN ISO 3678-1995-中文版翻译.pdfBS EN ISO 3822-2-1996-中文版翻译.pdfBS EN ISO 3822-3-1997+A1-2009-中文版翻译.pdfBS EN ISO 3822-4-1997-中文版翻译.pdfBSI 17-30348435 DC-中文版翻译.pdfBSI BS EN 10149-3 2013-09-中文版翻译.pdfCCTG法国通用技术规范第27分册-中文版翻译.pdfCDPH-IAQ_StandardMethod_V1_1_2010_ADA-中文版翻译.pdf CPSC-CH-C1001-09.3-中文版翻译.pdfCP_1-STM-N-801-du-6-8-2008-中文版翻译.pdfCSA AM ANSI Z21.10.3-2015 CSA 4.3-2015-中文版翻译.pdf CSA C2.1-06 (R2017)-中文版翻译.pdfCSA C227.4-21-中文版翻译.pdfCSA Z94.3-15-中文版翻译.pdfCSA Z94.3-2020-中文版翻译.pdfDD ENV 13481-6-2002-中文版翻译.pdfDIN 1053-1-中文版翻译.pdfDIN 1053-2-中文版翻译.pdfDIN 1053-3-中文版翻译.pdfDIN 1053-4 Entwurf-中文版翻译.pdfDIN 1053-4-中文版翻译.pdfDIN 12898-1992-中文版翻译.pdfDIN 12916-1995-中文版翻译.pdfDIN 1342-1 2003-11-中文版翻译.pdfDIN 1342-2 2003-11-中文版翻译.pdfDIN 1342-3 2003-11-中文版翻译.pdfDIN 14096 (2014-05-00)-中文版翻译.pdfDIN 14530-11 (2019-11-00)-中文版翻译.pdfDIN 14530-16 (2019-11-00)-中文版翻译.pdfDIN 14676 (2012-09-00)-中文版翻译.pdfDIN 14924-2015-中文版翻译.pdfDIN 1681-1985-中文版翻译.pdfDIN 16960-1-1974-中文版翻译.pdfDIN 1910-3-1977-中文版翻译.pdfDIN 19552-002-中文版翻译.pdfDIN 19554-2-1978-中文版翻译.pdfDIN 19554-2002-中文版翻译.pdfDIN 19627 (2017-04-00)-中文版翻译.pdfDIN 19636-100-中文版翻译.pdfDIN 22109-4-2000-中文版翻译.pdfDIN 3015-10 1994-02-中文版翻译.pdf DIN 3113-2007-中文版翻译.pdfDIN 332-1-1986-中文版翻译.pdfDIN 406-10-中文版翻译.pdfDIN 406-11-中文版翻译.pdfDIN 406-12-中文版翻译.pdfDIN 42539-1-1968-中文版翻译.pdfDIN 42539-2-1968-中文版翻译.pdfDIN 43138-中文版翻译.pdfDIN 46228-3-1992-中文版翻译.pdfDIN 4753-1 (2019-05-00)-中文版翻译.pdf DIN 4753-3-2011-中文版翻译.pdfDIN 4753-3-2017-中文版翻译.pdfDIN 4753-7 (2019-05-00)-中文版翻译.pdf DIN 50125-2009-中文版翻译.pdfDIN 50125-中文版翻译.pdfDIN 5033-1-2009-中文版翻译.pdfDIN 5033-2-1992-中文版翻译.pdfDIN 5033-3-1992-中文版翻译.pdfDIN 5033-4-1992-中文版翻译.pdfDIN 5033-5-1992-中文版翻译.pdfDIN 5033-6-1976-中文版翻译.pdfDIN 5033-7-1983-中文版翻译.pdfDIN 5033-8-1982-中文版翻译.pdfDIN 5033-9-2005-中文版翻译.pdfDIN 50602-中文版翻译.pdfDIN 50918-1978-中文版翻译.pdfDIN 51131(2014-02-00)-中文版翻译.pdf DIN 5129 (2014-01-00)-中文版翻译.pdf DIN 51290-1-1991-中文版翻译.pdfDIN 51290-2-1991-中文版翻译.pdfDIN 51290-3-1991-中文版翻译.pdfDIN 51290-4-1991-中文版翻译.pdfDIN 5131 2014-01-中文版翻译.pdfDIN 51368-中文版翻译.pdfDIN 52305-1995-中文版翻译.pdfDIN 52308-1984-中文版翻译.pdfDIN 52361-1965-中文版翻译.pdfDIN 53133-2006-中文版翻译.pdfDIN 53428-1986 中文版翻译.pdfDIN 53504 (2017-03-00)-中文版翻译.pdfDIN 53505-2000-中文版翻译.pdfDIN 53867-1990-中文版翻译.pdfDIN 54345-1-1992-中文版翻译.pdfDIN 54345-5-1985-中文版翻译.pdfDIN 5510-2-2009-05 中文版翻译.pdfDIN 55429-2-1987-中文版翻译.pdfDIN 55543-4-2010-中文版翻译.pdfDIN 55635-2019-中文版翻译.pdfDIN 58124 (2018-10-00-中文版翻译.pdfDIN 58916-2004-中文版翻译.pdfDIN 66131-1993-中文版翻译.pdfDIN 66132-1975-中文版翻译.pdfDIN 67530-1982-中文版翻译.pdfDIN 68764-1 1973-09-中文版翻译.pdfDIN 68764-2 1974-09-中文版翻译.pdfDIN 68857-2004-中文版翻译.pdfDIN 72594-1-2006-中文版翻译.pdfDIN 7287 2014-01-中文版翻译.pdfDIN 7294 2014-01-中文版翻译.pdfDIN 7444-2009-中文版翻译.pdfDIN 8078-2008-中文版翻译.pdfDIN 8187-2-1998-中文版翻译.pdfDIN 8187-3-1998-中文版翻译.pdfDIN 81915-1998-中文版翻译.pdfDIN 820-1-2014-中文版翻译.pdfDIN 820-4-2014-中文版翻译.pdfDIN 8201-4-1985-中文版翻译.pdfDIN 838-2007-中文版翻译.pdfDIN 8743 appendix 8-中文版翻译.pdfDIN 894-2007-中文版翻译.pdfDIN EN 10025-2-2004-中文版翻译.pdfDIN EN 10025-中文版翻译.pdfDIN EN 10293 Berichtigung 1 2008-中文版翻译.pdf DIN EN 10293-2005-中文版翻译.pdfDIN EN 12678-2016-中文版翻译.pdfDIN EN 12897-2006-中文版翻译.pdfDIN EN 12897-2016-中文版翻译.pdfDIN EN 12915-1-2009-中文版翻译.pdfDIN EN 13443-1-2007-中文版翻译.pdfDIN EN 14293-2006-中文版翻译.pdfDIN EN 14743-2007-中文版翻译.pdfDIN EN 15332-2020E-中文版翻译.pdfDIN EN 16380-2014-中文版翻译.pdfDIN EN 415-1 2014-中文版翻译.pdfDIN EN 415-10 2014-07-中文版翻译.pdfDIN EN 415-2 2000-中文版翻译.pdfDIN EN 415-3 2010-中文版翻译.pdfDIN EN 415-4 1997-中文版翻译.pdfDIN EN 415-5-2010-中文版翻译.pdfDIN EN 415-6 2013-09-中文版翻译.pdfDIN EN 415-8-2011-06-中文版翻译.pdfDIN EN 415-9-2010-中文版翻译.pdfDIN EN 573-3-2009 -中文版翻译.pdfDIN EN 60068-2-30-中文版翻译.pdfDIN EN 60068-2-6-中文版翻译.pdfDIN EN 60068-2-68-中文版翻译.pdfDIN EN 681-1-中文版翻译.pdfDIN EN 970-1997-中文版翻译.pdfDIN EN ISO 1101-2014-中文版翻译.pdfDIN EN ISO 1302-2002 中文版翻译.pdfDIN EN ISO 14405-2 2012 中文版翻译.pdfDIN EN ISO 286-2-2010-11 中文版翻译.pdfDIN EN ISO 2931-2018-中文版翻译.pdfDIN EN ISO 9227 2012 中文版翻译.pdfDIN ISO 9271-1995-替代DIN 25415-4-中文版翻译.pdf DIN ISO 9277-2010-中文版翻译.pdfDIN V VDE V 0126-18-2-3-2007-中文版翻译.pdfDIN V VDE V 0126-18-2-4-2007-中文版翻译.pdfDIN+EN+1634-1-2014-中文版翻译.pdfDIN-EN10210-P1(中文版翻译版).pdfDIN17100-1980-中文版翻译.pdfDIN22109-1-2000中文版翻译.pdfDINEN10292Z中文版翻译版.pdfDINEN15433-6-2008中文版翻译版.pdfDIN_17210_表面硬化钢_供货技术条件-中文版翻译.pdf DIN_30-10-2006-中文版翻译.pdfDIN_30-5-2002-中文版翻译.pdfDIN_30-6-2002-中文版翻译.pdfDIN_51757_2011-01(中文版翻译).pdfDIN_6174-2007-中文版翻译.pdfDIN_EN_10056-01-中文版翻译.pdfDIN_EN_10228-3中文版翻译.pdfDIN_EN_10327中文版翻译.pdfDIN_EN_13450-2003中文版翻译.pdfE1571 report step by step prwrc 2nd draft-中文版翻译.pdfEN 10021-2006中文版翻译.pdfEN 10021-2006中文版翻译.pdfEN 10025-3-2004 結構鋼熱軋產品第三部分正火正火軋制可焊細粒結構鋼交貨條件中文版翻译.pdfEN 10028-2-2003-中文版翻译.pdfEN 10060-2004_中文版翻译.pdfEN 10060-2004_中文版翻译.pdfEN 10163-2-2004-中文版翻译.pdfEN 10204-2004 中文版翻译.pdfEN 1122-中文版翻译.pdfEN 12150-1:2015中文版翻译.pdfEN 1289-中文版翻译.pdfEN 13190-2001-中文版翻译.pdfEN 1337-3-2005-中文版翻译.pdfen 14582-2002 中文版翻译.pdfEN 14931 2006中文版翻译.pdfEN 167 2001中文版翻译.pdfEN 168 2002中文版翻译.pdfEN 1822-1-中文版翻译.pdfEN 200-中文版翻译.pdfEN 287-中文版翻译.pdfEN 581-中文版翻译.pdfEN 71-1-2011-中文版翻译.pdfEN 71-92007-中文版翻译.pdfEN 717-2-中文版翻译.pdfEN 817-2008-中文版翻译.pdfEN 970-中文版翻译.pdfEN ISO 3262-19_2000-10-中文版翻译.pdfEN ISO 787-11-1995-10-中文版翻译.pdfEN ISO 787-18 1983-中文版翻译.pdfEN ISO 787-9 中文版翻译.pdfEN-14511-3-2004-CHN中文版翻译.pdfEN-14511-4-2004-CHN中文版翻译.pdfEN10025-2004热轧结构钢系列标准中文版翻译.pdfEN10025-3-2004中文版翻译.pdfEN10028-12007+A12009承压用扁钢-第1部分:一般要求(含1号修改单)中文版翻译.pdf EN10028-2-2003中文版翻译.pdfEN10028-3-2009-中文版翻译.pdfEN10029 2010-中文版翻译.pdfEN10029 2010-中文版翻译.pdfEN10088-1(欧洲不锈钢标准)中文版翻译.pdf EN10088-1中文版翻译版.pdfEN10149-2-SXXXMC(中文版翻译).pdfEN10204-2004中文版翻译版.pdfEN10228-3-1998-中文版翻译版.pdfEN10250-1-1999中文版翻译版.pdfEN10250-2-2000中文版翻译版.pdfEN12209中文版翻译版.pdfEN12790中文版翻译版.pdfEN13828中文版翻译.pdfEN50128_中文版翻译.pdfEN50128中文版翻译.pdfEN50129中文版翻译.pdfEN50334中文版翻译.pdfEN55014中文版翻译.pdfEN60335-1中文版翻译.pdfEN9802003中文版翻译.pdfEN_10204-2004_中文版翻译.pdfEN_15380-1-中文版翻译.pdfEN_Operating-Instructions_V.3-中文版翻译.pdf EPA 8270D 2014-中文版翻译.pdfEPA-HQ-QAR-0-0162-英中对照.pdfEPA-HQ-QAR-0-0162-中文版翻译.pdfES 95400-10-2020--中文版翻译.pdfES 95400-10-2020-中文版翻译.pdfES01000-00E 中文版翻译.pdfES90000-01E 中文版翻译.pdfES90000-03 20170901-中文版翻译.pdfES91500-00E 中文版翻译.pdfES95400-10-2018中文版翻译.pdfES95400-10-REV 19 中文版翻译.pdfES96203-00E 中文版翻译.pdfexample 3.1 bode-译文.pdfF19-301-1991-中文版翻译.pdfF19-302-1995-中文版翻译.pdfF19-303-1996-中文版翻译.pdfF19-350-1998-中文版翻译.pdfF19-351-1996-中文版翻译.pdfFIDIC DREDGING & RECLAMATION 2006_中文版翻译.pdfFM 1421-2018-水枪组件喷嘴验收标准中文版翻译.pdfFM 5511-软管组件,水枪消防喷嘴中文版翻译.pdfFM Approval 5560 ERD 水雾系统验证标准-中文版翻译.pdfGB 1356-2001-英文译文.pdfGB 18111-2000 英文翻译.pdfGB 4053.2-2009-英文翻译.pdfGB 50017-2017 EN(正文译文).pdfGB 50017-2017 钢结构设计标准(条文说明)-英文翻译.pdfGB T 19568-2017 风力发电机组装配和安装规范-英文翻译.pdfGB T 20801.5-2020-英文翻译.pdfGB T 37898-2019 风力发电机组吊装安全技术规程-英文翻译.pdf gb-t18160-2008-英文译文.pdfGB-T4336-2002中文版翻译.pdfGerman Firefighters Hierarchy中文版翻译.pdfGEV_Test_Method_2018-04-18-中文版翻译.pdfGMKOREA EDS-T-3501-2010中文版翻译.pdfGMRT2100 Iss 5 中文版翻译.pdfGMW 14334-2013中文版翻译.pdfGMW 14444-2017-中文版翻译-20210419.pdfGMW 14444-2017-中文版翻译.pdfGMW 3097 电磁兼容性一般规范-中文版翻译.pdfGMW 3172_AUG2008中文版翻译.pdfGMW GMW14333-2014中文版翻译.pdfGMW GMW15671-2013中文版翻译.pdfGMW GMW16016-2014中文版翻译.pdfGMW GMW3136-2011中文版翻译.pdfGMW14172中文版翻译.pdfGMW14173中文版翻译.pdfGMW14618中文版翻译.pdfGMW3431 2014-8 General Procedures for Testing Swi-中文版翻译.pdf GOST 12.4.121-2015-译文.pdfGOST 12.4.122-2020-译文.pdfGOST 12.4.158-90-译文.pdfGOST 12.4.159-90-译文.pdfHLD-SC200操作手册-中文版翻译.pdfIEC 60034-1-2004-中文版翻译.pdfIEC 60034-1-2004中文版翻译.pdfIEC 60034-2-1-2007-中文版翻译.pdfIEC 60034-2-1-2007中文版翻译.pdfIEC 61340-5-1(中文版翻译).pdfIEC 61754-20-2012中文版翻译.pdfIEC 62061-2021-中文版翻译.pdfIEC ASTM 62885-6-2018-中文版翻译.pdfIEC60598-1-2008中文版翻译.pdfIEC60811-3-1(2001中文版翻译).pdfIEC61188-5-1-2002中文版翻译.pdfIEC61188-5-2-2003-中文版翻译.pdfIEC61188-5-3-2007-中文版翻译.pdfIEC61188-5-4-中文版翻译.pdfIEC61188-5-5-中文版翻译.pdfIEC61188-5-6-2003-中文版翻译.pdfIEC61188-5-8-2007-中文版翻译.pdfIEC62305-4(中文版翻译).pdfIECTS61287-2-2001(中文版翻译).pdfIEEE C57.110-2018-中文版翻译.pdfIP 385-19(2019)-译文.pdfIPC-A-600G-2004 印制板的验收条件官方中文版翻译.pdf ISO 10140-2-2010中文版翻译.pdfISO 10140-2-2021-中文版翻译.pdfISO 10140-2-2021中文版翻译.pdfISO 10143 2019-中文版翻译.pdfISO 10143-2014中文版翻译.pdfISO 10236-1995中文版翻译.pdfISO 10292-1994-中文版翻译.pdfISO 10524-1-2018-样稿.pdfISO 10524-1-2018-中文版翻译.pdfISO 10545-10-中文版翻译.pdfISO 10545-11-中文版翻译.pdfISO 10545-12-中文版翻译.pdfISO 10545-13-中文版翻译.pdfISO 10545-2-中文版翻译.pdfISO 10545-3-中文版翻译.pdfISO 10545-4-中文版翻译.pdfISO 10563-2017(中文版翻译).pdfISO 10590-2005-中文版翻译.pdfISO 10591-2005-中文版翻译.pdfISO 10893-3-2011-中文版翻译.pdfISO 1101-2004 中文版翻译.pdfISO 1101-2012 中文版翻译.pdfISO 11290-2-2017-中文版翻译.pdfISO 11412-1998中文版翻译.pdfISO 11418-7-1998-中文版翻译.pdfISO 11432-2005-中文版翻译.pdfISO 11464-2006-中文版翻译.pdfISO 11465-1993-中文版翻译.pdfISO 11600 AMD 1-2011-07-中文版翻译.pdfISO 11600-2002-中文版翻译.pdfISO 11617-2022-中文版翻译.pdfISO 11890-2-2020-中文版翻译.pdfISO 12219-2-2012-中文版翻译.pdfISO 12312-1-2013+AMD1-2015中文版翻译.pdfISO 12312-1-2013中文版翻译.pdfISO 12980-2000 中文版翻译.pdfISO 12982-1-2000中文版翻译.pdfISO 12984-2018中文版翻译.pdfISO 13565-2-1996 cor1-1998-中文版翻译.pdfiso 13565-2-1996-中文版翻译.pdfISO 13913 2014-02中文版翻译.pdfISO 14235-1998-中文版翻译.pdfISO 14615-1997-中文版翻译.pdfISO 14638-2015 中文版翻译.pdfISO 148-2-2016 中文版翻译.pdfISO 15184-2012中文版翻译.pdfISO 15184-2020-中文版翻译.pdfISO 15590-2-2021-中文版翻译.pdfISO 15609-1-2004 金属材料的焊接程序规范和合格鉴定.焊接程序规范.电弧焊中文版翻译.pdfISO 15653-2018-中文版翻译.pdfISO 16276-2-2007-中文版翻译.pdfISO 16620-2-2019-中文版翻译.pdfISO 16703-2004中文版翻译.pdfISO 17178-2013 中文版翻译.pdfISO 17363-2013中文版翻译.pdfISO 17364-2013-中文版翻译.pdfISO 17364-2013中文版翻译.DOCXISO 17364-2013中文版翻译.pdfISO 17365-2013中文版翻译.pdfISO 18856-2004中文版翻译.pdfISO 19840-2012-中文版翻译.pdfISO 19840-2012中文版翻译.pdfISO 1997-2018中文版翻译.pdfISO 2030-2018-中文版翻译.pdfISO 2031-2015-中文版翻译.pdfISO 2067-2019-中文版翻译.pdfISO 2143-2017中文版翻译.pdfISO 2190-2016-中文版翻译.pdfISO 2219-2010中文版翻译.pdfISO 22232-1-2020-译文.pdfISO 22232.1-2020-中英文对照版.pdfISO 22631-2019-中文版翻译.pdfISO 22632-2019-中文版翻译.pdfISO 22633-2019-中文版翻译.pdfISO 22635-2019-中文版翻译.pdfISO 22636-2020-中文版翻译.pdfISO 22637-2019-中文版翻译.pdfISO 228-1-2000 中文版翻译.pdfISO 228-2-1987 中文版翻译.pdfISO 23206-2005 cor1-2007 中文版翻译.pdfISO 23206-2005 cor1-2007-中文版翻译.pdfISO 23206-2005-中文版翻译.pdfISO 23206-2005中文版翻译.pdfISO 23727-2009-中文版翻译.pdfISO 2386-2019-中文版翻译.pdfISO 24026-1-2020-中文版翻译.pdfISO 24026-2-2020-中文版翻译.pdfISO 2409-2013中文版翻译.pdfISO 24410-2020-中文版翻译.pdfISO 24442-2011-中文版翻译.pdfISO 24444-2019-中文版翻译--修订.pdfISO 24444-2019-中文版翻译翻译-修订.pdfISO 24444-2019-中文版翻译翻译.pdfISO 2503-2009-中文版翻译.pdfISO 2503-2009-中文版翻译翻译.pdfISO 26842-1-2020-05-中文版翻译.pdfISO 26842-2-2020-05-中文版翻译.pdfISO 2768-1-1989 中文版翻译.pdfISO 2768-2-1989 中文版翻译.pdfISO 2797-1986中文版翻译.pdfISO 28005-1-2013-译文.pdfISO 2808-2007 涂料和清漆.漆膜厚度的测定-中文版翻译.pdf ISO 2808-2019-中文版翻译.pdfISO 3183 2019-中文版翻译.pdfISO 3210-2017-中文版翻译.pdfISO 3253-1998-中文版翻译.pdfISO 4210-2 2015-09-译文.pdfISO 4210-6 2015-译文.pdfISO 4406-2021-中文版翻译.pdfISO 4892-1-2016-中文版翻译.pdfISO 4892-2-2013-中文版翻译.pdfISO 4986-1992鑄鋼件磁粉檢測-中文版翻译.pdf ISO 4987-92鑄鋼件滲透檢測-中文版翻译.pdf ISO 4993-87中文版翻译.pdfISO 4993-87鑄鋼件射綫檢測-中文版翻译.pdf ISO 5171-2009-中文版翻译.pdfISO 565-1990-中文版翻译.pdfiso 5663-1984-中文版翻译.pdfISO 5663-1984-中文版翻译翻译.pdfISO 5817-2007 中文版翻译.pdfISO 5817-2014(L2)1126 中文版翻译.pdfISO 6149-3-2006 中文版翻译.pdfISO 6344-1-1998-中文版翻译.pdfISO 6344-2-1998-中文版翻译.pdfISO 6344-3-1998-中文版翻译.pdfISO 6432-2015(L2)-中文版翻译.pdfISO 6486-1-1999中文版翻译.pdfISO 6537-1982中文版翻译.pdfISO 6787-2001-中文版翻译.pdfISO 6856-2005 中文版翻译.pdfISO 6997-1985-中文版翻译.pdfISO 7086-1-2000中文版翻译.pdfISO 718-1990中文版翻译.pdfISO 7390-2002-中文版翻译.pdfISO 7396-1-2007-中文版翻译.pdfISO 7451-2007(中文版翻译翻译).pdfISO 7529-2017中文版翻译.pdfISO 7546-1983-中文版翻译.pdfISO 7707-1986-译文.pdfISO 7804-1985-译文.pdfISO 7886-2-1996-中文版翻译翻译.pdfISO 7886-2-1996翻译.pdfISO 7934-1989(+AMD1998)中文版翻译.pdf ISO 8004-1985中文版翻译.pdfISO 8005-2005中文版翻译.pdfISO 8062-3-2007 中文版翻译翻译.pdfISO 8245-1999-中文版翻译.pdfISO 8245-1999-中文版翻译翻译.pdfISO 8340-2005-中文版翻译.pdfISO 8362-1-2003-中文版翻译.pdfISO 846-2019-中文版翻译.pdfISO 8502-3-1993-中文版翻译.pdfISO 8723-1986中文版翻译.pdfISO 8839-1986中文版翻译.pdfISO 9046-2002-中文版翻译.pdfISO 9047 CORR 1 2009-中文版翻译.pdfISO 9047-2001-中文版翻译.pdfISO 9050-2003中文版翻译.pdfISO 9377-2-2000中文版翻译.pdfISO 9406-1995中文版翻译.pdfISO TR 10064-3-1996 圆柱齿轮实用检验规程第3部分轴心圆柱的齿轮坯料、轴心距和平行度的建议(中文版翻译).pdfISO-12103-1中文版翻译.pdfISO-15730-2000-中文版翻译.pdfISO12647-2-2004 中文版翻译.pdfISO13920 中文版翻译.pdfISO1461(金属覆盖层-钢铁制品热镀锌层-技术条件)中文版翻译.pdfISO14644-1中文版翻译.pdfISO16750-5中文版翻译.pdfISO19252-2008中文版翻译.pdfISO9044_1999工业用金属编织网—技术要求与检验中文版翻译.pdfISO_16750-3_2007-中文版翻译.pdfISO_9227-0607-(盐雾试验)中文版翻译.PDFISO防霉-中文版翻译.pdfJB T 3232-2017 滚动轴承万向节滚针轴承(英文).DOCXJB T 3232-2017 滚动轴承万向节滚针轴承(英文).pdfJIS A1311-1994 建筑用防火门的防火试验方法中文版翻译.pdfJIS A5705-1998(JAP)-中文版翻译.pdfJIS B 4609-1998 一字槽螺钉旋具(中文版翻译).pdfJIS B 8312-1991-中文版翻译.pdfJIS D0205-中文版翻译.pdfJIS F 7005 船舶管道的识别-中文版翻译.pdfJIS F2025-1992 中文版翻译.pdfJIS G3548-1994 镀锌钢丝中文版翻译.pdfJIS K 6217-1-2008 -中文版翻译.pdfJIS K 7112-1999-中文版翻译.pdfJIS K 7113-1995-中文版翻译.pdfJIS K 7203-1982-中文版翻译.pdfJIS K 7208-1975-中文版翻译.pdfJIS K5659-2018 中文版翻译.docxJIS K5659-2018 中文版翻译.pdfJIS P8126-2005 R 2010 中文版翻译.pdfJIS R 3213 -1998-中文版翻译.pdfJIS T 8010-中文版翻译.pdfJIS T 8112-1997-中文版翻译.pdfJIS Z 1522-中文版翻译.pdfJISA5530-1983钢管板桩(中文版翻译).pdfJISB8271-1993压力容器的筒体及封头中文版翻译.pdfJISC3005-2000(中文版翻译).pdfJISC3005-2000橡胶或塑料绝缘电线和电缆的试验方法(中文版翻译).pdf JISC8702-1(2003)简体中文版翻译.pdfJISC9606-1993电动洗衣机标准中文版翻译.pdfJISD5500汽车用车灯中文版翻译.pdfJISE4502-1日本工业标准---铁路车辆用车轴中文版翻译.pdfJISG0306-1991锻钢通用技术要求中文版翻译.pdfJISG0582-1998超声波探伤检验方法中文版翻译.pdfJISG1253-2002钢铁火花放电原子发射光谱分析法(中文版翻译).pdf JISG3106-1999焊接结构用轧制钢材中文版翻译.pdfJISG4305-2005冷轧不锈钢板材、薄板和带材中文版翻译.pdfJISH4100-2006铝及铝合金挤压形状中文版翻译.pdfJISZ2202-1998金属材料冲击试样(中文版翻译).pdfJISZ2248-2006金属材料.弯曲试验中文版翻译.pdfJISZ2248-2006金属材料弯曲试验(中文版翻译).pdfJISZ2371-2000盐雾试验方法(中文版翻译).pdfJIS_G3313-1998_电镀锌钢板及钢带(中文版翻译).pdfJIS_G3444一般结构用碳素钢管中文版翻译.pdfJIS_G4304-2005__热轧不锈钢板材、薄板和带材(中文版翻译).pdfJIS_Z2201-1998__金属材料抗拉试验用试样__中文版翻译.pdfJJF 1698-2018-英文.pdfJJF1787-2019-英文.pdfJJG 971-2019-英文.pdfJSA JIS A 1905-1-2015-中文版翻译.pdfJSA JIS A 1905-2-2015-中文版翻译.pdfJSA JIS F 2029 中文版翻译.pdfJSA JIS T 8152-2012-译文.pdfKS R 1034-2006中文版翻译.pdfLV216-2 机动车辆及其电力驱动用屏蔽高压铠装电缆-中文版翻译.pdf MIL-G-25667B_AMENDMENT-1中文版翻译.pdfMIL-G-25667B_NOTICE-3中文版翻译.pdf MIL-G-25667B中文版翻译.pdfMIL-PRF-25690B-中文版翻译.pdfMIL-PRF-8184F NOT 1-中文版翻译翻译.pdf MIL-PRF-8184F-1998 中文版翻译.pdfMIL-PRF-8184F-中文版翻译.pdfMIL-PRF-8184F-中文版翻译翻译.pdf NAC溶液(10%)说明书-中文版翻译.pdf NBT47048-2015-英文译稿.pdfNF C27-234-1990中文版翻译.pdfNF E 05-051-1981-中文版翻译.pdfNF EN 12373-1-2001-中文版翻译.pdfNF EN 12373-10-1999-中文版翻译.pdfNF EN 12373-11-2000-中文版翻译.pdfNF EN 12373-12-2000-中文版翻译.pdfNF EN 12373-13-2000-中文版翻译.pdfNF EN 12373-14-2000-中文版翻译.pdfNF EN 12373-15-2000-中文版翻译.pdfNF EN 12373-16-2001-中文版翻译.pdfNF EN 12373-17-2001-中文版翻译.pdfNF EN 12373-18-2000-中文版翻译.pdfNF EN 12373-19-2002-中文版翻译.pdfNF EN 12373-2-1999-中文版翻译.pdfNF EN 12373-3-1999-中文版翻译.pdfNF EN 12373-4-1998-中文版翻译.pdfNF EN 12373-5-1999-中文版翻译.pdfNF EN 12373-6-1999-中文版翻译.pdfNF EN 12373-7-2002-中文版翻译.pdfNF EN 12373-8-1999-中文版翻译.pdfNF EN 12373-9-1999-中文版翻译.pdfNF F 19-201-2010-中文版翻译.pdfNF F00-800-1991-中文版翻译.pdfNF F01-492-2013-中文版翻译.pdfNF F19-141-1-1998-中文版翻译.pdfNF F19-141-2-1998-中文版翻译.pdfNF F19-301-1991-中文版翻译.pdfNF F19-302-1995-中文版翻译.pdfNF F19-303-1996-中文版翻译.pdfNF F19-350-1998-中文版翻译.pdfNF F19-351-1996-中文版翻译.pdfNF F31-129-2013 中文版翻译.pdfNF M64-001-1991-中文版翻译.pdfNF-F01-492-1-1993-待交付中文版翻译.PDFNFPA 1211 中文版翻译.PDFNFPA 1600-中文版翻译.pdfNFPA 1901-2016-中文版翻译.pdfNFPA 1906-中文版翻译.pdfNFPA 1911-2017-中文版翻译.pdfNFPA 1912-2016-中文版翻译.pdfNFPA 1932-2020-中文版翻译.pdfNFPA 1961-2020(译稿).pdfNFPA 414-2020-中文版翻译.pdfNFPA 501A-2013 中文版翻译.pdfNFPA 780-2017-中文版翻译.pdfNFPA 92-2018-中文版翻译.pdfNFPA 96-2017-中文版翻译.pdfNFPA 99 2015-第14章中文版翻译.pdfNFPA204-2002烟和热量的排放-中文版翻译.pdfNFPA30---22地面储罐部分(中文版翻译).pdfNFPA36-2009中文版翻译.pdfNFPA750美国消防协会细水雾消防系统标准2003中文版翻译.pdf NF_F_19-201-2010_中文版翻译.pdfNF_T30-071-6-2007-中文版翻译.pdfNF_T30-071-7-2004-中文版翻译.pdfNF_T30-071-8-2005-中文版翻译.pdfNF_T30-125-1974-中文版翻译.pdfNMX-C-155-ONNCCE-2014 actual(中文版翻译).pdfPED-97-23-EC压力设备指令-中文版翻译.pdfprEN 1930:2009(中文版翻译).pdfROHS指令-2011-65-EU(中文版翻译).pdfRTCA-DO-160G机载设备的环境条件和试验程序-7721-中文版翻译.pdf SAE AMS2750E-2012-中文版翻译.pdfSAE AS1339J-2018-中文版翻译.pdfSAE J296 199901-中文版翻译.pdfSAE J429-1999 外螺纹紧固件机械性能和材料要求中文版翻译.pdf SAE J434 中文版翻译.pdfSAE J575 2004-中文版翻译.pdfSAE J995-1999 钢制螺帽材料及机械性能要求(中文版翻译).pdf SAE MA2170-2015 -中文版翻译.pdfSAE MA2176A-2015 -中文版翻译.pdfSAE MA4098-2015-中文版翻译.pdfSAE MA614A-2015-中文版翻译.pdf。
ASTM材料规范书ASTM
ASTM材料规范书ASTM Material SpecificationsASTM材料规范书(2)ASTM Material Specifications (2)ASTM材料规范书(3)ASTM Material Specifications (3)ASTM材料规范书(4)ASTM Material Specifications (4)结构材料Materials of Construction结构材料:翻转式阀瓣止回阀Materials of Construction: Tilting Disc CheckValve结构材料:Y形截止阀Materials of Construction: Y-Globe Valve结构材料:闸阀Materials of Construction: Gate Valve结构材料:提升式止回阀Materials of Construction: Lift-Check Valve结构材料:球形截流阀和截止止回阀Materials of Construction: Globe Stop and Stop-Check Valves球阀阀座材料Ball Valve Seat Materials球阀阀座材料 (2)Ball Valve Seat Materials (2)25%强化TFE25% Reinforced TFE在美国尼伯科较高压力的碳钢和合金球阀产品中,采用短束玻璃纤维作为强化材料。
增加强化材料能够增加TFE的压力包容能力,降低冷变形倾向。
NIBCO uses short strand fiberglass as a reinforcement for our higher pressure carbon steel and alloy ball valve products.Adding reinforcement increases the pressure containing capabilities of TFE by reducing its tendency to cold-flow.碳填充TFECarbon-Filled TFE碳填充TFE是一种适用于蒸汽应用及高效油基热流体的极好的阀座材料。
塑料物性检测标准ISO ASTM DIN_对比
无
无
无
•精选ppt
9 Charpy
11标准
样条尺寸 测试方法 特殊说明
ISO 179
80*10*4(缺口2) 支撑线间距离62
GB 1043-96
80*10*4(缺口2) 支撑线间距离60
1.铣缺口 2.测量试样尺寸
3.选择摆锤(能量最大), 调节校准仪器
4.抬起摆锤,放置试样, 缺口背对刀刃
破坏时吸收的能量在摆 锤能量10-85%之间
GB 1843-96
80*10*4(缺口2) 能量2.75J,冲击速度3.5
1.铣缺口 2.测量录入试样尺寸
3.调节校准仪器 4.抬起摆锤,夹持试样
5.释放摆锤,记录数据
破坏时吸收的能量在摆 锤能量10-80%之间
ASTM D256
63.5± 2.0*12.7*3.2-
12.7(缺口2.54)
DIN
塑料在液体传热介质中 ,在一定的 负荷 , 一定的等速升温速率下 ,试 样被1mm2压铮头压入1mm时的温 度 , 即维卡软化温度
1. 试样平放于底座上压针下
2.放入加热装置中5min后施加负荷, 仪器清零
最少2个试样 起始温度20-23度 A50,A120负荷10N
B50,B120负荷50N
3.50度或120度/min匀速升温,搅拌 , 50, 120表示升温
5.释放摆锤,读取数据
ASTM D
6110 – 06
127*12.7*3.2(缺口2.54) 能量2.7 ±0. 14 J ,冲击速 度
DIN 53453
80*10*4(缺口2)
•精选ppt
10 HDT
12 标准
样条尺寸 测试方法 特殊说明
ASTM标准目录(E)
ASTM E 1000-1998 射线检验法ASTM E 1001-1999 运用纵波的浸入式脉冲回波超声法探测与评价不连续性ASTM E 100-1995 ASTM流体比重计ASTM E 1002-1996 使用超声波检漏ASTM E 1003-1995 静水压泄漏试验ASTM E 1004-1999 导电率的电磁(涡流)测量的标准规程ASTM E 1005-1997 反应堆压力容器监测E706(ⅢA)用辐射监视器的应用和分析的试验方法ASTM E 1006-1996 试验反应堆E706(Ⅱ)用的物理剂量测定结果的分析和解释ASTM E 1007-1997 通过天棚地板组件及其支承结构传导的夯击机械撞击声的现场测量方法ASTM E 1008-1997 地热和其它高温液体设备用减压阀体的安装、检验及保养法ASTM E 1009-1995 分析碳和低合金钢用光辐射真空分光仪的评估ASTM E 1010-1984 再溶化法作光谱化学分析用钢铁圆试样的制备ASTM E 1011-1996 硫酸ASTM E 101-1991 用点对面技术做铝和铝合金光谱分析的试验方法ASTM E 1012-1999 在拉伸负载下试样找平的验证ASTM E 1013-1993 有关计算机处理系统的术语ASTM E 1014-1984 室外A加权声级测量ASTM E 1016-1996 静电电子分光仪性能的规定和描述ASTM E 1017-1988 住所外窗组件的一般性能要求ASTM E 1018-1995 ASTM评价的核数据文件的应用(ENDF/A).截面和不确定文件(E706ⅡB) ASTM E 1019-1994 钢,铁,镍和钴合金中碳,硫,氮和氧含量的测定的测试方法ASTM E 10-2001 金属材料布氏硬度的标准试验方法ASTM E 1020-1996 事故报告ASTM E 1021-1995 光电池的光谱响应测量的测试方法ASTM E 102-1993 ASTM流体比重计ASTM E 1022-1994 用鱼和海水双壳类软体动物进行生物浓缩试验ASTM E 1023-1984 对水生生物及其使用的材料的危险性评估ASTM E 1024-1997 用火焰原子吸收分光光度测定法对金属和金属轴承矿石进行化学分析ASTM E 1025-1998 辐射摄影术用孔型图象质量指示仪ASTM E 1026-1995 弗里克基准剂量测定系统的使用ASTM E 1027-1992 聚合材料电离辐射的辐照量ASTM E 1028-2000 用无重铬酸盐滴定分析法对铁矿石中总铁含量的试验方法ASTM E 1029-2001 临床实验室计算机系统文献工作的标准指南ASTM E 1030-1995 金属铸件的X射线照相检验的试验方法ASTM E 1031-1996 炉渣的X射线辐射光谱测定分析的试验方法ASTM E 103-1984 金属材料的快速压痕硬度试验方法ASTM E 1032-2001 焊接件射线检验的标准试验方法ASTM E 1033-1998 在居里温度以上的F型连续焊接亚锰铁管的电磁(涡流)检验ASTM E 1034-1995 核设施工人瞬时记录ASTM E 1035-1985 核反应堆堆芯压力容器支承结构的放射性辐照量的测定ASTM E 1036-1996 使用标准电池的排列和非聚能地面光电模电气性能的标准试验方法ASTM E 1037-1984 测定回收废燃料的粒度分布ASTM E 1038-1998 通过撞击推动冰球法测定光电池组件抗冰雹能力的试验方法ASTM E 1039-1999 在全球辐射下硅非聚能器的地面光电基准电池的校准和特性的标准试验方法ASTM E 1040-1998 非集中陆地光电压参照电池的物理特性ASTM E 1041-1985 敞开式办公室隔音的测量ASTM E 104-1985 用水溶液保持恒定相对湿度ASTM E 1042-1992 镘刀抹涂或喷涂用的吸音材料的分类ASTM E 1043-1985 牛奶和奶油检验用吸管ASTM E 1044-1996 血清玻璃吸管(一般用途和船形)ASTM E 1045-1985 沙式血红蛋白吸管ASTM E 1046-1985 易处置的韦斯特格伦玻璃试管ASTM E 1047-1985 易处置的温特罗布血沉玻璃试管ASTM E 1048-1988 抗凝剂涂覆的色码试管或容器ASTM E 1049-1985 疲劳分析的周期计数ASTM E 1050-1998 管子、双扩音器和数字频率分析系统用传声材料的阻抗和吸收的试验方法ASTM E 1051-1996 马铃薯除草剂效力的评估指南ASTM E 105-1958 材料的概率取样ASTM E 1052-1996 专用杀病毒剂预期效力的试验方法ASTM E 1053-1997 对无生物环境表面杀病毒剂预期效力的试验方法ASTM E 1054-1991 在杀菌剂,卫生洗涤剂和防腐或贮藏产品中使用的抗菌剂活力失效的评估ASTM E 1055-1999 在白化兔中眼刺激性评价的试验方法ASTM E 1056-1985 一家和两家住房用太阳能家用热水设备的安装和维护ASTM E 1057-1999 建筑物和建筑系统投资的内部回报率和调整的内部回报率的测算ASTM E 1058-1985 自走式农业用车辆驾驶室内环境有毒污染的测试方法ASTM E 1059-1991 非石墨反电极的形状和尺寸的标示ASTM E 1061-2001 直读式带液晶头温度计标准规范ASTM E 106-1983 铜铍合金的化学分析试验方法ASTM E 1062-1986 用鸟类进行繁殖研究ASTM E 1063-1994 碳素钢和低合金钢中镧和铈含量的X射线辐射光谱测定的测试方法ASTM E 1064-2000 用卡尔费歇尔库仑滴定法测定有机液体中水含量的标准试验方法ASTM E 1065-1999 评估超声波探测装置特性的标准指南ASTM E 1066-1995 氨比色泄漏检验的测试方法ASTM E 1067-2001 玻璃纤维增强塑料树脂罐/容器的声辐射检验标准实施规程ASTM E 1068-1985 用模拟地热试液浸渍法测试非金属密封材料的方法ASTM E 1069-1985 密封应力下地热和/或高温操作用聚合密封材料试验的方法ASTM E 1070-1995 用磷钼兰光度测定法测定铁矿石中磷含量的方法ASTM E 107-1988 电子元件用镍的化学分析试验方法ASTM E 1073-1991 用老鼠获得药理学剖面的试验方法ASTM E 1074-1993 测算建筑物和建筑系统投资的净收益ASTM E 1075-1985 乙二醇,二甘醇,三甘醇,丙二醇和双丙二醇气味以及丙二醇味道的试验方法ASTM E 1076-1985 固体废料加工设备上的健康防护和安全记录ASTM E 1077-1991 估计钢样品脱碳深度的试验方法ASTM E 1078-1997 在螺旋电子光谱法、X射线光电子光谱法和二次离子质谱法中的样品加工ASTM E 1079-1997 透射密度计的校准ASTM E 1081-1995 用银还原滴定分析法测定铁矿石中总铁含量的试验方法ASTM E 108-2000 屋面覆盖物防火试验的标准试验方法ASTM E 1082-1990 测量车行道路面粗糙度的行车响应曲线的试验方法ASTM E 1083-2000 红辣椒热量的感官评定标准试验方法ASTM E 1084-1986 用阳光测试薄板材料的太阳能传递性(地面上)的试验方法ASTM E 1085-1995 金属的X射线辐射光谱测定分析试验方法ASTM E 1086-1994 用点对面激发技术作不锈钢的光辐射真空光谱测定分析ASTM E 1089-1986 均匀的静气压差下平板太阳能收集器的透水性的试验方法ASTM E 1090-1996 过氧化二异丙苯及其分解产物的试验方法ASTM E 1091-1998 防护板用非金属蜂窝芯子规范ASTM E 1092-1991 易处置的微型(Folin)玻璃移液管ASTM E 1093-1991 易处置玻璃(Prothrombin)移液管ASTM E 1094-1998 医用玻璃量杯ASTM E 1095-1999 普通实验室用玻璃漏斗的标准规范ASTM E 1096-1986 实验室玻璃分液漏斗ASTM E 1097-1997 直流电流等离子发射分光光谱测定分析法ASTM E 1098-1993 液态苛性钠(氢氧化钠溶液)ASTM E 1099-1996 无水苏打灰(碳酸钠,无水)ASTM E 1100-1992 公式SD-3A特种改性乙醇的气相色谱分析的试验方法ASTM E 110-1982 用轻型硬度测试仪测定金属材料压痕硬度的试验方法ASTM E 1102-1991 有关施用农用化学药物的术语定义ASTM E 1103-1996 测量亚慢性表皮毒性的试验方法ASTM E 1104-1998 医用温度计测头罩和护壳ASTM E 1105-1996 用统一的或循环的静态气压差法现场测定已安装的外窗,护墙及门渗水度的测试方法ASTM E 1106-1986 声发射传感器的一次校准ASTM E 1107-1986 测量资源回收单位操作物料通过量ASTM E 1108-1986 测量原料分选设备中产品回收的试验方法ASTM E 1109-1986 测量固体废料碎片体密度的试验方法ASTM E 1110-2001 声音清晰度等级测定的标准分类ASTM E 1111-1992 测量顶棚系统地段间减弱的测试方法ASTM E 111-1997 杨氏弹性模量、正切模量和弦切模量的试验方法ASTM E 1112-1986 病人体温定期检查用电子体温计ASTM E 1114-1992 测定铱192工业X射线源的焦点尺寸的测试方法ASTM E 1115-1991 外科手擦洗剂配方评估的试验方法ASTM E 1116-1998 杀虫剂可乳化浓缩物乳化特性的试验方法ASTM E 1117-1997 燃料酒精制造设备的设计ASTM E 1118-1995 强化热固树脂管(RTRP)的声辐射检验ASTM E 1119-1997 工业级乙二醇ASTM E 11-1995 试验用金属丝筛布筛分装置ASTM E 1120-1997 液氯ASTM E 1121-1998 建筑物和建筑系统投资的偿还率测算ASTM E 112-1996 测定平均粒度的试验方法(取代SAE AMS 2316A)ASTM E 1122-1996 用自动图象分析得到JK夹杂物额定值ASTM E 1123-1986 海军和航海船舶舱壁处理材料的声传输损失试验用试样的安装ASTM E 1124-1992 用双表面法现场测量声功率级的试验方法ASTM E 1125-1999 用平面光谱法校准初级非浓缩器的地面光电基准电池的标准试验方法ASTM E 1126-1994 有关生物量燃料的术语ASTM E 1127-1991 俄歇电子能谱学中的深度压形ASTM E 1129/E 1129M-1998 电热偶连接器ASTM E 1130-2002 使用声音清晰度指数在敞开式办公室内对谈话保密性进行客观量度的标准试验方法ASTM E 1131-1998 用热解重量分析法作成分分析的试验方法ASTM E 1132-1999 有关石英粉尘工作环境的健康要求ASTM E 1133-1986 美国政府征购的已包装的实验室设备的性能试验ASTM E 1134-1986 资源分离钢罐ASTM E 1135-1997 荧光穿透性亮度比较的试验方法ASTM E 1136-1993 径向标准试验轮胎ASTM E 1137-1997 工业用铂阻尼式温度计ASTM E 1139-1997 金属压力面产生的声辐射的连续监测ASTM E 1140-1995 气相色谱法用氮/磷热离子电离探测器测试ASTM E 114-1995 用接触法做超声波脉冲回波纵波检验ASTM E 1142-1997 与热力学特性相关的术语ASTM E 1143-1999 根据试验参数测定光电器件参数线性度的标准试验方法ASTM E 1146-1997 盐酸(工业级盐酸)ASTM E 1147-1992 用液体色谱法估算分配系数(N-辛醇/水)的试验方法ASTM E 1148-2002 水溶解度测量用标准试验方法ASTM E 1150-1987 与疲劳相关的名词术语ASTM E 1151-1993 离子色谱法名词和相关术语ASTM E 115-1997 光辐射光谱分析中的照片冲洗标准规范ASTM E 1152-1995 测定J-R曲线的试验方法ASTM E 1153-1994 无生命非食品接触面用推荐的消毒器的效力的测试ASTM E 1154-1989 活塞或柱塞操作的容量测量装置ASTM E 1155-1996 使用F-数字制测定楼板平正度和水平度的试验方法ASTM E 1155M-1996 使用F-数字制测定楼板平正度和水平度的试验方法(米制)ASTM E 1156-1988 暴露在合成非晶态硅土下的工作岗位的健康要求ASTM E 1157-1987 可重复使用的实验室玻璃器皿的取样和试验ASTM E 1158-1998 金属和金属合金生产材料的脉冲纵波超声检验用的标准块的材料选择与制造ASTM E 1159-1998 热电偶材料的标准规范.铂-铑合金和铂ASTM E 1160-1987 太阳能家用热水系统的现场检查和操作验证ASTM E 1161-1995 半导体和电子元件的放射性的测试方法ASTM E 116-1997 光谱化学分析中的照片光度学ASTM E 1162-1987 二次离子质谱法(SIMS)中报告溅射深度截面数据ASTM E 1163-1998 评定剧毒口服灭鼠剂的试验方法ASTM E 1164-1994 获取物体颜色评定用分光光度计数据ASTM E 1165-1992 用针孔成象法测量工业X射线管焦点的试验方法ASTM E 1166-2000 道路网水平路面管理ASTM E 1167-1987 停止操作的辐射防护计划ASTM E 1168-1995 核设施工人辐射防护训练ASTM E 1169-1989 耐久性试验的实施ASTM E 1170-1997 车行道路面纵剖面图的摸拟行车响应曲线ASTM E 1171-2001 在循环温度和湿度环境下光电模数的标准试验方法ASTM E 1172-1987 波长扩散X射线分光仪的描述和规定ASTM E 1173-2001 评定手术前和导管插入术前或注射前皮肤处理的标准试验方法ASTM E 1174-1994 评价卫生保健人员洗手模式的测试方法ASTM E 1175-1987 用大直经积分球测定材料的太阳能或光反射性,透明性和吸收性的试验方法ASTM E 1177-1998 防冻级乙二醇ASTM E 1178-1997 丙烯腈分析的测试法ASTM E 1179-1987 敞开式办公室元件和系统测试用声源ASTM E 1180-1994 宏观结构检验用硫印痕制备ASTM E 1181-1987 描述双重粒度特性的测试方法(代替 SAM AMS 2316A)ASTM E 118-1989 铜铬合金的化学分析试验方法ASTM E 1182-2001 用径向切割法测量表层厚度的标准试验方法ASTM E 1183-1987 为进一步分析用的风干回收废燃料RD-5的试验方法ASTM E 1184-1998 电热(石墨加热炉)原子吸收分析ASTM E 1185-1993 为评估在建筑物和建筑系统上投资对经济方法的选择ASTM E 1186-1998 建筑物外层漏气的现场检验ASTM E 1187-1997 与实验室认可相关的标准术语ASTM E 1188-1995 通过技术调研人员对信息和物理项进行收集和保存ASTM E 1189-1987 微型滴定管(科赫型)ASTM E 1190-1995 安装在结构构件中的传动粉料扣件强度的试验方法ASTM E 1191-1997 用海水糠虾进行生命周期毒性试验指南ASTM E 119-2000 建筑结构和材料防火试验的标准试验方法ASTM E 1192-1997 用鱼、大型无脊椎动物和两栖动物身上流出的含水物质进行剧毒试验ASTM E 1193-1997 用水蚤属magna进行延长生命周期毒性试验ASTM E 1194-1987 蒸气压力的试验方法ASTM E 1195-1987 测量土壤和沉积物中有机化学药物吸收常数(Koc)的试验方法ASTM E 1197-1987 进行陆地土壤芯样缩影测试的指南ASTM E 1198-1987 用泵采集浮流生物ASTM E 1199-1987 用克--朋氏浮游生物采样器采集浮游生物ASTM E 1-1998 ASTM温度计(试验方法9501-联邦试验方法NO.791b)ASTM E 1200-1987 浮游生物防腐ASTM E 1201-1987 用圆锥形拖网采集浮游生物ASTM E 120-2000 钛和钛合金化学分析的标准试验方法ASTM E 1202-1987 开发微核检测标准ASTM E 1203-1998 含水毒理学中动物试验用作为受试动物食品的海水小虾类ASTM E 1204-1997 食品加工用γ辐射装置在操作和特性上的剂量测定的应用ASTM E 1205-1999 用高铈-三价铈硫酸剂量仪测定水中的吸收剂量的试验方法ASTM E 1206-1987 现有设备的计算机化ASTM E 1207-1987 腋下除臭剂的感觉评定ASTM E 1208-1999 用亲油的乳化法作荧光液体渗透检验的试验方法ASTM E 1209-1999 用可水洗法作荧光液体渗透检验的试验方法ASTM E 1210-1999 用亲水的乳化法作荧光液体渗透检验的试验方法ASTM E 1211-1997 用表面安装的声辐射探测器作泄漏探测和定位ASTM E 121-1983 铜碲合金的化学分析试验方法ASTM E 1212-1999 无损检验机构质量控制体系的建立和维护ASTM E 1213-1997 热成像系统用可分辨的最小温度差的试验方法ASTM E 1214-1987 反应堆堆芯压力容器监测用熔丝温度监视器的使用ASTM E 1215-1993 测量车辆对道路粗糙度的行车响应用挂车ASTM E 1216-1999 用胶带提取法对表面微粒子污染取样的标准规程ASTM E 1217-2000 用X射线光电子光谱仪和俄歇电子光谱仪测定影响检测信号的样品面积的标准实施规范ASTM E 1218-1997 用微型海藻作静态96-H毒性试验ASTM E 1219-1999 用可移动溶剂法作荧光液体渗透检验的试验方法ASTM E 12-1970 固体、液体及气体密度和比重的有关术语ASTM E 1220-1999 用可移动溶剂法作可视性液体渗透检验的试验方法ASTM E 1221-1996 测定Kla铁素体钢的平面应变,断裂抑制,破裂韧性的试验方法ASTM E 122-1999 为估算一批产品或者一次加工过程的制品的质量对样品尺寸的选择的标准规程ASTM E 1222-1990 管子护套装置安放损耗的实验室测量用试验方法ASTM E 1224-1994 实验室鉴定用试验区分类ASTM E 1225-1999 通过隔绝--比较--轴向热流技术对固体导热性的试验方法ASTM E 1226-2000 可燃粉剂用压力和压力提高率的标准试验方法ASTM E 1228-1994 过氧脂化验分析的测试方法.催化碘滴定法ASTM E 1229-1993 次氯酸钙ASTM E 1230-1996 近似测定无水氟化氢中碳氢化合物低分子量的测试方法ASTM E 1231-2001 热不稳定材料危害潜在灵敏值计算的标准实施规程ASTM E 123-1992 蒸馏法水分测定装置ASTM E 1232-1991 化学药剂可燃性温度极限的试验方法ASTM E 1233-1996 用循环的静态气压差法测定外窗,护墙及门结构性能的试验方法ASTM E 1234-2001 宇宙飞船在环境受控区域内使用的不挥发残留物取样板的装卸、运输和安装的标准实施规程ASTM E 1234M-1995 在宇宙飞船人工控制环境中使用的挥发残渣取样板的搬运,运输和安装标准试验方法ASTM E 1235M-1995 在宇宙飞船人工控制环境中挥发残渣重量测定的标准试验方法(米制)ASTM E 1236-1991 作为参照样机的摆锤式冲击试验机的合格证明ASTM E 1237-1993 安装耦合电阻应变仪ASTM E 1238-1997 独立计算机系统之间的可转换临床观测ASTM E 1239-1994 自动化患者护理信息系统用预约/登记允许,出院,转院系统的描述ASTM E 1240-1988 风能转换系统性能的测试方法ASTM E 1241-1998 用鱼进行早期生命阶段毒性测试ASTM E 124-1994 微量化学分析用称重和干燥装置ASTM E 1242-1997 用辛醇水分配系数测定鱼因麻醉的中长致死浓度ASTM E 1245-1995 用自动图象分析测定包括钢和其它金属的含量ASTM E 1246-2001 临床实验室计算机系统可靠性报告的标准规程ASTM E 1247-1992 用分光光度法在物体色码样品中鉴别荧光粉的测试方法ASTM E 1248-1990 切碎机防爆ASTM E 1249-1993 用钴60源在硅电子装置的辐射强度试验中最小的剂量测定误差ASTM E 1250-1988 评估硅电子器件辐射强度试验用钴60辐射源的低能γ成分的电离箱的应用ASTM E 1251-1994 用氩保护气氛,点对面,单极自激发电容器放电法作铝和铝合金的光辐射光谱测定分析的测试方法ASTM E 125-1963 铁铸件的磁粉检验用参考照片ASTM E 1252-1998 定性红外线分析通用技术ASTM E 1253-1999 辐照过的摆锤式冲击试样的复原ASTM E 1254-1998 射线照片和未曝光工业用射线照相胶片的储存ASTM E 1255-1996 射线检查法ASTM E 1256-1995 辐射式温度计的测试方法(单波段型)ASTM E 1257-1993 用光谱化学分析法评定表面处理用研磨材料ASTM E 1258-1988 风扇增压装置气流校正的试验方法ASTM E 1259-2001 沸腾温度低于390℃的液体燃料中抗微生物剂评定的标准试验方法ASTM E 1260-1995 用光学无图信号光散射仪确定喷射时液滴尺寸特性的测试方法ASTM E 1261-2000 辐射处理用剂量测定体系的选择和校准的标准指南ASTM E 126-1992 流体比重计检验和验证的试验方法ASTM E 1262-1988 中国仓鼠卵巢细胞/次黄质鸟嘌呤转磷酸核糖基酶基因变异鉴定的操作ASTM E 1263-1997 哺乳动物骨髓红血球中微细胞核检验的实施ASTM E 1264-1998 吸音顶棚产品的分类ASTM E 1265-1990 气动排气消音器安放损耗测量用试验方法ASTM E 1266-1988 结构填料和其它结构中用的石灰,飞灰和重金属废料混合物的处理ASTM E 1268-2001 评定显微结构带状物等级或取向的标准实施规范ASTM E 1269-2001 用差别扫描热量测定仪测定特殊热量的标准试验方法ASTM E 1270-1988 等臂天平的测试方法ASTM E 1271-1994 热处理钢的摆锤式冲击检验试样的合格化ASTM E 127-1998 超声波标准铝合金块的制造及检验ASTM E 1272-1995 带刻度的圆柱形容器ASTM E 1273-1988 可重复使用的实验室移液管的色标ASTM E 1274-1988 用验平仪测量路面粗糙度的测试方法ASTM E 1275-1998 放射铬箔剂量测定系统的使用ASTM E 1276-1996 有机玻璃剂量测定系统的使用ASTM E 1277-1996 用ICP(感耦等离子体)氩气等离子体光谱测定法对锌-5%铝-铈合金作化学分析的试验方法ASTM E 1278-1988 排除现场跟综退役用放射通道的分类法ASTM E 1279-1989 用摇瓶衰减弱法作生物降解的试验方法ASTM E 1280-1997 哺乳动物细胞诱变性用老鼠淋巴瘤鉴定实施ASTM E 1281-1989 核设备退役计划ASTM E 128-1999 实验室用刚性多孔过滤器的最大孔隙直经和渗透性的试验方法ASTM E 1282-1998 规定金属及其合金的化学成分并选择取样的实际操作与定量分析方法ASTM E 1283-1989 计算机综合制造系统的采购ASTM E 1284-1997 新生物医学术语结构用疾病分类标准和导则ASTM E 1285-2001 λ(拉姆达)噬菌现象或它的脱氧核糖核酸的识别标准指南ASTM E 1286-1989 热疮病毒或它的脱氧核糖核酸的识别ASTM E 1287-1989 生物材料的无菌取样ASTM E 1288-1989 生物量球粒耐久性的试验方法ASTM E 1289-1997 声传输损耗的标样ASTM E 1290-1999 测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法ASTM E 1291-1999 用老鼠进行饱和蒸气吸入研究的试验方法ASTM E 129-1974 用粉末技术做热离子镍合金光谱分析的试验方法ASTM E 1292-1994 重力对流和强制通风恒温箱ASTM E 1293-1994 玻璃测量移液管ASTM E 1294-1989 用自动液体孔率计检验薄膜过滤器的孔径特性的测试方法ASTM E 1295-2001 用网纹水蚤(Dubia)进行三卵、复原毒性试验的标准指南ASTM E 1297-1996 用铌辐射激活法测量快中子反应率的试验方法ASTM E 1298-1989 生物药品中纯净度,污物和杂质的测定ASTM E 1299-1996 人体温度断续测量用可重新使用的相变换型体温计ASTM E 1300-1997 测定要求耐规定荷载的退火玻璃的最小厚度ASTM E 1301-1995 实验室技术熟练检验计划的制定和执行ASTM E 130-1987 石墨电极形状和尺寸的名称与符号ASTM E 1302-2000 在水可溶混合的金属加工液条件下对动物剧毒性测试的标准指南ASTM E 1303-1995 液相色谱法用折射指数检测器ASTM E 1304-1997 金属材料平面变形(V型槽口)断裂韧度的测试方法(代替SAE ARP 1704)ASTM E 1306-1994 化合物测定用电弧溶化时活性和耐溶金属及合金式样的制备ASTM E 1307-2000 平面遮蔽板用预硫化非金属复合面板的表面制备和与结构芯层的结构胶合的标准实施规程ASTM E 1308-1992 计算机管理材料性能数据库中聚合物(热固性合成橡胶除外)的识别ASTM E 1309-2000 数据库中纤维增强聚合物复合材料的识别的标准指南ASTM E 1310-1998 辐射铬光学波导管剂量测定系统的使用ASTM E 1311-1989 热像仪用最低可检测温差的测试方法ASTM E 131-2000 分子光谱学的相关标准术语ASTM E 1312-1999 居里温度以上铁磁圆柱棒产品的电磁(涡流)检验ASTM E 1313-1995 材料性能数据的计算机化管理用数据记录的采集和加工ASTM E 1314-1989 与计算机管理的试验报告和材料标志格式相关的结构化术语记录ASTM E 1315-1993 带有凸圆柱弯曲进入面钢的超声检验ASTM E 1316-1997 无损检验术语ASTM E 1317-1997 船舶表面涂层易燃性的试验方法ASTM E 1318-2002 根据用户要求的公路承重监测器系统和测试方法标准规范ASTM E 1319-1998 高温变形测量ASTM E 1320-1995 钛铸件用基准X射线照相ASTM E 1321-1997 测量材料引燃和火焰曼延性能的测试方法ASTM E 132-1997 室温下泊松比率的试验方法ASTM E 1322-1990 实验室认可体系评定员的选择,训练和评估ASTM E 1323-1989 实验室测量规程的评估和结果数据的统计分析ASTM E 1324-2000 超声检验装置的某些电子特性测定的标准指南ASTM E 1325-1991 与实验装置设计相关的术语ASTM E 1326-1998 细菌计数用的非常规微生物试验的评价ASTM E 1327-1990 利用指甲部位评定个人保健洗手配方的测试方法ASTM E 1328-1999 与光电太阳能转换相关的标准术语ASTM E 1329-1996 光谱化学分析中控制图表的验证和使用ASTM E 1331-1996 用半球体几何形状的分光光度法测量反射系数和颜色的测试方法ASTM E 133-1992 蒸馏设备ASTM E 1332-1990 室外-室内透过等级测定用分类ASTM E 1333-1996 确定的试验条件下用大容器测定木制品甲醛量的测试方法ASTM E 1334-1995 建筑物或设施耐用参数的制备ASTM E 1335-1996 用吹灰法测定金条中纯金的测试方法ASTM E 1336-1996 用辐射分光法从视频显示单元中获取比色数据试验方法ASTM E 1337-1990 用参考试验轮胎测定纵向峰值制动系数的测试方法ASTM E 1338-1997 计算机化材料特性数据库的金属和合金的识别ASTM E 1339-1990 计算机管理材料性能数据库中铝合金和零件的识别ASTM E 1340-1996 计算机管理系统的快速形成原型ASTM E 1341-1996 从比色法用从辐射源中获取辐射分光数据ASTM E 1342-1997 用冷冻、冷冻干燥和低温养护法对细菌、真菌、原生生物、病毒、遗传要素以及动物和植物组织的保存ASTM E 1343-1990 平板超滤膜的分子量界限评定的测试方法ASTM E 1344-1990 燃料乙醇生产设备的评定ASTM E 1345-1998 用多次测量法降低颜色测量变异性的影响ASTM E 1346-1990 感官评定用大量取样,搬运和制备食用植物油ASTM E 1347-1997 用三色(滤色器)比色法进行颜色和色差测量的试验方法ASTM E 1348-1990 用半球体几何形状的分光光度法测量透明度和颜色的测试方法ASTM E 1349-1990 用双向几何形状的分光光度法测量反射系数和颜色的测试方法ASTM E 1350-1997 安装前、安装期间和安装之后铠装热电偶测试的试验方法ASTM E 1351-2001 现场金相复制品的生产和评定标准实施规范ASTM E 135-2001 金属、矿石及相关材料的分析化学的有关标准术语ASTM E 1352-1999 模型化装软垫家具组件的抗香烟点燃性的试验方法ASTM E 1353-1999 装软垫家具部分的耐香烟点燃性的试验方法ASTM E 1354-1999 用耗氧热量计测量材料和产品的热及可见烟雾释放率的试验方法ASTM E 1355-1997 火焰模型预测能力的评价ASTM E 1356-1998 用差示扫描量热法或差示热分析测量玻璃透过温度的试验方法ASTM E 1357-1990 用硫杆菌铁氧化剂从黄铁矿中测定铁的双浸取率的测试方法ASTM E 1358-1997 用微波炉测定颗粒木材燃料含水量的测试方法ASTM E 1359-1999 检查无损检验机构ASTM E 135a-2001 金属、矿石及相关材料的分析化学的有关标准术语ASTM E 1360-1990 按美国均匀色标系统光学学会规定说明颜色ASTM E 1361-1990 X射线光谱测定分析中元素间的效应校正ASTM E 136-1999 750℃时立式管炉中材料特性的标准试验方法ASTM E 1362-1999 非浓缩器光电二次标准电池校准的标准试验方法ASTM E 1363-1997 热机械分析仪温度校准的测试方法ASTM E 1364-1995 用静态水平仪法测量道路不平度的测试方法ASTM E 1366-1996 标准化水生物缩影:淡水ASTM E 1367-1999 用海水中和河口处生长的端足类甲壳动物作10天静态沉淀物毒性试验ASTM E 1368-1997 石棉消除项目的外观检查ASTM E 1369-1998 建筑物和建筑系统经济评估中处理不定性和风险的技术选择ASTM E 1370-1996 工作者和工作场地防护用空气取样策略ASTM E 1371-1990 磷铜合金或磷铜银合金中磷的重量分析测定的测试方法ASTM E 1372-1995 进行老鼠中90天口服毒药研究的测试方法ASTM E 1373-1992 进行老鼠的亚慢性吸入毒性研究的试验方法ASTM E 1374-1993 开放式办公室声学及其适用的ASTM标准ASTM E 1375-1990 作为隔声屏障的家具面板的区间衰减测量用测试方法ASTM E 1376-1990 墙面涂层和家俱面板的声反射区域间衰减测量用测试方法ASTM E 1377-1999 实验室开尔达玻璃烧瓶的标准规范ASTM E 1378-1999 实验室玻璃多功能缩颈蒸馏烧瓶和长劲烧瓶的标准规范ASTM E 1379-1990 实验室玻璃杜瓦瓶ASTM E 1380-1990 0.1毫升或稍大容量的多刻度实验室移液管用色码,不包括可处置的凝血酶原和一次性微量滴管ASTM E 1381-1995 临床实验室装置和计算机系统间传送信息的低级协议ASTM E 1382-1997 用半自动和自动图象分析测量平均粒度的测试方法ASTM E 1384-1999 管理的自动化原始记录的内容和结构描述指南ASTM E 1385-1995 用蒸馏法对从火灾瓦砾样品中获取的可燃或易燃液体残渣的分离和浓缩ASTM E 1386-1995 用溶剂萃取法对火灾瓦砾样品中获取的可燃或易燃液体残渣的分离和浓缩ASTM E 1387-1995 用气相色谱法对从火灾瓦砾样品中获取的可燃或易燃液体残渣的试验方法。
ASTM标准
ASTM"American Society for Testing and Materials"系美国材料与试验协会的英文缩写。
该技术协会成立于1898年。
ASTM标准制定一直采用自愿达成一致意见的制度。
标准制度由技术委员会负责,由标准工作组起草。
经过技术分委员会和技术委员会投票表决,在采纳大多数会员共同意见后,并由大多数会员投票赞成,标准才获批准,作为正式标准出版。
在一项标准编制过程中,对该编制感兴趣的每个会员和任何热心的团体都有权充分发表意见,委员会对提出的意见都给予研究和处理,以吸收各方面的正确意见和建议。
ASTM标准现分为15类(Section),各类所包含的卷数不同,标准分卷(Volume)出版,以ASTM标准年鉴形式出版发行。
第一类钢铁产品第二类有色金属第三类金属材料试验方法及分析程序第四类建设材料第五类石油产品、润滑剂及矿物燃料第六类油漆、相关涂料和芳香族化合物第七类纺织品及材料第八类塑料第九类橡胶第十类电气绝缘体和电子产品第十一类水和环境技术第十二类核能,太阳能第十三类医疗设备和服务第十四类仪器仪表及一般试验方法第十五类通用工业产品、特殊化学制品和消耗材料ASTM活动范围很广,形式多种多样。
它除出版各种标准资料外还办有期刊。
对ASTM标准的了解是美国试验与材料学会国际组织制定的标准,成立于1898年的ASTM International是世界上最大的制定自愿性标准的组织。
作为非赢利组织,ASTM lnternational为材料、产品.系统和服务的自愿性协商一致标准的制定和发布提供论坛。
ASTM lnternational的成员来自世界100多个国家,代表制造商、用户、消费者、政府和学术机构制定技术文件,这些技术文件是生产、管理、采购、以及制定法规与条例的基础。
这些成员隶属于一个或多个委员会,每个委员会负责某个领域的项目,例如钢铁、石油、医疗器材、财产管理、消费产品以及许多其他标准。
ASTM美国材料标准中文版标准目录
ASTM美国材料标准中文版标准目录ASTM A105/A105M-2002 管道部件用碳钢锻件ASTM A106-2002a 高温用无缝碳钢公称管规范ASTM A126-1995(R2001) 阀门、法兰和管道附件用灰铁铸件ASTM A143-2003 热侵镀锌结构钢制品防脆化的标准实施规程和催化探测方法ASTM A179/A179M-1990a(R2001)热交换器和冷凝器用无缝冷拉低碳钢管标准规范ASTM A181/A181M-2001 通用管路用碳钢锻件标准规范"ASTM A182/A182M-2002 高温用锻制或轧制合金钢法兰、锻制管件、阀门和部件ASTM A192-2002 高压设备用无缝碳钢锅炉管标准规范ASTM A193/A193M-2001 高温用合金钢和不锈钢螺栓材料ASTM A194/A194M-2001 a 高温用合金钢和不锈钢螺栓材料ASTM A209/A209M-2003 锅炉和过热器用无缝碳钼合金钢管标准规范!ASTM A210/A210M-2003 锅炉和过热器用无缝中碳钢管技术条件ASTM A213/A213Mb-2004 锅炉过热器和换热器用无缝铁素体和奥氏体合金钢传热管技术条件ASTM A216/A216M-2001 a 高温用可熔焊碳钢铸件标准规范ASTM A217/A217M-2002 高温承压件用马氏体不锈钢和合金钢铸件标准规范ASTM A234/A234M-2004 中、高温用锻制碳钢和合金钢管道配件ASTM A252-98(R2002)焊接钢和无缝钢管桩的标准规范ASTM A262-2002a 探测奥氏体不锈钢晶间腐蚀敏感度的标准实施规范ASTM A269/A269-2004 通用无缝和焊接奥氏体不锈钢管标准规范ASTM A276-2002 a 不锈钢棒材和型材ASTM A278/A278M-2001 高温不超过650°F(350℃)的承压部件用灰铸铁件ASTM A320/A320M-2002 低温用合金钢栓接材料ASTM A333/A333M-2004 低温设备用无缝和焊接钢管的规范标准ASTM A334/A334M-2004 低温设备用无缝和焊接碳素和合金钢管的标准规范ASTM A335-2003 高温设备用无缝铁素体合金钢管标准规范ASTM A350/A350M-2002 要求冲击韧性试验的管件用碳钢及低合金钢锻件标准规范! ASTM A351/A351M-2000 承压件用奥氏体、奥氏体-铁素体(双相)钢铸件规范ASTM A352/A352M-1993(R1998) 低温承压件用铁素体和马氏体钢铸件标准规范ASTM A36/A36M-2004 碳结构钢标准规范ASTM A370/A370M-2003a 钢制品力学性能试验方法和定义标准ASTM A387/A387M-2003 压力容器用铬钼合金钢板的标准规范ASTM A395/A395M-1999 高温用铁素体球墨铸铁承压铸件ASTM A403/A403M-2004 锻制奥氏体不锈钢管配件的标准规范;ASTM A439-1983(R1999) 奥氏体球墨铸铁件ASTM A450/A450M-2004 碳素钢管、铁素体合金钢管及奥氏体合金钢管一般要求的标准规范ASTM A500-2003a 圆形与异型冷成型焊接与无缝碳素钢结构管标准规范ASTM A515-2003 中温及高温压力容器用碳素钢板的标准规范ASTM A516-2004a 中温及低温压力容器用碳素钢板的标准规范ASTM A530-2003 特种碳素钢和合金钢管一般要求的标准规范ASTM A536-1984(R1999) 球墨铸铁件ASTM A6/A6M-2004 a 结构用轧制钢板、型钢、板桩和棒钢通用要求ASTM A615/A615M-2004a 混凝土配筋用异形钢筋和无节钢胚棒标准规范ASTM A694/A694M-2000 高温输送用管法兰、管件、阀门及零件用碳钢和合金钢锻件标准规范)ASTM A703/A703M-2004 标准技术条件—承压件钢铸件通用要求ASTM A781/A781M-2004a 铸件、钢和合金的标准规范及通用工业的一般性要求ASTM A788/A788M-2004a 标准技术条件—钢锻件通用要求ASTM A961-2002 管道用钢制法兰、锻制管件、阀门和零件的通用要求标准规范ASTM A965/A965M-2002 高温高压部件用奥氏体钢锻件ASTM B209/B209M -2004 铝和铝合金薄板和中厚板标准规范ASTM B462-2002 高温耐腐蚀用锻制或轧制的UNS NO6030、UNS NO6022、UNS NO6200、UNS NO8020、UNS NO8024、UNS NO8026、UNS NO8367、UNS NO10276、UNS N10665、UNS N10675和UNS R20033合金管法兰、锻制管件、阀门和零件标准规范ASTM E125-1963(R2003)铁铸件的磁粉检验用标准参考照片ASTM E164-2003 焊件的超声接触检验的标准操作规程ASTM E18-2003 金属材料洛氏硬度和洛氏表面硬度的标准测试方法ASTM E208-1995a(R2000) 用导向落锤试验测定铁素体钢无塑性转变温度的标准试验方法ASTM E213-2004 金属管超声检验方法ASTM E29-2002 使用有效数字确定试验数据与规范符合性作法ASTM E6-2003 金属材料布氏硬度的标准测试方法ASTM E8-2004 金属材料拉伸试验的标准测试方法ASTM E94-2004 放射性检查的标准指南ASTM E 155-2005 铝、镁铸件检验用标准参考射线底片ASTM E 446-1998(R2004)用于厚度在2IN(51MM)以下钢铸件的标准参考射线底片ASTM E 242-2001(R2005)在某些参数变化时射线图像外观用标准参考射线底片ASTM F1030-1986(R1998) 阀门操作装置的选择准则ASTM F1098-1987(R1998) 公称管径有NPS2~24的蝶阀外形尺寸标准规范ASTM F112-1995 色覆垫片密封性能的标准试验方法ASTM F1311-1995(R2001) 大口径组装式碳钢法兰标准规范ASTM F146-1995a 垫片材料耐液体标准试验方法ASTM F1565-2000 蒸汽用减压阀规范ASTM F36-1995 测定垫片材料压缩率及回弹率的标准试验方法ASTM F37-1995 垫片材料密封性的标准试验方法ASTM F38-1995 垫片材料的蠕变松弛的标准试验方法ASTM F885-1984 公称管径为NPS 1/4~2的青铜截止阀外形尺寸标准规范ASTM F992-1986(R2001) 阀门铭牌标准规范ASTM F993-1986(R2001) 阀门锁紧装置标准规范ASTM G1-2003 腐蚀试样的制备、清洁处理和评定用标准实施规范ASTM G36-73(R1981) 标准实用规程:在沸的氯化镁溶液中进行的应力腐蚀裂纹试验(参考资料)ASTM G46-1976(R1986) 标准实用规程:麻点腐蚀的检验和评定(参考资料)ASTM G48-1976(R1980) 使用三氯化铁溶液做不锈钢及其合金的耐麻点腐蚀和抗裂口腐蚀性试验的标准方法(参考资料)ASTM标准中译本丛书(一)碳钢、铸铁、不锈钢及合金钢材料标准规范ASTM标准中译本丛书(二)法兰、管件、阀门及部件(中文版)。
国外中空玻璃标准之间的比较
国外中空玻璃标准之间的比较将原有国外标准和现行国外标准进行比较。
对原有标准之间的比较,我们着重考察美国标准和加拿大标准,亦即:ASTM E773、E1887、E774和CAN/CGSB 12.8。
现行标准,亦即统一后的标准,主要分为两大体系,北美标准ASTM E2188、E2189、E2190和欧标EN 1279, 1-6部分。
最后,我们还将简单扼要地介绍一下正在制订中的中空玻璃的ISO国际标准,即DIS 20492 (标准草案)。
但是,对上述标准的比较我们将有所侧重,分三个层次进行。
北美标准与现行的国标GB11944-2002最为接近,且占有的资料较多,因此,着重介绍。
接下来,将北美标准与欧标进行比较详尽的比较。
国际标准ISO目前为草案阶段,预计明年实行,这里对此只进行概述。
从顺序上看:首先是北美标准,然后是北美标准和欧洲标准,最后,ISO标准。
中空玻璃标准的基本内容国外现行的和原有中空玻璃检测标准,尽管有一些区别,但一般来说,都包括:加速老化实验、化学雾化实验、样品规定、惰性气体的检测和检测的判定标准。
亦即:1) 加速气候老化实验a) 高湿检测b) 气候循环检测2) 化学雾化实验3) 样品规定4) 检测判定标准5) 氩气/惰性气体充气检测各国中空玻璃标准除了含有上述检测的基本元素之外,欧标EN1279还包括:中空玻璃辅助材料的物理性能检测,一致性评估和生产控制和周期性检测。
应该指出,后面这些内容虽然没有列入北美中空玻璃标准,但同样的内容,却规定却分别列在IGCC(美国中空玻璃认证委员会)和IGMA(北美中空玻璃制造商联盟,亦即北美中空玻璃协会)的认证要求中。
兹分别叙述。
高湿检测该实验目的是,模拟自然界中水气进入中空玻璃的过程,迫使水气渗入中空玻璃的密封胶内并进入中空玻璃空气层内。
北美的各个标准之间的比较。
相同之处:所使用的设备基本相同。
区别:CAN12.8中规定有温度循环,稳定淋水,在原有的ASTM和HIGS(统一后的ASTM标准)中没有循环,相对湿度不变;按原有的ASTM和HIGS标准检测,时间比CAN12.8多50%;lCAN12.8标准规定高湿和气候循环两项实验中,使用不同的样品;而原有的ASTM和统一后的ASTM标准中都规定使用同一样品。
国外中空玻璃标准之间的比较
国外中空玻璃标准之间地比较将原有国外标准和现行国外标准进行比较.对原有标准之间地比较,我们着重考察美国标准和加拿大标准,亦即:ASTM E773、E1887、E774和CAN/CGSB 12.8.现行标准,亦即统一后地标准,主要分为两大体系,北美标准ASTM E2188、E2189、E2190和欧标EN 1279, 1-6部分.最后,我们还将简单扼要地介绍一下正在制订中地中空玻璃地ISO国际标准,即DIS 20492 (标准草案>.但是,对上述标准地比较我们将有所侧重,分三个层次进行.北美标准与现行地国标GB11944-2002最为接近,且占有地资料较多,因此,着重介绍.接下来,将北美标准与欧标进行比较详尽地比较.国际标准ISO目前为草案阶段,预计明年实行,这里对此只进行概述.从顺序上看:首先是北美标准,然后是北美标准和欧洲标准,最后,ISO标准. 中空玻璃标准地基本内容国外现行地和原有中空玻璃检测标准,尽管有一些区别,但一般来说,都包括:加速老化实验、化学雾化实验、样品规定、惰性气体地检测和检测地判定标准.亦即:b5E2RGbCAP1> 加速气候老化实验a> 高湿检测b> 气候循环检测2> 化学雾化实验3> 样品规定4> 检测判定标准5> 氩气/惰性气体充气检测各国中空玻璃标准除了含有上述检测地基本元素之外,欧标EN1279还包括:中空玻璃辅助材料地物理性能检测,一致性评估和生产控制和周期性检测.应该指出,后面这些内容虽然没有列入北美中空玻璃标准,但同样地内容,却规定却分别列在IGCC<美国中空玻璃认证委员会)和IGMA<北美中空玻璃制造商联盟,亦即北美中空玻璃协会)地认证要求中.兹分别叙述.高湿检测p1EanqFDPw该实验目地是,模拟自然界中水气进入中空玻璃地过程,迫使水气渗入中空玻璃地密封胶内并进入中空玻璃空气层内.DXDiTa9E3d北美地各个标准之间地比较.相同之处:所使用地设备基本相同.区别:CAN12.8中规定有温度循环,稳定淋水,在原有地ASTM和HIGS<统一后地ASTM 标准)中没有循环,相对湿度不变;按原有地ASTM和HIGS标准检测,时间比CAN12.8多50%;使用不同地样品;而原有,标准规定高湿和气候循环两项实验中lCAN12.8地ASTM和统一后地ASTM标准中都规定使用同一样品.具体比较见下表:RTCrpUDGiT北美中空玻璃之间地标准高湿阶段该实验地目地是,模拟现实中气候循环地影响,实验条件包括高低温/湿度.标准之间地比较.相同之处,所使用设备基本相同;差异:原有地ASTM和HIGS标准中在气候循环中规定了UV部分,在CAN12.8中对此没有要求;CAN12.8标准对气候循环和高湿阶段检测中使用不同组样品;原有地ASTM和HIGS标准中规定使用同组样品;CAN12.8标准地循环较ASTM标准多,320对252原有地ASTM和统一后地ASTM标准地检测时间较长,63天对53.3天具体比较见下表北美中空玻璃之间地标准化学雾化实验该实验地目地是,确定中空玻璃地辅助材料是否向外释放气体,导致中空玻璃空腔内出现影响视觉地化学雾.标准之间比较.基本区别:所有三种检测标准都使用UV和高温;原有地ASTM标准地紫外线强度比其他两个标准大,但是检测样品只有一个角受高温和UV照射,且UV灯不在检测箱内;按HIGS标准和加拿大标准CAN 12.8,样品全部沉在检测箱内,完全暴露在UV 和高温条件下;加拿大标准CAN 12.8比HIGS和原有ASTM标准地温度高100C<600C对500C);原有ASTM和HIGS标准目测化学雾地检测标准比CAN12.8要严格<臂距对从灯箱起2M).具体比较见下表5PCzVD7HxA北美中空玻璃之间地标准标准之间比较.无本质区别,结构和尺寸相同.但CAN12.8中规定地检测样品较多,且高湿和气候循环检测为不同组样品.jLBHrnAILg北美中空玻璃之间地标准评价标准标准之间地比较.基本区别:<1)露点:CAN12.8和统一后地ASTM标准规定地露点温度较低,-400C:-290C;<2)雾化评定:HIGS和ASTM标准规定地距离为臂距;CAN12.8规定为2M;<3)CAN和统一后ASTM标准规定地评定指标为单一值;<4)原有地ASTM标准评定指标为多个,C、B、A.xHAQX74J0X北美中空玻璃之间地标准充氩气/惰性气体中空玻璃检测标准之间地比较.原有地ASTM中空玻璃标准中没有中空玻璃充气检测内容,但加拿大中空玻璃标准CAN12.8中规定惰性气体初始水平检测和气候循环后检测.正在制订充气检测标准,将纳入HIGS标准中.现有地惰性气体检测标准ASTME2269<气相色谱法),并正在制订氧气分析仪法和高压放电检测法地标准.此外,IGCC目前正在检测惰性气体地初始水平,采取自愿原则;加拿大建筑规范已承认统一后地ASTM标准,其规定地惰性气体检测条款与CAN12.8中相类似.北美标准比较地小结:LDAYtRyKfE从以上较为详细地比较不难看出,虽然说某些检测内容和规定,在某个标准中比较严格,但从总体来说,最终地统一标准HIGS,还是等同地,亦即等同于CAN12.8和原有地ASTM标准中地鉴定A.除了对标准内容比较之外,还进行了实际验证对比,亦即采用了四种不同密封胶系统进行对比检测,所有3个标准地检测结果,都显示共性.与欧标CEN地比较Zzz6ZB2Ltk在介绍比较了北美中空玻璃标准之后,有必要对国际上另一中空玻璃标准体系EN1279<6个部分组成)做以介绍.dvzfvkwMI1欧标EN 1279地标题为“建筑玻璃”,中空玻璃”,6个部分组成.第1部分:概述、尺寸公差、系统描述原则;第2部分:水气渗透率地长期检测方法和要求;第3部分:惰性气体渗透率地长期检测方法和浓度公差地规定;第4部分:边部密封胶地物理特性地检测方法;第5部分:一致性地评价;第6部分:工厂地生产控制和定期检测.rqyn14ZNXIEN1279第1部分:概述、尺寸公差和系统描述地原则规定描述地内容包括:中空玻璃内使用地材料、描述中空玻璃地规则和中空玻璃地尺寸公差.所描述地内容类似于美国IGCC地规定.EN1279第2部分:水气渗透指数地长期检测方法和要求EmxvxOtOco检测内容及条件.内容:气候循环和高湿检测<无紫外线照射).与CAN12.8、原有地ASTM和统一后地ASTM标准中地气候循环检测相类似.检测条件.气候循环:56个、4周时间、温度-180C—530C;高湿检测、高温580C,7周时间.两个实验中,均无紫外线照射.SixE2yXPq5评价指标.水气渗透指数“I”≤0.2渗透指数,“I”,定义为“在标准地老化实验后消耗掉地干燥能量”式中: Tf – Ti,av: 检测中浸入地水气 Tc,av – Ti,av: 初始干燥能力EN1279第3部分:惰性气体地长期渗透率地检测方法和要求、惰性气体浓度地公差第3部分地主要内容包括:惰性气体渗透率<Li)和检测惰性气体地手段和方法.<1)体系中规定,惰性气体地年泄漏率< 1;<2)测试手段和方法:使用气相色谱法在温度200C条件下测试,按第2部分规定地气候循环检测样品,但时间较短,与DIN52993相类似.6ewMyirQFLEn1279第3部分中给出地样品检测地步骤:1>GC软件识别气体并加以量,2> 计算氩气渗出率 Li公式in·% a-1式中:Ci –表示惰性气体浓度,%Mi –在一定时间内从充惰性气体中空玻璃内渗透出地气体质量,Kg/h<SI体系),μg/hρ0 –在温度T0气压P0条件下地惰性气体地密度,Kg/m3, μg/m3,=273K<00C),=1014 hPaP –中空玻璃密封时地绝对气压,PaP0 –测定ρ0 时地气压,PaT –中空玻璃密封时地温度,KT0 –测定ρ0 时地温度,KVint –样品地空气层内地容积, a– 1年EN1279第4部分:边部密封地物理性能地检测方法kavU42VRUs与ASTM中空玻璃标准地一个重要区别在于,EN1279第4部分规定了对中空玻璃辅助材料地物理性能进行检测.包括:对边部密封材料地强度和密封材料地水气渗透率检测两大方面.边部密封地强度地实验条件是,高温、浸水和紫外线照射.具体说来,初试固化后,7天地600C条件高温,7天地地浸水和4天地紫外线照射.密封胶地渗透实验包括,水气渗透率<MVTR)和气体渗透率两方面.对边部密封胶地强度规定为,边部密封地物理沾接强度必须位于应力-张力直线之上,亦即,位于左图地斜线0.5Mpa-50%地上端.对密封胶地规定是,渗透率≤密封胶地初始渗透率.EN1279第5部分:一致性地评价y6v3ALoS89一直性地评价要求,中空玻璃地CE标识认证,必须满足欧共体建筑建筑产品指令(CPD>.包括,工厂生产控制计划、工厂样品抽样检查、初次检验、第3方检验<如果必要地话)、第3方监督<如果必要地话)和标志和标识.EN1279第6部分:工厂生产控制和定期检测M2ub6vSTnP.包括两大项内容:生产控制要和定期检测生产控制要求包括:组织、建立质量体系和实施ISO 9000或类似于ISO9001地管理体系.组织地内容包括:授权相应人员来预防问题地发生并建立档案记载、安排一个专人负责和定期管理检查;建立质量体系包括:专人负责、建立档案、校准检测设备和建立质量合同.定期检测分强制和可选择两部分.强制检测内容包括:密封性、水气渗透率、惰性气体渗透率和化学雾化<检测化学雾化地方法有3种,分别为CAN12.8、原有地ASTM方法和辐射墙方法,可从中央任选其一);选择性地检测内容包括:密封胶混合、密封胶硬度、密封胶地粘接性能、挥发性检测、空腔间隔条地焊接紧固性和干燥剂地干燥能力.0YujCfmUCw欧洲标准和北美中空玻璃标准地比较对二者之间地区别可概括如下:欧洲标准和北美标准比较地小结HIGS<统一后地北美中空标准)等同于CAN12.8和原有地ASTM标准中地评定标准A.中空玻璃地初始惰性气体浓度和泄漏检测地标准,虽然没有包括在HIGS中,但也业已制定出或正在制订当中,如ASTM E2269《使用气项色谱法测定中空玻璃中氩气浓度地标准检测方法》已经实施,而《使用氩气惰性气体分析仪测定中空玻璃氩气浓度地标准检测方法》地ASTM标准草案也已通过三稿.欧标CEN中,有些检测内容和方法类似于HIGS,但强调了对中空玻璃辅助材料地检测;此外,还包括了认证方面地要求:即一致性和对生产控制.但是,对紫外线检测几乎没有规定.中空玻璃地ISO标准DIS 20492<4个部分)eUts8ZQVRd目地.制订中空玻璃国际标准地主导思想,是融合不同国家使用地各种不同检测方法之间地差别,制订国际性地标准.在主要地检测内容基本,虽然欧标和北美标准之间,由前面地论述不难看出是相同地,但差异还是很明显地.此外,在制订国际标准中还必须考虑,<1)不同地区地市场和产品地要求是不同地;<2)各国或地区对节能产品地奖励规模、看法和应用地方法也是不同地;<3)如果只采用一个标准地话,则意味着众多地产品都排除在市场之外;<4)欧洲要求所有中空玻璃产品都必需有CE标识因此.因此,作为第1个ISO国际中空玻璃标准地制订,必须满足以下要求:从全球市场角度出发,有效地满足建筑规范和市场地需要;反应出各个国家内地科技进步水平;不扭曲市场机制;对公平竞争没有反作用;在国家或地区之间存在不同需求和利益时,不能对某些国家或地区给予特殊关照;承认其他国家或地区可能存在地不同需要和利益;标准地制定应以中空玻璃地内在性能为基础,而不是以人为设计为主.ISO中空玻璃标准DIS 20492,“建筑玻璃,中空玻璃”,由4部分组成,<1)第1部分:气候循环检测:边部密封地耐久性能;<2)第2部分:化学雾化检测;<3)第3部分:惰性气体浓度及渗透率监测;<4)第4部分:边缘密封材料地物理性能地检测方法.虽然该标准地文件格式类似于EN1279标准,但是在综合北美中空玻璃标准HIGS和欧标CEN 1279基础之上制订地.将ISO标准和ASTM标准和CEN标准比较我们发现:第1部分:气候循环检测:边部密封地耐久性能,是将ASTM 2188和EN1279-2结合地结果;类似地,第2部分和第3部分分别是将ASTM2189和EN1279-6及附录C结合,和将CAN 12.8中地3.6.3节和EN1279-3结合地结果.第4部分边缘密封材料地物理性能地检测方法,全部采纳了EN1279-4.此外值得一提地是,虽然ISO国际标准是HIGS和CEN两个体系结合起来地产物,但去掉对了EN标准中生产控制和一致性地规定,以增加其他内容.我国中空玻璃标准地思考sQsAEJkW5T目前,我国中空玻璃国家标准正在修订中,其指导方针是保证新标准地科学性和先进性.从科学性出发,要使新标准反映出我国地地理气候情况.实际情况是,幅员辽阔、温差非常大、既有大陆性气候,又有海洋性气候,有地地区干燥,但另一些地区却常年潮湿,紫外线照射强等特点.因此,标准修改中应该考虑这些内容.此外,目前地两大中空玻璃标准体系是在经过大量实验、通过对各国中空玻璃标准比对地基础上制订地,因此,具有一定地先进性.虽然EN标准和HIGS标准,分别代表北美和欧洲两大标准体系,但更应该视为代表我们这个时代地先进水平,更何况两个标准目前也正在统一为国际标准.因此,我们修订标准不需要对所有检测内容重新做大量地检测和验证,应该采用拿来主义,在分析取舍地基础上,为己所用.比如,ISO中空玻璃地国际标准中包括地对惰性气体地初始浓度和惰性气体泄漏地检测,不但反映出节能趋势地要求,而且还有助于延长中空玻璃地寿命,更可成为提高质量控制水平地手段.因此,修改地标准中有必要增加该项内容.欧标中地对分子筛地干燥能力在加速老化实验后地检测,是一种比较先进地方法,将以前地通过-400C霜点地定性分析改为计量分析,更有助于准确预测不同结构和配置中空玻璃地密封寿命.因此,新标准中似乎也应该反映这一思路和. 做法.但是,修订后地标准不能是对欧洲标准和北美标准地全盘接受,还必须从我们地实际出发.比如,欧洲标准中没有对中空玻璃化学挥发气体检测,既没有单独地紫外线检测,也没有在加速老化实验中装置紫外线灯,但对我国来说,在一些地区地夏季,UV地照射还是十分强烈地,从地理位置上看,其纬度与美国地南方地区十分接近,因此,我们地标准中在保留化学挥发气体地紫外线检测之外,在加速老化实验中似乎还需增加UV照射装置.另外,欧标EN1279地第5部分还规定了对辅助材料物理性能地检测,对此,无论是北美中空玻璃标准和国际标准ISODIS20492都没列入,在北美,将其作为认证内容,留给中空玻璃认证机构负责.我们认为,对中空玻璃辅助材料物理性能地检测,对提高中空玻璃质量来说,是十分重要地,对此,我们过去重视得不够.但是,是否将其列为主要检测内容,还是作为生产控制内容列为标准地附录,似乎还有待进一步讨来论达到共识.GMsIasNXkA。
ASTM标准.E系列
E248-02 E250-98(2004) E251-92(2003) E252-84(1999) E253-04 E255-02 E256-98(2003)e1 E257-98(2003)e1 E258-67(2002) E259-98(2003) E260-96(2001) E261-03 E262-03 E263-00 E264-02 E265-98(2002) E266-02 E267-90(2001) E272-99(2004)e1 E273-01 E274-97 E275-01 E276-03 E278-01 E279-97(2001) E280-98(2004)e1 E283-04
填料塔气相色谱法 用放射性技术测定中子的积分通量率、 积分通量和中子波谱 用放射性技术测定热中子反应速率和积 分通量率的试验方法 用铁的放射性测量快中子反应速率的测 试方法 通过镍的放射性测量快中子反应速率的 试验方法 用硫-32的放射性测量快速中子注量和 反应速率的测试方法 通过铝的放射性测量快中子反应速率的 试验方法
根据概率取样结果所得数据的验收
室温下剪切模量的测试方法
氧燃烧弹的推荐安全使用
重力对流式和强制通风式烘炉
用基耶达法进行氮气微量测定用仪器 混凝土板、墙或土壤覆层的土下水气阻 拦层试验方法
铝和镁铸件检验用参考射线照相
E159-00 E161-00 E162-02a E164-03 E165-02 E167-96 E168-99(2004) E169-99 E170-99e1 E171-94(2002) E175-82(1999)e1 E176-04a E177-90a(2002) E178-02 E179-96(2003) E180-03 E181-98(2003) E185-02 E186-98(2004)e1 E190-92(2003) E191-64(1999)e1 E192-04 E193-94(1999) E194-99 E196-95(2000)e1 E200-97(2001)e1 E202-00
astm材料与实验标准[1].e112-2004
Designation:E112–96(Reapproved2004)e1Standard Test Methods forDetermining Average Grain Size1This standard is issued under thefixed designation E112;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.e1N OTE—Reference(2)was editorially corrected in May2006.INTRODUCTIONThese test methods of determination of average grain size in metallic materials are primarily measuring procedures and,because of their purely geometric basis,are independent of the metal or alloy concerned.In fact,the basic procedures may also be used for the estimation of average grain, crystal,or cell size in nonmetallic materials.The comparison method may be used if the structure of the material approaches the appearance of one of the standard comparison charts.The intercept and planimetric methods are always applicable for determining average grain size.However,the comparison charts cannot be used for measurement of individual grains.1.Scope1.1These test methods cover the measurement of average grain size and include the comparison procedure,the planimet-ric(or Jeffries)procedure,and the intercept procedures.These test methods may also be applied to nonmetallic materials with structures having appearances similar to those of the metallic structures shown in the comparison charts.These test methods apply chiefly to single phase grain structures but they can be applied to determine the average size of a particular type of grain structure in a multiphase or multiconstituent specimen.1.2These test methods are used to determine the average grain size of specimens with a unimodal distribution of grain areas,diameters,or intercept lengths.These distributions are approximately log normal.These test methods do not cover methods to characterize the nature of these distributions. Characterization of grain size in specimens with duplex grain size distributions is described in Test Methods E1181.Mea-surement of individual,very coarse grains in afine grained matrix is described in Test Methods E930.1.3These test methods deal only with determination of planar grain size,that is,characterization of the two-dimensional grain sections revealed by the sectioning plane. Determination of spatial grain size,that is,measurement of the size of the three-dimensional grains in the specimen volume,is beyond the scope of these test methods.1.4These test methods describe techniques performed manually using either a standard series of graded chart images for the comparison method or simple templates for the manual counting methods.Utilization of semi-automatic digitizing tablets or automatic image analyzers to measure grain size is described in Test Methods E1382.1.5These test methods deal only with the recommended test methods and nothing in them should be construed as defining or establishing limits of acceptability orfitness of purpose of the materials tested.1.6The measured values are stated in SI units,which are regarded as standard.Equivalent inch-pound values,when listed,are in parentheses and may be approximate.1.7This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.8The paragraphs appear in the following order:Section Number Scope1 Referenced Documents2 Terminology3 Significance and Use4 Generalities of Application5 Sampling6 Test Specimens7 Calibration8 Preparation of Photomicrographs9 Comparison Procedure101These test methods are under the jurisdiction of ASTM Committee E04onMetallography and are the direct responsibility of Subcommittee E04.08on GrainSize.Current edition approved Nov.1,2004.Published November2004.Originallyapproved st previous edition approved1996as E112–96e3.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Planimetric (Jeffries)Procedure 11General Intercept Procedures 12Heyn Linear Intercept Procedure 13Circular Intercept Procedures 14Hilliard Single-Circle Procedure 14.2Abrams Three-Circle Procedure 14.3Statistical Analysis15Specimens with Non-equiaxed Grain Shapes16Specimens Containing Two or More Phases or Constituents 17Report18Precision and Bias 19Keywords 20Annexes:Basis of ASTM Grain Size NumbersAnnex A1Equations for Conversions Among Various Grain Size Measurements AnnexA2Austenite Grain Size,Ferritic and Austenitic Steels AnnexA3Fracture Grain Size Method AnnexA4Requirements for Wrought Copper and Copper-Base Alloys AnnexA5Application to Special Situations AnnexA6Appendixes:Results of Interlaboratory Grain Size DeterminationsAppen-dix X1Referenced Adjuncts Appen-dix X22.Referenced Documents 2.1ASTM Standards:2E 3Practice for Preparation of Metallographic Specimens E 7Terminology Relating to MetallographyE 407Practice for Microetching Metals and AlloysE 562Practice for Determining V olume Fraction by Sys-tematic Manual Point CountE 691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test MethodE 883Guide for Reflected-Light PhotomicrographyE 930Test Methods for Estimating the Largest Grain Ob-served in a Metallographic Section (ALA Grain Size)E 1181Test Methods for Characterizing Duplex Grain Sizes E 1382Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis 2.2ASTM Adjuncts:2.2.1For a complete adjunct list,see Appendix X23.Terminology3.1Definitions —For definitions of terms used in these test methods,see Terminology E 7.3.2Definitions of Terms Specific to This Standard:3.2.1ASTM grain size number —the ASTM grain size number,G ,was originally defined as:N AE 52G 21(1)where N AE is the number of grains per square inch at 100X magnification.To obtain the number per square millimetre at 1X,multiply by 15.50.3.2.2grain —that area within the confines of the original(primary)boundary observed on the two-dimensional plane-of-polish or that volume enclosed by the original (primary)boundary in the three-dimensional object.In materials contain-ing twin boundaries,the twin boundaries are ignored,that is,the structure on either side of a twin boundary belongs to the grain.3.2.3grain boundary intersection count —determination of the number of times a test line cuts across,or is tangent to,grain boundaries (triple point intersections are considered as 1-1⁄2intersections).3.2.4grain intercept count —determination of the number of times a test line cuts through individual grains on the plane of polish (tangent hits are considered as one half an interception;test lines that end within a grain are considered as one half an interception).3.2.5intercept length —the distance between two opposed,adjacent grain boundary intersection points on a test line segment that crosses the grain at any location due to random placement of the test line.3.3Symbols:Symbols:a =matrix grains in a two phase (constituent)microstructure.A =test area.A —=mean grain cross sectional area.AI ,=grain elongation ratio or anisotropy index for a longitudinally oriented plane.d —=mean planar grain diameter (Plate III).D —=mean spatial (volumetric)grain diameter.f =Jeffries multiplier for planimetric method.G =ASTM grain size number.,=mean lineal intercept length.,—a =mean lineal intercept length of the a matrix phase in a two phase (constituent)microstructure.,—,=mean lineal intercept length on a longitu-dinally oriented surface for a non-equiaxed grain structure.,—t =mean lineal intercept length on a trans-versely oriented surface for a non-equiaxed grain structure.,—p =mean lineal intercept length on a planar oriented surface for a non-equiaxed grain structure.,0=base intercept length of 32.00mm for defining the relationship between G and ,(and N L )for macroscopically or micro-scopically determined grain size by the intercept method.L =length of a test line.M =magnification used.M b =magnification used by a chart picture series.n=number of fields measured.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTMwebsite.N a=number of a grains intercepted by the testline in a two phase(constituent)micro-structure.N A=number of grains per mm2at1X.N A a=number of a grains per mm2at1X in atwo phase(constituent)microstructure. N AE=number of grains per inch2at100X.N A,=N A on a longitudinally oriented surface fora non-equiaxed grain structure.N At=N A on a transversely oriented surface for anon-equiaxed grain structure.N Ap=N A on a planar oriented surface for anon-equiaxed grain structure.N i=number of intercepts with a test line.N Inside=number of grains completely within a testcircle.N Intercepted=number of grains intercepted by the testcircle.N L=number of intercepts per unit length oftest line.N L,=N L on a longitudinally oriented surface fora non-equiaxed grain structure.N Lt=N L on a transversely oriented surface for anon-equiaxed grain structure.N Lp=N L on a planar oriented surface for anon-equiaxed grain structure.P i=number of grain boundary intersectionswith a test line.P L=number of grain boundary intersectionsper unit length of test line.P L,=P L on a longitudinally oriented surface fora non-equiaxed grain structure.P Lt=P L on a transversely oriented surface for anon-equiaxed grain structure.P Lp=P L on a planar oriented surface for anon-equiaxed grain structure.Q=correction factor for comparison chartratings using a non-standard magnifica-tion for microscopically determined grainsizes.Q m=correction factor for comparison chartratings using a non-standard magnifica-tion for macroscopically determined grainsizes.s=standard deviation.S V=grain boundary surface area to volumeratio for a single phase structure.S V a=grain boundary surface area to volumeratio for a two phase(constituent)struc-ture.t=students’t multiplier for determination ofthe confidence interval.V V a=volume fraction of the a phase in a twophase(constituent)microstructure.95%CI=95%confidence interval.%RA=percent relative accuracy.4.Significance and Use consisting entirely,or principally,of a single phase.The test methods may also be used for any structures having appear-ances similar to those of the metallic structures shown in the comparison charts.The three basic procedures for grain size estimation are:4.1.1Comparison Procedure—The comparison procedure does not require counting of either grains,intercepts,or intersections but,as the name suggests,involves comparison of the grain structure to a series of graded images,either in the form of a wall chart,clear plastic overlays,or an eyepiece reticle.There appears to be a general bias in that comparison grain size ratings claim that the grain size is somewhat coarser (1⁄2to1G number lower)than it actually is(see X1.3.5). Repeatability and reproducibility of comparison chart ratings are generally61grain size number.4.1.2Planimetric Procedure—The planimetric method in-volves an actual count of the number of grains within a known area.The number of grains per unit area,N A,is used to determine the ASTM grain size number,G.The precision of the method is a function of the number of grains counted.A precision of60.25grain size units can be attained with a reasonable amount of effort.Results are free of bias and repeatability and reproducibility are less than60.5grain size units.An accurate count does require marking off of the grains as they are counted.4.1.3Intercept Procedure—The intercept method involves an actual count of the number of grains intercepted by a test line or the number of grain boundary intersections with a test line,per unit length of test line,used to calculate the mean lineal intercept length,,—.,—is used to determine the ASTM grain size number,G.The precision of the method is a function of the number of intercepts or intersections counted.A preci-sion of better than60.25grain size units can be attained with a reasonable amount of effort.Results are free of bias; repeatability and reproducibility are less than60.5grain size units.Because an accurate count can be made without need of marking off intercepts or intersections,the intercept method is faster than the planimetric method for the same level of precision.4.2For specimens consisting of equiaxed grains,the method of comparing the specimen with a standard chart is most convenient and is sufficiently accurate for most commer-cial purposes.For higher degrees of accuracy in determining average grain size,the intercept or planimetric procedures may be used.The intercept procedure is particularly useful for structures consisting of elongated grains.4.3In case of dispute,the intercept procedure shall be the referee procedure in all cases.4.4No attempt should be made to estimate the average grain size of heavily cold-worked material.Partially recrystallized wrought alloys and lightly to moderately cold-worked material may be considered as consisting of non-equiaxed grains,if a grain size measurement is necessary.4.5Individual grain measurements should not be made based on the standard comparison charts.These charts werethree-dimensional array of grains.Because they show a distri-bution of grain dimensions,ranging from very small to very large,depending on the relationship of the planar section and the three-dimensional array of grains,the charts are not applicable to measurement of individual grains.5.Generalities of Application5.1It is important,in using these test methods,to recognize that the estimation of average grain size is not a precise measurement.A metal structure is an aggregate of three-dimensional crystals of varying sizes and shapes.Even if all these crystals were identical in size and shape,the grain cross sections,produced by a random plane(surface of observation) through such a structure,would have a distribution of areas varying from a maximum value to zero,depending upon where the plane cuts each individual crystal.Clearly,no twofields of observation can be exactly the same.5.2The size and location of grains in a microstructure are normally completely random.No nominally random process of positioning a test pattern can improve this randomness,but random processes can yield poor representation by concentrat-ing measurements in part of a specimen.Representative implies that all parts of the specimen contribute to the result, not,as sometimes has been presumed,thatfields of average grain size are selected.Visual selection offields,or casting out of extreme measurements,may not falsify the average when done by unbiased experts,but will in all cases give a false impression of high precision.For representative sampling,the area of the specimen is mentally divided into several equal coherent sub-areas and stage positions prespecified,which are approximately at the center of each sub-area.The stage is successively set to each of these positions and the test pattern applied blindly,that is,with the light out,the shutter closed,or the eye turned away.No touch-up of the position so selected is allowable.Only measurements made onfields chosen in this way can be validated with respect to precision and bias.6.Sampling6.1Specimens should be selected to represent average conditions within a heat lot,treatment lot,or product,or to assess variations anticipated across or along a product or component,depending on the nature of the material being tested and the purpose of the study.Sampling location and frequency should be based upon agreements between the manufacturers and the users.6.2Specimens should not be taken from areas affected by shearing,burning,or other processes that will alter the grain structure.7.Test Specimens7.1In general,if the grain structure is equiaxed,any specimen orientation is acceptable.However,the presence of an equiaxed grain structure in a wrought specimen can only be determined by examination of a plane of polish parallel to the deformation axis.7.2If the grain structure on a longitudinally oriented speci-the test method.If the grain structure is not equiaxed,but elongated,then grain size measurements on specimens with different orientations will vary.In this case,the grain size should be evaluated on at least two of the three principle planes,transverse,longitudinal,and planar(or radial and transverse for round bar)and averaged as described in Section 16to obtain the mean grain size.If directed test lines are used, rather than test circles,intercept counts on non-equiaxed grains in plate or sheet type specimens can be made using only two principle test planes,rather than all three as required for the planimetric method.7.3The surface to be polished should be large enough in area to permit measurement of at leastfivefields at the desired magnification.In most cases,except for thin sheet or wire specimens,a minimum polished surface area of160mm2(0.25 in.2)is adequate.7.4The specimen shall be sectioned,mounted(if neces-sary),ground,and polished according to the recommended procedures in Practice E3.The specimen shall be etched using a reagent,such as listed in Practice E407,to delineate most,or all,of the grain boundaries(see also Annex A3).8.Calibration8.1Use a stage micrometer to determine the true linear magnification for each objective,eyepiece and bellows,or zoom setting to be used within62%.8.2Use a ruler with a millimetre scale to determine the actual length of straight test lines or the diameter of test circles used as grids.9.Preparation of Photomicrographs9.1When photomicrographs are used for estimating the average grain size,they shall be prepared in accordance with Guide E883.parison Procedure10.1The comparison procedure shall apply to completely recrystallized or cast materials with equiaxed grains.10.2When grain size estimations are made by the more TABLE1Suggested Comparison Charts for Metallic Materials N OTE1—These suggestions are based upon the customary practices in industry.For specimens prepared according to special techniques,the appropriate comparison standards should be selected on a structural-appearance basis in accordance with8.2.Material Plate Number Basic Magnification Aluminum I100X Copper and copper-base alloys(seeAnnex A4)III or IV75X,100X Iron and steel:Austenitic II or IV100X Ferritic I100X Carburized IV100X Stainless II100X Magnesium and magnesium-base alloys I or II100XNickel and nickel-base alloys II100XSuper-strength alloys I or II100XZinc and zinc-base alloys I or II100Xappearance of the standard reasonably well approaches that of the sample,errors may occur.To minimize such errors,the comparison charts are presented in four categories as follows:310.2.1Plate I —Untwinned grains (flat etch).Includes grain size numbers 00,0,1⁄2,1,11⁄2,2,21⁄2,3,31⁄2,4,41⁄2,5,51⁄2,6,61⁄2,7,71⁄2,8,81⁄2,9,91⁄2,10,at 100X.10.2.2Plate II —Twinned grains (flat etch).Includes grain size numbers,1,2,3,4,5,6,7,8,at 100X.10.2.3Plate III —Twinned grains (contrast etch).Includes nominal grain diameters of 0.200,0.150,0.120,0.090,0.070,0.060,0.050,0.045,0.035,0.025,0.020,0.015,0.010,0.005mm at 75X.10.2.4Plate IV —Austenite grains in steel (McQuaid-Ehn).Includes grain size numbers 1,2,3,4,5,6,7,8,at 100X.10.3Table 1lists a number of materials and the comparison charts that are suggested for use in estimating their average grain sizes.For example,for twinned copper and brass with a contrast etch,use Plate III.N OTE 1—Examples of grain-size standards from Plates I,II,III,and IV are shown in Fig.1,Fig.2,Fig.3,and Fig.4.10.4The estimation of microscopically-determined grain size should usually be made by direct comparison at the same magnification as the appropriate chart.Accomplish this by comparing a projected image or a photomicrograph of a representative field of the test specimen with the photomicro-graphs of the appropriate standard grain-size series,or with suitable reproductions or transparencies of them,and select thephotomicrograph which most nearly matches the image of the test specimen or interpolate between two standards.Report this estimated grain size as the ASTM grain size number,or grain diameter,of the chart picture that most closely matches the 3Plates I,II,III,and IV are available from ASTM Headquarters.Order Adjunct:ADJE11201P (Plate I),ADJE11202P (Plate II),ADJE11203P (Plate III),andFIG.1Example of Untwinned Grains (Flat Etch)from Plate I.Grain Size No.3at100XFIG.2Example of Twin Grains (Flat Etch)from Plate II.GrainSize No.3at100XFIG.3Example of Twin Grains (Contrast Etch)from Plate III.Grain Size 0.090mm at75X10.5Good judgment on the part of the observer is necessary to select the magnification to be used,the proper size of area (number of grains),and the number and location in the specimen of representative sections and fields for estimating the characteristic or average grain size.It is not sufficient to visually select what appear to be areas of average grain size.Recommendations for choosing appropriate areas for all pro-cedures have been noted in 5.2.10.6Grain size estimations shall be made on three or more representative areas of each specimen section.10.7When the grains are of a size outside the range covered by the standard photographs,or when magnifications of 75X or 2and Table 2.It may be noted that alternative magnifications are usually simple multiples of the basic magnifications.N OTE 2—If the grain size is reported in ASTM numbers,it is conve-nient to use the relationship:Q 52log 2~M /M b !(2)56.64log 10~M /M b !where Q is a correction factor that is added to the apparent micro-grain size of the specimen,as viewed at the magnification,M ,instead of at the basic magnification,M b (75X or 100X),to yield the true ASTM grain-size number.Thus,for a magnification of 25X,the true ASTM grain-size number is four numbers lower than that of the corresponding photomi-crograph at 100X (Q =−4).Likewise,for 400X,the true ASTM grain-sizeFIG.4Example of Austenite Grains in Steel from Plate IV.GrainSize No.3at 100XTABLE 2Microscopically Determined Grain Size Relationships Using Plate III at Various MagnificationsN OTE 1—First line—mean grain diameter,d,in mm;in parentheses—equivalent ASTM grain size number,G.N OTE 2—Magnification for Plate III is 75X (row 3data).MagnificationChart Picture Number (Plate III)123456789101112131425X 0.015(9.2)0.030(7.2)0.045(6.0)0.060(5.2)0.075(4.5)0.105(3.6)0.135(2.8)0.150(2.5)0.180(2.0)0.210(1.6)0.270(0.8)0.360(0)0.451(0/00)0.600(00+)50X 0.0075(11.2)0.015(9.2)0.0225(8.0)0.030(7.2)0.0375(6.5)0.053(5.6)0.0675(4.8)0.075(4.5)0.090(4.0)0.105(3.6)0.135(2.8)0.180(2.0)0.225(1.4)0.300(0.5)75X 0.005(12.3)0.010(10.3)0.015(9.2)0.020(8.3)0.025(7.7)0.035(6.7)0.045(6.0)0.050(5.7)0.060(5.2)0.070(4.7)0.090(4.0)0.120(3.2)0.150(2.5)0.200(1.7)100X 0.00375(13.2)0.0075(11.2)0.0112(10.0)0.015(9.2)0.019(8.5)0.026(7.6)0.034(6.8)0.0375(6.5)0.045(6.0)0.053(5.6)0.067(4.8)0.090(4.0)0.113(3.4)0.150(2.5)200X 0.0019(15.2)0.00375(13.2)0.0056(12.0)0.0075(11.2)0.009(10.5)0.013(9.6)0.017(8.8)0.019(8.5)0.0225(8.0)0.026(7.6)0.034(6.8)0.045(6.0)0.056(5.4)0.075(4.5)400X —0.0025(14.3)0.0037(13.2)0.005(12.3)0.006(11.7)0.009(10.7)0.011(10.0)0.0125(9.7)0.015(9.2)0.0175(8.7)0.0225(8.0)0.030(7.2)0.0375(6.5)0.050(5.7)500X——0.003(13.8)0.004(13.0)0.005(12.3)0.007(11.4)0.009(10.6)0.010(10.3)0.012(9.8)0.014(9.4)0.018(8.6)0.024(7.8)0.030(7.2)0.040(6.3)number is four numbers higher than that of the corresponding photomi-crograph at 75X.10.8The small number of grains per field at the coarse end of the chart series,that is,size 00,and the very small size of the grains at the fine end make accurate comparison ratings difficult.When the specimen grain size falls at either end of the chart range,a more meaningful comparison can be made by changing the magnification so that the grain size lies closer to the center of the range.10.9The use of transparencies 4or prints of the standards,with the standard and the unknown placed adjacent to each other,is to be preferred to the use of wall chart comparison with the projected image on the microscope screen.10.10No particular significance should be attached to the fact that different observers often obtain slightly different results,provided the different results fall within the confidence limits reasonably expected with the procedure used.10.11There is a possibility when an operator makes re-peated checks on the same specimen using the comparison method that they will be prejudiced by their first estimate.This disadvantage can be overcome,when necessary,by changes in magnification,through bellows extension,or objective or eyepiece replacement between estimates (1).510.12Make the estimation of macroscopically-determined grain sizes (extremely coarse)by direct comparison,at a magnification of 1X,of the properly prepared specimen,or of a photograph of a representative field of the specimen,with photographs of the standard grain series shown in Plate I (for untwinned material)and Plates II and III (for twinned mate-rial).Since the photographs of the standard grain size series were made at 75and 100diameters magnification,grain sizes estimated in this way do not fall in the standard ASTM grain-size series and hence,preferably,should be expressed4Transparencies of the various grain sizes in Plate I are available from ASTM Headquarters.Order Adjunct:ADJE112TS for the set.Transparencies of individual grain size groupings are available on request.Order Adjunct:ADJE11205T (Grain Size 00),ADJE11206T (Grain Size 0),ADJE11207T (Grain Size 0.5),ADJE11208T (Grain Size 1.0),ADJE11209T (Grain Size 1.5),ADJE11210T (Grain Size 2.0),ADJE11211T (Grain Size 2.5),ADJE11212T (Grain Sizes 3.0, 3.5,and 4.0),ADJE11213T (Grain Sizes 4.5,5.0,and 5.5),ADJE11214T (Grain Sizes 6.0,6.5,and 7.0),ADJE11215T (Grain Sizes 7.5,8.0,and 8.5),and ADJE11216T (Grain Sizes 9.0,9.5,and 10.0).Charts illustrating grain size numbers 00to 10are on 8⁄TABLE 3Macroscopic Grain Size Relationships Computed for Uniform,Randomly Oriented,Equiaxed GrainsN OTE 1—Macroscopically determined grain size numbers M-12.3,M-13.3,M-13.8and M-14.3correspond,respectively,to microscopically determined grain size numbers (G )00,0,0.5and 1.0.Macro Grain Size No.N ¯A Grains/Unit Area A ¯Average Grain Area d —Average Diameter ,—Mean Intercept N ¯L N ¯No./mm 2No./in.2mm 2in.2mm in.mm in.mm −1100mm M-00.00080.501290.3 2.0035.9 1.4132.00 1.20.031 3.13M-0.50.00110.71912.4 1.4130.2 1.1926.91 1.00.037 3.72M-1.00.0016 1.00645.2 1.0025.4 1.0022.630.890.044 4.42M-1.50.0022 1.41456.20.70721.40.84119.030.740.053 5.26M-2.00.0031 2.00322.60.50018.00.70716.000.630.063 6.25M-2.50.0044 2.83228.10.35415.10.59513.450.530.0747.43M-3.00.0062 4.00161.30.25012.70.50011.310.440.0888.84M-3.50.0088 5.66114.00.17710.70.4209.510.370.10510.51M-4.00.01248.0080.640.1258.980.3548.000.310.12512.50M-4.50.017511.3157.020.08847.550.297 6.730.260.14914.87M-5.00.024816.0040.320.0625 6.350.250 5.660.220.17717.68M-5.50.035122.6328.510.0442 5.340.210 4.760.180.21021.02M-6.00.049632.0020.160.0312 4.490.177 4.000.150.25025.00M-6.50.070145.2614.260.0221 3.780.149 3.360.130.29729.73M-7.00.09964.0010.080.0156 3.170.125 2.830.110.35435.36M-7.50.14090.517.130.0110 2.670.105 2.380.0930.42042.05310−3310−3310−3M-8.00.198128.0 5.047.812 2.2588.4 2.0078.70.50050.00M-8.50.281181.0 3.56 5.524 1.8974.3 1.6866.20.59559.46M-9.00.397256.0 2.52 3.906 1.5962.5 1.4155.70.70770.71M-9.50.561362.1 1.78 2.762 1.3352.6 1.1946.80.84184.09M-10.00.794512.0 1.26 1.953 1.1244.2 1.0039.4 1.00100.0M-10.5 1.122724.10.891 1.3810.99437.20.84133.1 1.19118.9M-11.0 1.5871024.10.6300.9770.79431.20.70727.8 1.41141.4M-11.5 2.2451448.20.04450.6900.66726.30.59523.4 1.68168.2M-12.0 3.1752048.10.3150.4880.56122.10.50019.7 2.00200.0M-12.3 3.9082521.60.2560.3970.50619.90.45117.7 2.22221.9M-12.5 4.4902896.50.2230.3450.47218.60.42016.6 2.38237.8M-13.0 6.3494096.30.1570.2440.39715.60.35413.9 2.83282.8M-13.37.8175043.10.1280.1980.35814.10.31912.5 3.14313.8M-13.58.9795793.00.1110.1730.33413.10.29711.7 3.36336.4M-13.811.0557132.10.0910.1400.30111.80.26810.5 3.73373.2M-14.012.6998192.60.0790.1220.28111.00.2509.84 4.00400.0M-14.315.63410086.30.0640.0990.2539.960.2258.874.44443.8。
ASTM材料与实验标准.E165
Designation:E165–02Standard Test Method forLiquid Penetrant Examination1This standard is issued under thefixed designation E165;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This test method2covers procedures for penetrant ex-amination of materials.They are nondestructive testing meth-ods for detecting discontinuities that are open to the surface such as cracks,seams,laps,cold shuts,laminations,through leaks,or lack of fusion and are applicable to in-process,final, and maintenance examination.They can be effectively used in the examination of nonporous,metallic materials,both ferrous and nonferrous,and of nonmetallic materials such as glazed or fully densified ceramics,certain nonporous plastics,and glass.1.2This test method also provides a reference:1.2.1By which a liquid penetrant examination process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness.1.2.2For use in the preparation of process specifications dealing with the liquid penetrant examination of materials and parts.Agreement by the user and the supplier regarding specific techniques is strongly recommended.1.2.3For use in the organization of the facilities and personnel concerned with the liquid penetrant examination.1.3This test method does not indicate or suggest criteria for evaluation of the indications obtained.It should be pointed out, however,that after indications have been produced,they must be interpreted or classified and then evaluated.For this purpose there must be a separate code or specification or a specific agreement to define the type,size,location,and direction of indications considered acceptable,and those considered unac-ceptable.1.4The values stated in inch-pound units are to be regarded as the standard.SI units are provided for information only.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:D129Test Method for Sulfur in Petroleum Products(Gen-eral Bomb Method)3D516Test Method for Sulfate Ion in Water4D808Test Method for Chlorine in New and Used Petro-leum Products(Bomb Method)3D1193Specification for Reagent Water4D1552Test Method for Sulfur in Petroleum Products (High-Temperature Method)3D4327Test Method for Anions in Water by Chemically Suppressed Ion Chromatography4E433Reference Photographs for Liquid Penetrant Inspec-tion5E543Practice for Evaluating Agencies that Perform Non-destructive Testing5E1208Test Method for Fluorescent Liquid Penetrant Ex-amination Using the Lipophilic Post-Emulsification Pro-cess5E1209Test Method for Fluorescent Liquid Penetrant Ex-amination Using the Water-Washable Process5E1210Test Method for Fluorescent Liquid Penetrant Ex-amination Using the Hydrophilic Post-Emulsification Pro-cess5E1219Test Method for Fluorescent Liquid Penetrant Ex-amination Using the Solvent-Removable Process5E1220Test Method for Visible Penetrant Examination Using the Solvent-Removable Process5E1316Terminology for Nondestructive Examinations5E1418Test Method for Visible Penetrant Examination Using the Water-Washable Process52.2ASNT Document:6Recommended Practice SNT-TC-1A for Nondestructive Testing Personnel Qualification and CertificationANSI/ASNT CP-189Standard for Qualification and Certi-fication of Nondestructive Testing Personnel1This test method is under the jurisdiction of ASTM Committee E07on Nondestructive Testing and is the direct responsibility of Subcommittee E07.03onLiquid Penetrant and Magnetic Particle Methods.Current edition approved February10,2002.Published April2002.Originally published as E165–st previous edition E165–95.2For ASME Boiler and Pressure Vessel Code applications see related Recom-mended Test Method SE-165in the Code.3Annual Book of ASTM Standards,V ol05.01.4Annual Book of ASTM Standards,V ol11.01.5Annual Book of ASTM Standards,V ol03.03.6Available from the American Society for Nondestructive Testing,1711Arlin-gate Lane,Columbus,OH43228-0518.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.2.3Military Standard:MIL-STD-410Nondestructive Testing Personnel Qualifica-tion and Certification72.4APHA Standard:429Method for the Examination of Water and Wastewater8 2.5AIA Standard:NAS-410Certification and Qualification of Nondestructive Test Personnel63.Terminology3.1The definitions relating to liquid penetrant examination,which appear in Terminology E1316,shall apply to the terms used in this standard.4.Summary of Test Method4.1A liquid penetrant which may be a visible or afluores-cent material is applied evenly over the surface being examined and allowed to enter open discontinuities.After a suitable dwell time,the excess surface penetrant is removed.A devel-oper is applied to draw the entrapped penetrant out of the discontinuity and stain the developer.The test surface is then examined to determine the presence or absence of indications. N OTE1—The developer may be omitted by agreement between pur-chaser and supplier.N OTE2—Caution:Fluorescent penetrant examination shall not follow a visible penetrant examination unless the procedure has been qualified in accordance with10.2,because visible dyes may cause deterioration or quenching offluorescent dyes.4.2Processing parameters,such as surface precleaning, penetration time and excess penetrant removal methods,are determined by the specific materials used,the nature of the part under examination,(that is,size,shape,surface condition, alloy)and type of discontinuities expected.5.Significance and Use5.1Liquid penetrant examination methods indicate the pres-ence,location and,to a limited extent,the nature and magni-tude of the detected discontinuities.Each of the various methods has been designed for specific uses such as critical service items,volume of parts,portability or localized areas of examination.The method selected will depend accordingly on the service requirements.6.Classification of Penetrations and Methods6.1Liquid penetrant examination methods and types are classified as shown in Table1.6.2Fluorescent penetrant examination utilizes penetrants thatfluoresce brilliantly when excited by black light(see 8.9.1.2).The sensitivity offluorescent penetrants depends on their ability to be retained in the various size discontinuities during processing,then to bleed out into the developer coating and produce indications that willfluoresce.Fluorescent indi-cations are many times brighter than their surroundings when viewed under black light illumination.6.3Visible penetrant examination uses a penetrant that can be seen in visible light.The penetrant is usually red,so that the indications produce a definite contrast with the white back-ground of the developer.The visible penetrant process does not require the use of black light.However,visible penetrant indications must be viewed under adequate white light(see 8.9.2.1).7.Types of Materials7.1Liquid penetrant examination materials(see Notes3 and4)consist offluorescent and visible penetrants,emulsifiers (oil-base and water-base),solvent removers and developers.A family of liquid penetrant examination materials consists of the applicable penetrant and emulsifier or remover,as recom-mended by the manufacturer.Intermixing of penetrants and emulsifiers from various manufacturers is not recommended. N OTE3—Refer to9.1for special requirements for sulfur,halogen and alkali metal content.N OTE4—Caution:While approved penetrant materials will not ad-versely affect common metallic materials,some plastics or rubbers may be swollen or stained by certain penetrants.7.2Penetrants:7.2.1Post-Emulsifiable Penetrants are designed to be in-soluble in water and cannot be removed with water rinsing alone.They are designed to be selectively removed from the surface using a separate emulsifier.The emulsifier,properly applied and given a proper emulsification time,combines with the excess surface penetrant to form a water-washable mixture, which can be rinsed from the surface,leaving the surface free offluorescent background.Proper emulsification time must be experimentally established and maintained to ensure that over-emulsification does not occur,resulting in loss of indica-tions.7.2.2Water-Washable Penetrants are designed to be di-rectly water-washable from the surface of the test part,after a suitable penetrant dwell time.Because the emulsifier is“built-in”to the water-washable penetrant,it is extremely important to exercise proper process control in removal of excess surface penetrant to ensure against overwashing.Water-washable pen-etrants can be washed out of discontinuities if the rinsing step is too long or too vigorous.Some penetrants are less resistant to overwashing than others.7.2.3Solvent-Removable Penetrants are designed so that excess surface penetrant can be removed by wiping until most of the penetrant has been removed.The remaining traces7Available from Standardization Documents Order Desk,Bldg.4Section D,700 Robbins Ave.,Philadelphia,PA19111-5094,Attn:NPODS.8Available from American Public Health Association,Publication Office,1015 Fifteenth Street,NW,Washington,DC20005.TABLE1Classification of Penetrant Examination Types andMethodsType I—Fluorescent Penetrant ExaminationMethod A—Water-washable(see Test Method E1209)Method B—Post-emulsifiable,lipophilic(see Test Method E1208) Method C—Solvent removable(see Test Method E1219)Method D—Post-emulsifiable,hydrophilic(see Test Method E1210)Type II—Visible Penetrant ExaminationMethod A—Water-washable(see Test Method E1418)Method C—Solvent removable(see Test Method E1220)should be removed with the solvent remover(see8.6.4.1).To minimize removal of penetrant from discontinuities,care should be taken to avoid the use of excess solvent.Flushing the surface with solvent to remove the excess penetrant is prohib-ited.7.3Emulsifiers:7.3.1Lipophilic Emulsifiers are oil-miscible liquids used to emulsify the excess oily penetrant on the surface of the part, rendering it water-washable.The rate of diffusion establishes the emulsification time.They are either slow-or fast-acting, depending on their viscosity and chemical composition,and also the surface roughness of the area being examined(see 8.6.2).7.3.2Hydrophilic Emulsifiers are water-miscible liquids used to emulsify the excess oilyfluorescent penetrant on the surface of the part,rendering it water-washable(see8.6.3). These water-base emulsifiers(detergent-type removers)are supplied as concentrates to be diluted with water and used as a dip or spray.The concentration,use and maintenance shall be in accordance with manufacturer’s recommendations.7.3.2.1Hydrophilic emulsifiers function by displacing the excess penetrantfilm from the surface of the part through detergent action.The force of the water spray or air/mechanical agitation in an open dip tank provides the scrubbing action while the detergent displaces thefilm of penetrant from the part surface.The emulsification time will vary,depending on its concentration,which can be monitored by the use of a suitable refractometer.7.4Solvent Removers function by dissolving the penetrant, making it possible to wipe the surface clean and free of excess penetrant as described in8.6.1.2and8.6.4.7.5Developers—Development of penetrant indications is the process of bringing the penetrant out of open discontinui-ties through blotting action of the applied developer,thus increasing the visibility of the indications.7.5.1Dry Powder Developers are used as supplied(that is, free-flowing,non-caking powder)in accordance with8.8.2. Care should be taken not to contaminate the developer with fluorescent penetrant,as the penetrant specks can appear as indications.7.5.2Aqueous Developers are normally supplied as dry powder particles to be either suspended or dissolved(soluble) in water.The concentration,use and maintenance shall be in accordance with manufacturer’s recommendations(see8.8.3). N OTE5—Caution:Aqueous developers may cause stripping of indica-tions if not properly applied and controlled.The procedure should be qualified in accordance with10.2.7.5.3Nonaqueous Wet Developers are supplied as suspen-sions of developer particles in a nonaqueous solvent carrier ready for use as supplied.Nonaqueous,wet developers form a coating on the surface of the part when dried,which serves as the developing medium(see8.8.4).N OTE6—Caution:This type of developer is intended for application by spray only.7.5.4Liquid Film Developers are solutions or colloidal suspensions of resins/polymer in a suitable carrier.These developers will form a transparent or translucent coating on the surface of the part.Certain types offilm developer may be stripped from the part and retained for record purposes(see 8.8.5).8.Procedure8.1The following processing guidelines apply to both fluorescent and visible penetrant examination methods(see Figs.1-3).8.2Temperature Limits—The temperature of the penetrant materials and the surface of the part to be processed should be between40°and125°F(4°and52°C).Where it is not practical to comply with these temperature limitations,qualify the procedure as described in10.2at the temperature of intended use and as agreed to by the contracting parties.8.3Surface Conditioning Prior to Penetrant Examination—Satisfactory results usually may be obtained on surfaces in the as-welded,as-rolled,as-cast,or as-forged conditions(or for ceramics in the densified conditions).Sensitive penetrants are generally less easily rinsed away and are therefore less suitable for rough surfaces.When only loose surface residuals are present,these may be removed by wiping with clean lint-free cloths.However,precleaning of metals to remove processing residuals such as oil,graphite,scale,insulating materials, coatings,and so forth,should be done using cleaning solvents, vapor degreasing or chemical removing processes.Surface conditioning by grinding,machining,polishing or etching shall follow shot,sand,grit or vapor blasting to remove the peened skin and when penetrant entrapment in surface irregularities might mask the indications of unacceptable discontinuities or otherwise interfere with the effectiveness of the examination. For metals,unless otherwise specified,etching shall be per-formed when evidence exists that previous cleaning,surface treatments or service usage have produced a surface condition that degrades the effectiveness of penetrant examination.(See A1.1.1.8for precautions.)N OTE7—When agreed between purchaser and supplier,grit blasting without subsequent etching may be an acceptable cleaning method.N OTE8—Caution:Sand or shot blasting may possibly close disconti-nuities and extreme care should be used with grinding and machining operations to avoid masking discontinuities.N OTE9—For structural or electronic ceramics,surface preparation by grinding,sand blasting and etching for penetrant examination is not recommended because of the potential for damage.8.4Removal of Surface Contaminants:8.4.1Precleaning—The success of any penetrant examina-tion procedure is greatly dependent upon the surrounding surface and discontinuity being free of any contaminant(solid or liquid)that might interfere with the penetrant process.All parts or areas of parts to be examined must be clean and dry before the penetrant is applied.If only a section of a part,such as a weld,including the heat affected zone is to be examined, all contaminants shall be removed from the area being exam-ined as defined by the contracting parties.“Clean”is intended to mean that the surface must be free of rust,scale,welding flux,weld spatter,grease,paint,oilyfilms,dirt,and so forth, that might interfere with the penetrant process.All of these contaminants can prevent the penetrant from entering discon-tinuities(see Annex on Cleaning of Parts andMaterials).N OTE 10—Caution:Residues from cleaning processes such as strong alkalies,pickling solutions and chromates,in particular,may adversely react with the penetrant and reduce its sensitivity and performance.8.4.2Drying after Cleaning —It is essential that the surface of parts be thoroughly dry after cleaning,since any liquid residue will hinder the entrance of the penetrant.Drying may be accomplished by warming the parts in drying ovens,with infrared lamps,forced hot air,or exposure to ambient tempera-ture.8.5Penetrant Application —After the part has been cleaned,dried,and is within the specified temperature range,the penetrant is applied to the surface to be examined so that the entire part or area under examination is completely covered with penetrant.8.5.1Modes of Application —There are various modes of effective application of penetrant such as dipping,brushing,flooding,or spraying.Small parts are quite often placed in suitable baskets and dipped into a tank of penetrant.On larger parts,and those with complex geometries,penetrant can be applied effectively by brushing or spraying.Both conventional and electrostatic spray guns are effective means of applying liquid penetrants to the part surfaces.Electrostatic spray application can eliminate excess liquid build-up of penetrant on the part,minimize overspray,and minimize the amount of penetrant entering hollow-cored passages which might serve as penetrant reservoirs,causing severe bleedout problems duringIncoming PartsPRECLEAN Alkaline SteamVapor De-grease Solvent WashAcid Etch(See 8.4.1)MechanicalPaint Stripper Ultrasonic DetergentDRY (See 8.4.2)DryPENETRANT APPLICATION (See 8.5)Apply Water-Washable Penetrant FINAL RINSE (See 8.6.1)Water WashSprayDipDRY DEVELOP (See 8.7)(See 8.8)DryDeveloper (Aqueous)DEVELOP DRY (See 8.8)(See 8.7)Developer,Dry,Nonaqueous orLiquid FilmDryEXAMINEFluorescent (See 8.9.1)ExamineVisible (See 8.9.2)Water RinseDetergentMechanical WashPOST CLEAN (See 8.10and An-nex A1on Post Cleaning.)DryVapor De-greaseSolvent SoakUltrasonic CleanOutgoing PartsFIG.1General Procedure Flowsheet for Penetrant Examination Using the Water-Washable Process(Test Method E 1209for Fluorescent and Test Method E 1220for VisibleLight)FIG.2General Procedure Flowsheet for Post-emulsifiable Methodexamination.Aerosol sprays are conveniently portable and suitable for local application.N OTE 11—Caution:Not all penetrant materials are suitable for elec-trostatic spray applications,so tests should be conducted prior to use.N OTE 12—Warning:With spray applications,it is important that there be proper ventilation.This is generally accomplished through the use of a properly designed spray booth and exhaust system.8.5.2Penetrant Dwell Time —After application,allow ex-cess penetrant to drain from the part (care should be taken to prevent pools of penetrant from forming on the part),while allowing for proper penetrant dwell time (see Table 2).The length of time the penetrant must remain on the part to allowproper penetration should be as recommended by the penetrant manufacturer.Table 2,however,provides a guide for selection of penetrant dwell times for a variety of materials,forms,and types of discontinuity.Unless otherwise specified,the dwell time shall not exceed the maximum recommended by the manufacturer.N OTE 13—For some specific applications in structural ceramics (for example,detecting parting lines in slip-cast material),the required penetrant dwell time should be determined experimentally and may be longer than that shown in Table 1and its notes.8.6Penetrant Removal 8.6.1Water Washable :Incoming PartsPRECLEAN (See 8.4.1)Alkaline SteamVapor De-greaseSolvent Wash Acid EtchMechanicalPaint Stripper Ultrasonic DetergentDRY(See 8.4.2)DryPENETRANT APPLICATION (See 8.5)Apply Solvent-Removable Fluorescent PenetrantREMOVE EXCESS PENETRANT (See 8.6.4)Solvent Wipe-OffDRY (See 8.7)DryDEVELOP (See 8.8)Nonaqueous Wet or Liquid Film Devel-operAqueous DeveloperDRY (see 8.7)DryEXAMINEFluorescent (See 8.9.1)ExamineVisible (See 8.9.2)MechanicalWater RinseDetergentWashPOST CLEAN (See 8.10and An-nex A1on Post Cleaning)Dry Vapor De-greaseSolvent SoakUltrasonic CleanOutgoing PartsFIG.3Solvent-Removable Penetrant Examination General Procedure Flowsheet (Test Method E 1219for Fluorescent and Test Method E 1220for VisibleLight)8.6.1.1Removal of Excess Penetrant—After the required penetration time,the excess penetrant on the surface being examined must be removed with water,usually a washing operation.It can be washed off manually,by the use of automatic or semi-automatic water-spray equipment or by immersion.For immersion rinsing,parts are completely im-mersed in the water bath with air or mechanical agitation. Accumulation of water in pockets or recesses of the surface must be avoided.If thefinal rinse step is not effective,as evidenced by excessive residual surface penetrant after rinsing, dry(see8.7)and reclean the part,then reapply the penetrant for the prescribed dwell time.(a)The temperature of the water should be relatively constant and should be maintained within the range of50°to 100°F(10°to38°C).(b)Spray-rinse water pressure should not be greater than 40psi(280kPa).(c)Rinse time should not exceed120s unless otherwise specified by part of material specification.N OTE14—Caution:Avoid overwashing.Excessive washing can cause penetrant to be washed out of discontinuities.Withfluorescent penetrant methods perform the rinsing operation under black light so that it can be determined when the surface penetrant has been adequately removed. 8.6.1.2Removal by Wiping—In special applications,pen-etrant removal may be performed by wiping the surface with a clean,absorbent material dampened with water until the excess surface penetrant is removed,as determined by examination under black light forfluorescent methods and white light for visible methods.8.6.2Lipophilic Emulsification:8.6.2.1Application of Emulsifier—After the required pen-etration time,the excess penetrant on the part must be emulsified by immersing orflooding the parts with the required emulsifier(the emulsifier combines with the excess surface penetrant and makes the mixture removable with water rins-ing).After application of the emulsifier,the parts are drained in a manner that prevents the emulsifier from pooling on the part(s).8.6.2.2Emulsification Dwell Time begins as soon as the emulsifier has been applied.The length of time that the emulsifier is allowed to remain on a part and in contact with the penetrant is dependent on the type of emulsifier employed and the surface condition(smooth or rough).Nominal emulsifica-tion time should be as recommended by the manufacturer.The actual emulsification time must be determined experimentally for each specific application.The surfacefinish(roughness)of the part is a significant factor in the selection of and in the emulsification time of an emulsifier.Contact time should be kept to the least possible time consistent with an acceptable background and should not exceed the maximum time speci-fied for the part or material.8.6.2.3Post Rinsing—Effective post rinsing of the emulsi-fied penetrant from the surface can be accomplished using either manual,semi-automated,or automated water immersion or spray equipment or combinations thereof.8.6.2.4Immersion—For immersion post rinsing,parts are completely immersed in the water bath with air or mechanical agitation.The time and temperature should be kept constant.(a)The maximum dip-rinse time should not exceed120s unless otherwise specified by part or material specification.(b)The temperature of the water should be relatively constant and should be maintained within the range of50°to 100°F(10°to38°C).Caution:A touch-up rinse may be necessary after immersion.8.6.2.5Spray Post Rinsing—Effective post rinsing follow-ing emulsification can also be accomplished by either manual or automatic water spray rinsing of the parts as follows:(a)Control rinse water temperature within the range of50°to100°F(10°to38°C).(b)Spray rinse water pressure should not exceed40psi (275kPa).(c)The maximum spray rinse time should not exceed120 s unless otherwise specified by part or materials specification.8.6.2.6Rinse Effectiveness—If the emulsification andfinal rinse step is not effective,as evidenced by excessive residual surface penetrant after emulsification and rinsing,dry(see8.7) and reclean the part and reapply the penetrant for the pre-scribed dwell time.8.6.3Hydrophilic Emulsification:8.6.3.1Prerinsing—Directly after the required penetration time,it is recommended that the parts be prerinsed with water prior to emulsification(8.6.3.3).This step allows for the removal of excess surface penetrant from the parts prior to emulsification so as to minimize the degree of penetrant contamination in the hydrophilic emulsifier bath,thereby extending its life.In addition,prerinsing of penetrated partsTABLE2Recommended Minimum Dwell TimesMaterial FormType ofDiscontinuityDwell Times A(minutes)Penetrant B Developer CAluminum,magnesium,steel, brassand bronze,titanium and high-temperature alloys castings and welds cold shuts,porosity,lack of fusion,cracks(all forms)510wrought materials—extrusions,forgings,platelaps,cracks(all forms)1010Carbide-tipped tools lack of fusion,porosity,cracks510Plastic all forms cracks510Glass all forms cracks510Ceramic all forms cracks,porosity510A For temperature range from50°to125°F(10°to52°C).For temperatures between40°and50°F(4.4°and10°C),recommend a minimum dwell time of20minutes.B Maximum penetrant dwell time in accordance with8.5.2.C Development time begins as soon as wet developer coating has dried on surface of parts(recommended minimum).Maximum development time in accordance with8.8.6.minimizes possible oily penetrant pollution in thefinal rinse step of this process.This is accomplished by collecting the prerinsings in a holding tank,separating the penetrant from water.8.6.3.2Prerinsing Controls—Effective prerinsing is accom-plished by either manual or automated water spray rinsing of the parts as follows:(a)Water should be free of contaminants that could clog spray nozzles or leave a residue on parts.(b)Control water temperature within the range of50to 100°F(10to38°C).(c)Spray rinse at a water pressure of25to40psi(175to 275kPa).(d)Prerinse time should be the least possible time(nomi-nally60s maximum)to provide a consistent residue of penetrant on parts.Wash time is to be as specified by the part or material specification.(e)Remove water trapped in cavities usingfiltered shop air at a nominal pressure of25psi(175kPa)or a suction device to remove water from pooled areas.8.6.3.3Application of Emulsifier—After the required pen-etration time and following the prerinse,the residual surface penetrant on part(s)must be emulsified by immersing the part(s)in a hydrophilic emulsifier bath(8.6.3.4)or by spraying the part(s)with the emulsifier(8.6.3.5)thereby rendering the remaining residual surface penetrant water-washable in the final rinse station(8.6.3.6).8.6.3.4Immersion—For immersion application,parts are completely immersed in the emulsifier bath.The hydrophilic emulsifier should be gently agitated throughout the contact cycle.(a)Bath concentration should be as recommended by the manufacturer.Nominal use concentration for immersion appli-cations is20%.(b)Bath temperatures should be maintained between50 and100°F(10to38°C).(c)Immersion contact time should be the minimum re-quired for adequate surface removal and should not exceed two min.unless otherwise approved by the cognizant engineering organization.8.6.3.5Spray Application—For spray application following the prerinse step,parts are emulsified by the spray application of an emulsifier.All part surfaces should be evenly and uniformly sprayed to effectively emulsify the residual pen-etrant on part surfaces to render it water-washable.(a)The concentration of the emulsifier for spray applica-tion should be in accordance with the manufacturer’s recom-mendations,but should not exceed5%.(b)Temperature to be maintained at50to100°F(10to 38°C).(c)The spray pressure should be25psi(175kPa)max for air and40psi(280kPa)max for water.(d)Contact time should be kept to the minimum consistent with an acceptable background and should not exceed120s or the maximum time stipulated by the part or material specifi-cation.8.6.3.6Post-Rinsing of Hydrophilic Emulsified Parts—Effective post-rinsing of emulsified penetrant from the surface can be accomplished using either manual,semi-automated,or automated water immersion or spray equipment or combina-tions thereof.8.6.3.7Immersion Post-Rinsing—Parts are to be completely immersed in the water bath with air or mechanical agitation.(a)The temperature of the water should be relatively constant and should be maintained within the range of50to 100°F(10to38°C).(b)The maximum dip rinse time should not exceed120s unless otherwise specified by part or material specification. Caution:A touch-up rinse may be necessary after immersion.8.6.3.8Spray Post-Rinsing—Following emulsification parts can be post-rinsed by water spray rinsing as follows:(a)Control rinse water temperature within the range of50 to100°F(10to38°C).(b)Spray rinse water pressure should not exceed40psi (275kPa).(c)The maximum spray rinse time should not exceed120 s unless otherwise specified by part or materials specification.8.6.3.9If the emulsification andfinal rinse steps are not effective,as evidenced by excessive residual surface penetrant after emulsification and rinsing,dry(see8.7)and reclean the part and reapply the penetrant for the prescribed dwell time.8.6.4Solvent-Removable Penetrants:8.6.4.1Removal of Excess Penetrant—After the required penetration time,the excess penetrant is removed insofar as possible,by using wipers of a dry,clean,lint-free material and repeating the operation until most traces of penetrant have been removed.Then using a lint-free material lightly moistened with solvent remover the remaining traces are gently wiped to avoid removing penetrant from discontinuities.Avoid the use of excess solvent.If the wiping step is not effective,as evidenced by difficulty in removing the excess penetrant,dry the part(see 8.7),and reapply the penetrant for the prescribed dwell time. Flushing the surface with solvent following the application of the penetrant and prior to developing is prohibited.8.7Drying—Drying the surface of the part(s)is necessary prior to applying dry or nonaqueous developers or following the application of the aqueous developer.Drying time will vary with the size,nature,and number of parts under examination.8.7.1Drying Parameters—Components shall be air dried at room temperature or in a drying oven.Oven temperatures shall not exceed160°F(71°C).Drying time shall only be that necessary to adequately dry the ponents shall be removed from the oven immediately after ponents shall not be placed in the oven with pooled water or pooled aqueous solutions/suspensions.8.7.2Drying Time Limits—Do not allow parts to remain in the drying oven any longer than is necessary to dry the surface. Times over30min in the dryer may impair the sensitivity of the examination.8.8Developer Application:8.8.1Modes of Application—There are various modes of effective application of the various types of developers such as dusting,immersing,flooding or spraying.The size,configura-tion,surface condition,number of parts to be processed,and so forth,will influence the choice of developerapplication.。
astm与国内标准对照表
astm与国内标准对照表一、概述本文件旨在提供美国材料与试验协会(ASTM)的标准与国内标准之间的对照关系。
请注意,本对照表并非详尽无遗,仅供参考,实际应用时应根据具体需求和实际情况选择使用。
以下列出了一些常见的ASTM标准和相应的国内标准的对照关系:1.ASTME1255与GB/T7737:这是一种常用的冷轧钢板和钢管的标准,两者的名称和适用范围基本相同,但具体要求可能存在差异。
2.ASTMF1816与GB/T6396:这是一项针对塑料薄膜和薄板的试验方法标准,两者的名称和试验方法基本相同,但具体要求可能存在差异。
3.ASTMD4670与GB/T3274:这是一项适用于金属材料剪切试验的标准,两者的名称存在差异,但测试方法基本相同。
4.ASTME112与GB/T5080.5:这是一项用于评估材料抗腐蚀性能的标准,虽然名称不同,但两者均适用于各种材料的测试。
5.ASTME2450与Q/BQB-F2015:这是针对建筑用铝合金型材的标准,两者的名称和测试方法存在差异,但适用范围基本相同。
三、ASTM与国内标准的差异说明ASTM标准和国内标准之间存在一定的差异,这主要表现在试验方法、安全要求、环保要求等方面。
四、使用建议在使用本对照表时,请注意以下几点:1.本对照表仅提供了一部分对应关系,具体差异请参考ASTM标准和国内标准的全文内容。
2.在进行项目实践时,应根据实际情况选择适合的标准进行测试和验证。
不同的标准在具体要求和试验方法上可能存在差异,需要结合项目的实际需求进行选择。
3.如果您对某个标准有疑问或需要更多的信息,可以参考相关的网站和文献,以便更全面地了解其异同和应用范围。
4.在使用国内标准时,请注意标准的时效性和适用范围,以确保项目实践的合规性和有效性。
五、结语本对照表旨在帮助读者更好地理解和应用ASTM标准和国内标准,为项目实践提供有益的参考。
我们希望本对照表能够帮助读者在工作中更加高效地选择和使用标准,提高项目质量和成功率。
astmb127标准尺寸
astmb127标准尺寸一、概述astmb127标准尺寸是一套用于描述各种工业产品尺寸的规范,这套标准在工业生产中具有广泛的应用。
本标准提供了各种常见产品的尺寸参考,以便于生产、设计、采购、物流等环节的准确执行。
二、适用范围本标准适用于所有符合以下条件的产品:1.已经批量生产或正在设计中的产品;2.需要进行尺寸测量的产品;3.需要进行标准化管理的产品。
三、主要内容本标准的主要内容包括:1.各种常见产品的尺寸参考,如圆柱形零件、方形零件、板材等;2.各种尺寸单位的换算关系,包括毫米、厘米、分米、米等;3.尺寸标注的规范要求,包括公差、精度等;4.尺寸测量方法和精度要求,如使用游标卡尺、千分尺等测量工具。
四、标准尺寸体系本标准采用了公制体系,以毫米(mm)为单位,规定了各种常见产品的尺寸。
此外,本标准还包含了英制体系和混合体系,以满足不同地区和不同行业的需求。
五、应用示例以下是一个应用示例:某公司需要设计一款新型机械零件,根据市场调研,该零件需要能够装载一定量的液体。
在设计过程中,设计团队需要参考astmb127标准尺寸体系,以确保设计的零件尺寸符合生产要求和标准化管理要求。
具体来说,设计团队需要确定零件的直径和长度,以确保其能够容纳足够的液体。
同时,设计团队还需要考虑制造工艺和成本等因素,以确保设计的零件能够满足实际生产的要求。
在设计过程中,设计团队还需要注意以下几点:1.根据产品的特点和生产工艺,选择合适的尺寸单位和标注方式;2.确保设计的零件符合实际生产的工艺要求,如精度、公差等;3.在设计图纸中标注出重要的尺寸参数和注释,以便于生产过程中的检查和核对。
六、参考文献本标准的编写参考了相关文献和标准,具体如下:1.《工业产品尺寸测量方法》;2.《机械制图标准》;3.《建筑材料标准》等。
七、结语astmb127标准尺寸是一套重要的工业标准化体系,对于生产、设计、采购、物流等环节具有重要意义。
企业应遵循本标准,以确保产品的质量和标准化管理水平。
超声检测信噪比测试标准
超声检测信噪比测试标准超声检测信噪比是衡量超声检测系统性能的重要指标,可以用来评估信号质量和检测灵敏度。
以下是一些常见的超声检测信噪比测试标准:1. ANSI/AAMI ES/IEC 60601-2-37 标准:该标准适用于临床超声检测设备,包括超声图像设备和超声诊断仪器。
其中包含了对信号处理和信噪比评估的具体要求。
2. ASTM E2807 标准:该标准适用于非破坏性超声检测设备,主要用于评估材料缺陷和异常。
其中包括了对信号质量和信噪比测试的规范。
3. ISO 22870 标准:该标准适用于医学实验室中的超声检测设备,主要用于诊断和监测医学样本。
其中包括了对信号质量和信噪比测试的要求。
4. IEC 61606-3 标准:该标准适用于一般工业和科学领域的超声检测设备,主要用于评估材料和结构的缺陷。
其中包括了对信号处理和信噪比测试的规范。
以上标准提供了测试超声检测信噪比的方法和要求,可以作为评估超声检测系统性能的依据。
具体的测试方法和评估指标可能会因不同应用领域和设备类型而有所不同,用户应根据具体情况选择适用的标准进行测试。
除了上述提到的一些通用的超声检测信噪比测试标准,不同行业和应用领域可能还有一些特定的标准和指南。
以下是一些常见的超声检测信噪比测试标准和方法:1. ASME V 声波测试标准: ASME V 标准是用于工业无损检测的指导标准,其中包含了一些针对超声检测信噪比测试的具体要求和指导。
2. ASTM E127 标准:ASTM E127是用于无损检测的通用指南,其中包括了超声检测信噪比的评估方法和要求。
3. 自制测试样品:在一些特殊情况下,可以根据具体的应用需求,制作自定义的测试样品用于信噪比测试。
例如,制作不同尺寸和类型的缺陷样品,通过对比信号和噪声的幅值,计算信噪比。
这些标准和方法可以作为超声检测信噪比测试的参考,但具体应用中仍需根据实际情况选择合适的标准和方法。
此外,根据设备和应用的要求,还可以参考厂商提供的设备规格和测试方法。
ASMESB-127热处理方法
ASMESB-127热处理方法
一:对应牌号:MONEL400/JIS NW4400/ASTM B127/ ASME SB-127/AMS 4554/N04400/NiCu30Fe ,2.4360 NCU30 Alloy 400铜镍抗腐蚀镍合金
二:化学成分:碳C: ≤0.3 ,镍NiNi: 63~67,铝AL:≤0.50,铁Fe ≤ 2.5,锰Mn: ≤1.50,硅Si:≤1.00,磷P:≤0.015,硫Si: ≤0.020,铜Cu:≤0.75
三:应用范围应用领域:常年现货库存圆棒板材无缝管卷带!
合金是一种多用途的材料,在许多工业领域都能应用如动力工厂中的无缝输水管、蒸汽管,海水交换器和蒸发器,海水使用设备的泵轴和螺旋桨以及核工业用于制造铀提炼和同位素分离的设备,制造生产盐酸设备使用的泵和阀等。
在材料领域中,合金可以用来制作无缝管、圆管、焊带、带材等等。
四:物理性能:密度g/cm3(8.83g)熔点℃(1300~1390)抗拉强度σb/MPa(480)屈服强度σp0.2/MPa (170)延伸率σ5 /%(35)
五:概况:合金在氟气、盐酸、硫酸、氢氟酸以及它们的派生物中有极优秀的耐蚀性。
同时在海水中比铜基合金更具耐蚀性。
酸介质:在浓度小于85%的硫酸中都是耐蚀的。
Monel400是可耐氢氟酸中为数极少的重要材料之一。
水腐蚀:Monel400合金在多数水腐蚀情况下,不仅耐蚀性极佳,而且孔蚀、应力腐蚀等也很少发现,腐蚀速度小于0.025mm/a。
高温腐蚀:在空气中连续工作的zui高温度一般在600℃左右,在高温蒸汽中,腐蚀速度小于0.026mm/a。
氨:由于合金镍含量高,故可耐585℃以下无水氨和氨化条件下的腐蚀。
astm e127 碳钢试块制作标准
astm e127 碳钢试块制作标准
ASTM E127标准是关于金属材料硬度测试的标准规范,但其中也包括了用于制备碳钢试样的规范。
在ASTM E127标准中,有关于碳钢试样制备的具体规定,这些规定通常用于材料的硬度测试和其他性能测试。
以下是一些与碳钢试样制备相关的典型规范:
1. 材料选择:ASTM E127标准通常指定了应当采用的碳钢材料牌号和化学成分。
2. 试样尺寸:标准可能规定了碳钢试样的标准尺寸、形状和几何尺寸的要求。
这些尺寸和形状通常符合硬度测试仪器的规格要求。
3. 加工方法:标准可能规定了制备碳钢试样的具体加工方法,包括样品的切割、修整、抛光和清洗等步骤。
4. 表面处理:标准可能会规定关于碳钢试样表面处理的要求,例如光洁度、去除氧化层或其他污染物。
5. 标注要求:ASTM E127标准通常会包含有关试样标注
内容的要求,例如标注试样的牌号、热处理状态、加工工艺等信息。
需要特别注意的是,ASTM E127标准中的具体要求可能会因版本而异,因此建议在进行碳钢试样制备时,应当参考最新版本的标准规范,并遵循其中的具体要求。
总的来说,ASTM E127标准规定了用于硬度测试等金属材料性能表征的试样的制备要求,这有助于保证试样的准确性和可靠性。
在进行碳钢试块的制备时,应当严格按照相关标准的规定进行操作,以确保试样的质量和一致性。
astm 检测标准 -回复
astm 检测标准-回复什么是ASTM检测标准?ASTM是美国材料和试验协会(American Society for Testing and Materials)的简称,它是全球最大的非营利性标准开发组织之一。
ASTM参与制定了各行各业的标准,其中包括了成百上千个检测标准。
ASTM检测标准是用于描述和规范材料、产品、系统和服务的性能、质量和安全的标准。
为什么需要ASTM检测标准?ASTM检测标准的存在是为了保证产品和服务的安全性、可靠性和一致性。
通过使用这些标准,消费者和制造商可以确保产品符合特定的要求,并且提供可比较的检测结果。
ASTM标准还对于研究人员和工程师们来说,是基本工具,用于开发新的产品或材料。
ASTM检测标准都包括哪些内容?ASTM检测标准覆盖了各种不同的领域,涵盖了从填料材料到化学品,从建筑材料到医疗器械等多个行业。
这些检测标准通常包括以下内容:1. 测试方法:描述了如何进行特定测试,包括实验条件、设备要求和数据分析方法。
这些测试方法确保测试结果的准确性和可重复性。
2. 规范:定义了特定产品或材料的要求和规范,以确保其质量、性能和安全性。
这些规范包括化学成分、物理特性、尺寸和外观等方面的要求。
3. 建议实践:提供了从事特定行业或领域的专业人员的最佳实践指南。
这些建议实践可以涉及材料选择、样品制备、试验过程和数据分析等方面。
ASTM检测标准的制定过程是怎样的?ASTM检测标准的制定过程是一个经过严密审查和广泛讨论的过程。
以下是制定ASTM标准的一般步骤:1. 检测标准的需求:最初,ASTM会收集相关行业的信息和反馈,确定针对某个特定材料、产品或领域制定一个新的检测标准是必要的。
2. 委员会形成:ASTM将选择一个专家委员会来负责制定新的标准。
该委员会将由来自相关行业的各方代表组成,包括制造商、消费者、实验室专家和学术界等。
3. 制定草案:委员会将制定一个初步的草案,以描述测试方法、规范或建议实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Designation:E127–06Standard Practice forFabricating and Checking Aluminum Alloy Ultrasonic Standard Reference Blocks1This standard is issued under thefixed designation E127;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This specification has been approved for use by agencies of the Department of Defense.1.Scope1.1This practice covers a procedure for fabricating alumi-num alloy ultrasonic standard reference blocks that can be used for checking performance of ultrasonic testing equipment and for standardization and control of ultrasonic tests of aluminum alloy products using pulsed longitudinal waves introduced into test material either by the direct-contact method or by the immersion method.A recommended procedure for checking blocks is described and calibration data for a number of reference blocks are tabulated.Statements concerning proce-dures are provided without a discussion of the technical background for the preference.The necessary technical back-ground can be found in Refs.(1-15).2N OTE1—Practice E428and Guide E1158also describe procedures for selecting material,fabricating blocks,and checking response.Unlike this practice,there is no requirement for evaluation relative to a specified standard target.1.2This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:3E317Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement InstrumentsE428Practice for Fabrication and Control of Metal,Other than Aluminum Reference,Blocks Used in Ultrasonic ExaminationE1158Guide for Material Selection and Fabrication of Reference Blocks for the Pulsed Longitudinal Wave Ultra-sonic Examination of Metal and Metal Alloy Production MaterialE1316Terminology for Nondestructive ExaminationsE1324Guide for Measuring Some Electronic Characteris-tics of Ultrasonic Examination Instruments3.Terminology3.1Definitions—For definitions of terms not specific to this practice,refer to Terminology E1316.3.2Definitions of Terms Specific to This Standard:3.2.1angular error—the condition observed in ultrasonic tests of reference blocks when the response from the hole bottom is not maximum while the search unit is positioned to obtain either a maximum number of back reflections from a reference block or a maximum indication from its entry surface.Angular error results when the entry surface,hole bottom,and back surface are not parallel to each other.3.2.2area-amplitude response curve—a curve showing the relationship between different areas of reflecting targets located at a constant distance in an ultrasonic transmitting medium and their respective amplitudes of ultrasonic response.3.2.3back reflection—the indication,observed on the dis-play screen of a test instrument,that represents the ultrasonic energy reflected from the back surface of a reference block.3.2.4back surface—the end of a reference block that is opposite the entry surface.3.2.5entry surface—the end of a reference block through which ultrasonic energy must pass when reflections from the hole bottom are obtained.3.2.6hole bottom—theflat reflecting surface in a reference block that is obtained by making the entire end of a drilled hole smooth andflat using best machining practices.The hole bottom is parallel to the entry surface of the block.3.2.7hole size—the diameter of the hole in a reference block that determines the area of the hole bottom.1This practice is under the jurisdiction of ASTM Committee E07on Nonde-structive Testing and is the direct responsibility of Subcommittee E07.06onUltrasonic Method.Current edition approved May1,2006.Published June2006.Originallyapproved st previous edition approved in2005as E127-05.2The boldface numbers in parentheses refer to the list of references at the end ofthis practice.3For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page onthe ASTM website.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.2.8metal distance—the distance in a reference block from its entry surface to the hole bottom.3.2.9reference block—an aluminum block,containing as an artificial discontinuity aflat-bottom drilled hole of known size.3.2.10ultrasonic response—the height of the indication, observed on a display screen of a test instrument,that repre-sents the amount of ultrasonic energy initially reflected from the hole bottom in a reference block.Units usually used in measuring height of indication are inches,trace-to-peak,or percent of upper linearity limit.4.Summary of Practice4.1Aluminum alloy stock is ultrasonically evaluated to ensure freedom from significant discontinuities and is then precisely fabricated into cylindrical blocks of prescribed lengths.A single,flat-bottom hole of specific diameter is drilled to a constant depth into the end of each block at its center,and the blocks are grouped into sets according to hole size and block length,or metal distance.4.2Each block is checked ultrasonically using a calibrated ultrasonic test system at a prescribed test frequency.Distance-amplitude and area-amplitude characteristics are established for sets of fabricated blocks using specific reflectors to provide a standard response.Curves are plotted to establish the interrelationship between the various blocks in the sets.4.3To permit the use of instrumentation similar to that originally used in developing this practice,or types more recently manufactured,two alternative test system calibration procedures are described.Thefirst method(ball-to-block) which utilizes steel balls as reference standards,is covered in 11.8.2.The second method(block-to-block),which requires as reference standards,blocks which have been calibrated by the National Institute of Standards and Technology(NIST),is described in Annex A1.45.Significance and Use5.1Reference blocks fabricated to this practice will exhibit specific area-amplitude and distance-amplitude relationships only with an immersion test at5MHz using the search unit, test instrument,and test parameters described in this practice. Comparison tests at other frequencies or with uncalibrated test systems will not necessarily give the same relationships shown in this practice.N OTE2—The1964and prior issues of this practice required a test frequency of15MHz.Blocks conforming to earlier issues of this practice may not produce ultrasonic responses that conform to this issue.See Section13regarding provision for recertification or correction curves and tables.5.2Although the primary ultrasonic evaluation of blocks is performed at a specified frequency,the blocks may be used to standardize ultrasonic tests at any frequency and with any pulse-echo ultrasonic test system.Establishment of distance-amplitude and area-amplitude characteristics is necessary for each application.This use may be inappropriate for other materials and curved surfaces without special compensation. Also see(3)for cautions regarding use of standard blocks for test standardization.6.Description of Various Recommended Sets6.1In ultrasonic testing of aluminum alloy products,a standard reference usually is necessary to establish a specified test sensitivity.A standard ultrasonic reference also is required frequently to determine the effect of variations in metal distance upon the ultrasonic response from detected disconti-nuities.Test sensitivity standardizations and corrections for metal distance are most reliable when made under the same conditions employed for the actual tests.For these purposes, aluminum alloy reference blocks containing various combina-tions of hole size and metal distance are necessary.6.2The following combinations or sets of blocks are rec-ommended:6.2.1Basic Set——The basic set consisting of ten reference blocks is listed in Table1.Area-amplitude relations are obtained by intercomparison of blocks containing the3-in.[76.2-mm]metal distance and3⁄64-in.,5⁄64-in.,and8⁄64-in.(see Note3)diameter holes,respectively.Distance-amplitude rela-tions are obtained by intercomparison of the blocks of various lengths which contain5⁄64-in.diameter holes.N OTE3—Direct conversion from inches to millimetres(1in.=25.4 mm]gives hole size dimensions for which there are no standard metric drills;however,Table2gives the nearest standard metric drill size. 6.2.2Area-Amplitude Set—The area-amplitude set consist-ing of eight ultrasonic standard reference blocks is listed in Table3.Area-amplitude relationships are obtained by inter-comparison of any three or more blocks with differentflat bottom-hole sizes at the same metal distance from front surface to hole bottom.6.2.3Distance-Amplitude Set—A distance-amplitude set may include any convenient number of the reference blocks shown in Table4and does not necessarily include all blocks listed.A recommended distance-amplitude set contains at least 12blocks,and each set contains only one of the three hole sizes shown in Table4.Blocks comprising the19block distance-amplitude sets,which are customarily supplied commercially, are indicated in Table4.Increments of metal distance in each of the three groups of blocks in the recommended set should be4Measurement services to determine the ultrasonic response of reference blocks intended to meet the requirements of this practice are available from several commercial testing laboratories.TABLE1Dimensions and Identification of Reference Blocks inthe Basic Set(see Fig.1)BlockIdenti-ficationNumberHoleDiameter(A)MetalDistance(B)OverallLength(C)1⁄64thsin.in.mm in.mm3-03003 3.00076.2 3.75095.2 5-001250.125 3.20.87522.2 5-002550.250 6.4 1.00025.4 5-005050.50012.7 1.25031.8 5-007550.75019.0 1.50038.1 5-01505 1.50038.1 2.25057.2 5-03005 3.00076.2 3.75095.2 5-06005 6.000152.4 6.750171.4 8-03008 3.00076.2 3.75095.2 8-06008 6.000152.4 6.750171.4identical.Distance-amplitude relationships are obtained by intercomparison of all blocks containing the same size hole.6.3If the blocks are to be used for immersion testing,they should be suitably anodized or otherwise protected to enhance resistance to corrosion.Blocks with coated surfaces may be used with search units requiring external ground provided suitable arrangements are made for adequate electrical contact. Uncoated blocks shall be designated as Type1;coated blocks shall be designated as Type2.The ultrasonic characteristics of both types shall be checked by the immersion method as prescribed in Section11.However,care must be exercised to dry the Type1blocks subsequent to immersion in water.The protective coating used on the Type2blocks shall not change their ultrasonic characteristics.6.4A number of important variables that affect the response from reference blocks can be controlled during fabrication by accurate machining practices.The roughness of the entry surface;the alignment of entry surface,hole bottom,and back surface;and the surface condition of the hole bottom are the more important physical variables that must be controlled during the fabrication of reference blocks.The quality of material used for blocks also is a factor.7.Material7.1The recommended material for reference blocks is 7075-T6aluminum alloy rolled or extruded rod(see13.2).N OTE4—To normalize ultrasonic transmission characteristics,the bar stock may be re-heat treated prior to manufacturing the blocks.If this option is elected,a recommended practice is soaking at870610°F[465 65°C]for a period of1h65min,quenching immediately by immersing vertically into water at room temperature,aging in air at room temperature for4days61h,followed by air aging at250610°F[12065°C]for24 61h.To minimize distortion during vertical quenching,it is recom-mended that stock be re-heat treated in lengths of approximately20in. [508mm].7.2The stock shall not be less than2.00in.[50.8mm]nor more than2.25in.[57.2mm]in diameter and up to7.25in. [184mm]in length for the blocks covered by this practice.8.Quality of Material8.1The quality of material to be used for reference blocks should be checked by the procedure outlined in8.2to8.9 inclusive.Only material passing the requirements given in8.9 should be used for blocks.8.2Evaluation Procedure—The general evaluation proce-dure consists of directing a beam of pulsed longitudinal waves into the stock in a diametrical direction and noting the ultrasonic noise level.An ultrasonic test by the immersion method using clean water that is free of air bubbles as a couplant is employed for this evaluation.8.3Test Instrument—Any of several commercially available pulse-echo type ultrasonic testing instruments that provide a 10-MHz test frequency may be used for evaluation of stock quality.The instrument should be capable of providing the required sensitivity level with negligible internal electrical noise and should provide linear amplification of received pulses in an amplitude range of at least50%of maximum amplitude of indication on its display screen.TABLE2Diameter of Flat-Bottom Holes in Inch-Pound Units and the Nearest Metric Drill Hole DiameterN OTE1—Ratio of the area of the nearest metric drill size to the area of the inch-pound drill size is1.016throughout.Hole Diameter in Inch-Pound Units,in.Nearest Metric DrillSize,mm1/640.402/640.803/64 1.204/64 1.605/64 2.006/64 2.407/64 2.808/64 3.20TABLE3Dimensions and Identification of Reference Blocks in the Area-Amplitude Set(see Fig.1)Block Identi-fication NumberHoleDiameter(A)MetalDistance(B)OverallLength(C)1⁄64thsin.in.mm in.mm1-03001 3.00076.2 3.75095.3 2-03002 3.00076.2 3.75095.3 3-03003 3.00076.2 3.75095.3 4-03004 3.00076.2 3.75095.3 5-03005 3.00076.2 3.75095.3 6-03006 3.00076.2 3.75095.3 7-03007 3.00076.2 3.75095.3 8-03008 3.00076.2 3.75095.3TABLE4Dimensions and Identification of Reference Blocks in Distance-Amplitude Sets(see Fig.1and refer to6.2.3) Block Identifica-tion Number,3-,5-,and8-AMetal Distance(B)Overall Length(C)in.mm in.mm −0006B0.0625 1.60.81220.6−0012B0.125 3.20.87522.2−0025B0.250 6.4 1.00025.4−0038B0.3759.5 1.12528.6−0050B0.50012.7 1.25031.8−0062B0.62515.9 1.37534.9−0075B0.75019.1 1.50038.1−0088B0.87522.2 1.62541.3−0100B 1.00025.4 1.75044.5−0125B 1.25031.8 2.00050.8−0150 1.50038.1 2.25057.2−0175B 1.75044.5 2.50063.5−0200 2.00050.8 2.75069.9−0225B 2.25057.2 3.00076.2−0250 2.50063.5 3.25082.6−0275B 2.75069.9 3.50088.9−0300 3.00076.2 3.75095.3−0325B 3.25082.6 4.000101.6−0350 3.50088.9 4.250108.0−0375B 3.75095.3 4.500114.3−0400 4.000101.6 4.750120.7−0425B 4.250108.0 5.000127.0−0450 4.500114.3 5.250133.4−0475B 4.750120.7 5.500139.7−0500 5.000127.0 5.750146.1−0525B 5.250133.4 6.000152.4−0550 5.500139.7 6.250158.8−0575B 5.750146.1 6.500165.1−0600 6.000152.4 6.750171.5−0625 6.250158.87.000177.8−0650 6.500165.17.250184.2A Hole diameters(A)3⁄64,5⁄64,and8⁄64in.B Blocks customarily included in commercial19block distance-amplitudesets.8.4Test Frequency—The test frequency to be used for evaluation of the quality of the reference block material shall be10MHz.8.5Search Unit—An immersion type search unit containing an0.38-in.[9.5-mm]diameter piezoelectric transducer at-tached to an appropriate search tube shall be used.8.6Immersion Equipment—The required pieces of auxiliary equipment are as follows:8.6.1A tank of sufficient capacity to facilitate testing of stock.8.6.2A search unit holding and manipulating device.8.6.3A suitable traversing bridge to provide angulation and lateral positioning of the search unit.8.7Adjustment of Sensitivity—Determine test sensitivity by directing the ultrasonic beam to an0.1875-in.[4.8-mm]diam-eter steel ball,of ball bearing quality,attached to a suitable holding device which is immersed in the water.The water distance to the ball(crystal surface to ball surface)should be equal to the measured Y0+of the transducer.Manipulate the search tube to obtain a maximum indication from the ball. Then set the amplitude of this indication by suitable adjustment of the sensitivity(or gain)control of the instrument at50%of the upper vertical linearity limit of the display.8.8Details of Evaluation Procedure—Position the search unit to obtain a maximum number of back reflections through the diameter of the stock using a water distance of equal to the Y0+of the transducer minus the radius of the material.Then scan the test piece longitudinally and observe the maximum height of the ultrasonic noise level.Make another similar longitudinal scan subsequent to rotating the test piece90°. Check alignment of the search unit periodically during the scans.Proper alignment of the ultrasonic beam with respect to the test piece exists only when a maximum number of back reflections is maintained.8.9Basis of Acceptance—The material is acceptable if the maximum magnitude of indications in the ultrasonic noise level does not exceed20%of the maximum magnitude of indication obtained from the0.1875-in.[4.8-mm]diameter steel reference ball.At leastfive back reflections should be observed at all times during the scanning procedure.Accept-able block material shall not contain discontinuities in excess of the ultrasonic noise level.9.Procedure for Fabricating Blocks9.1Machine reference blocks to a uniformfinish within the dimensional tolerances given in9.2to9.10,inclusive,and as specified in Fig.1.Dimensions of each block are given in Table 1,Table3,and Table4.9.2Final Diameter of Block—Finish the block to a true diameter of260.020in.[50.860.51mm]and a surface finish of63µin.[1.6µm]rms,or smoother.N OTE5—The close tolerance on the diameter is to assure a goodfit in the holders that are sometimes used for retaining blocks.9.3End Facing—The machined ends shall beflat within 0.0002in.[0.005mm]and perpendicular to the longitudinal axis.The two ends shall be parallel within0.001in.[0.03mm].The surfacefinish of the entry surface shall be30µin.[0.76µm]rms,or smoother,and the back surface63µin.[1.6µm] rms,or smoother.9.4Hole Alignment—The hole must be perpendicular to the end of the block within a tolerance of30min.The hole should be located within0.010in.[0.25mm]of the longitudinal axis of the block.9.5Hole Bottom—Make the hole bottomflat byfinal drilling with aflat-end drill or cutter.The end of the drill or cutter used for this purpose should beflat within0.001in.[0.03 mm]per0.125in.[3.2mm]of diameter and should be perpendicular to its longitudinal axis.Thefinal depth of the finishedflat-bottom hole is0.75in.[19.0mm].Make the finished hole bottom as smooth as possible.9.6Counterbore for Plug—Machine aflat counterbore, 0.250in.[6.35mm]in diameter by0.063in.[1.62mm]deep, into the end of the block at its center as shown in Fig.1. 9.7Cleaning and Drying Hole—Upon completion of the counterboring and drilling operations,clean the hole bottom with a suitable cleaningfluid and dry with afine stream of dried,filtered,compressed air blown through a capillary tube inserted in the hole.9.8Deburring—Remove all burrs resulting from the ma-chining procedure.Round the outside edges of entry and back surfaces to a radius of not more than0.032in.[0.81mm]. 9.9Block Identification—Identify each reference block by a stenciled block identification number,designating hole size, and metal distance,as given in Table1,Table3,and Table4. In the case of additional and equivalent blocks,as defined in 13.1,which are fabricated to a precise metric system dimension or to mixed English/metric dimensions,the metric dimension shall be indicated by the marking“mm”immediately following the dimension number.For example,a block with a5⁄64-in. diameterflat-bottom-hole target and a3mm metal path would be identified as“5-3mm”and a block with a1mm diameter flat-bottom-hole target and a1in.metal path would be identified as“1mm-0100”.The size and location of the stenciled numbers are indicated in Fig.1.Take special care to protect the block,particularly the entry surface,from handling marks and scratches during the stenciling operation.Stamp or stencil on the block additional information designating the manufacturer and compliance with this practice(see11.9). However,this information should be located at a point at least 90°about the periphery from the aforementioned block iden-tification number.Letter size and spacing of this additional information should not be greater than letter size and spacing used for the identification number.9.9.1Ink identification may be written on the block sound entry surface provided that it has been established that the markings do not affect the block’s measured echo-amplitude response.Etching,scratching,or physical defacing of the block’s sound entry surface is not permitted.9.10Plugging Procedure—Check the completed unplugged reference block for ultrasonic response prior to plugging.Plug a reference block that exhibits satisfactory ultrasonic response by seating an aluminum plug of the same alloy(7075-T6)that has an interferencefit of0.0005in.[0.013mm]in the counterbore.Coat both the counterbore and the fayingsurfaceof the plug with a permanent water-impervious rubber-base adhesive before the plug is driven into place.The exposed surface of the seated plug can be slightly below,but should not extend above,the surface.10.Procedure for Checking Physical Characteristics ofBlocks 10.1Entry Surface —Check each finished reference block to ensure flatness and parallelism of entry surface and back surface.A dial gage reading to 0.0001in.[0.003mm]and a surface plate may be used for this check.A finished reference block exhibiting misalignment greater than 0.001in.[0.03mm]or lack of flatness greater than 0.0002in.[0.005mm]over the entire entry surface area is not acceptable.10.2Entry Surface Roughness —Roughness of the entry surface may be checked using any one of several commercially available roughness measuring instruments.The recommended procedure involves moving the roughness detector (scanning device)of the instrument diametrically across the entry sur-face.Note deviation in surface roughness during the scan.Finished blocks shall have a surface roughness no greater than 30µin.[0.76µm].11.Procedure for Checking Ultrasonic Characteristics ofBlocks 11.1Reasons for Ultrasonic Check —A fabricated block exhibiting satisfactory external physical characteristics must be subjected to additional ultrasonic tests by the immersion method in order to check the characteristics of the hole and hole bottom.The ultrasonic tests consist of checking the response from the block as well as checking for possible angular error.The block response is a function of smoothness and flatness of the hole bottom.Angular error will result from misalignment of the hole bottom with respect to the entry surface.Because poor response from a fabricated block may be alleviated by additional cleaning of the hole bottom,make the initial ultrasonic check prior to sealing the hole with a permanent aluminumplug.1in.=25.4mmFIG.1Ultrasonic Standard ReferenceBlock11.2Test Frequency—Use a test frequency of5MHz to check reference blocks.11.3Apparatus:11.3.1Test Instrument—Any of several commercially avail-able pulse-echo type ultrasonic testing instruments that employ a tuned pulse to provide a test frequency of5MHz and that facilitate tests by the immersion method may be used for checking reference blocks.The instrument used should provide stable,linear amplification of received pulses at the required sensitivity levels and should be free of interface signal inter-ference.An appropriate line voltage regulating transformer shall be used to ensure maximum regulation,if not provided internal to the instrument.The instrument calibration shall be checked in accordance with the procedure outlined in11.4.11.3.2Tank—Any container is satisfactory that will facili-tate the accurate positioning of the reference blocks being checked,the fundamental standard reference balls,and the search unit.11.3.3Manipulator and Bridge—If a manipulator is used,it should adequately support a search tube and should provide fine adjustment of angle within1°in two vertical planes that are normal to each other.The bridge should be of sufficient strength to support the manipulator rigidly and should allow smooth accurate positioning of the search unit.Specialfixtures may be used provided they meet the requirements prescribed for a manipulator and bridge.11.3.4Couplant—Clean water,free of air bubbles,should be used as a couplant.Inhibitors or wetting agents,or both, may be used if it is established that their use does not alter the ultrasonic characteristics of the couplant.However,it is im-portant that the same water,at the same temperature,be used for comparing the response from different reference blocks.11.3.5Search Unit—An immersion search unit having the performance characteristics described in11.5shall be used.It shall comprise aflat,round,piezoelectric transducer element of any suitable material and beam characteristics resonant at5.0 MHz,with an effective diameter as required to produce a last nearfield maximum(Y0+)in the range of3.2to3.6.N OTE6—During the development of this practice,search units with quartz elements having the following dimensions were used:(1)element diameter—0.5in.[12.7mm](2)back electrode diameter—0.375in.[9.53mm](3)front electrode—entire face and edge to provide360°ground connectionThese and later similar units conforming to this practice,are often referred to as having a“3⁄8-in.effective diameter.”11.4Qualification of Test System:11.4.1Reasons for Qualification—Because differences usu-ally exist in the amplification characteristics of receivers or echo-amplifiers in various test instruments,changes in the amplitude of ultrasonic indications might not be displayed linearly over the entire readable range on the screen of a test instrument.In order to establish correctly the required charac-teristics of the test system used to check reference blocks,it is necessary to determine the actual linear range of the test system.11.4.2Apparatus—The same apparatus,including the test instrument,tank and manipulator,and search unit prescribed for checking reference blocks(see11.3)shall be used to check the linearity of the test system if Method A of Practice E317is used to check linearity.11.4.3Procedure for Checking Linearity—Determine the vertical linearity characteristics of the test system in accor-dance with either Method A or Method B of Practice E317.For checking the response of reference blocks,use only that portion of the vertical instrument deflection that lies within 65%of a constant response ratio.This will define the upper and lower linearity limit.11.5Qualification of Search Unit:11.5.1Reasons for Qualification—In order to ensure maxi-mum accuracy during the check of block response,check the characteristics of the search unit and use only search units exhibiting acceptable characteristics for this work.The char-acteristics of the search unit include the following:11.5.1.1Frequency,11.5.1.2A distance-amplitude curve from a0.500-in.[12.7-mm]diameter steel ball in water,and11.5.1.3Beam profiles obtained from a0.500-in.[12.7-mm] diameter ball in water.11.5.1.4Any piezoelectric material that enables the search unit to meet the requirements of this practice may be used.11.5.2Apparatus—The apparatus used for checking the ultrasonic characteristics of the search unit is the same as that prescribed in11.3for checking reference blocks.The manipu-lator should allow a range in water path from0to at least6in. [152.4mm].The steel balls required shall be of ball-bearing quality,free of corrosion and surface marks.11.5.3Verify the center frequency of the search unit and system to be5.060.5MHz.11.5.4Procedure for Obtaining Distance-Amplitude Characteristics—Obtain an initial response from a0.500-in.[12.7-mm]diameter steel ball that is located at a water distance equal to the measured Y0+of the search unit.Position the search unit for a maximum indication from the ball under these conditions.Take care to obtain a true maximum indication because the position of the search unit is critical.Subsequent to obtaining the maximum response,adjust the instrument gain control to bring this response to100%of the upper linearity limit of the instrument.Then vary the water distance in increments no greater than0.25in.[6.4mm]through a range from0.25in.[6.4mm]to the Y0+point,and from this point in increments no greater than0.5in.[12.8mm]to6in.[152.4 mm].Because only the axial distance-amplitude response is required,take care to maintain the location of the ball on the central axis of the beam for each increment of water distance. Plot the incremental response from the ball as a function of water distance.A typical response curve for an acceptable search unit is shown in Fig.2.Only a search unit with a measured Y0+point at3.2to3.6in.[81to91mm]and a distance-amplitude curve similar to that shown in Fig.2will display sets of amplitude response curves equivalent to those required by11.8.1and11.8.2.11.5.5Procedure for Obtaining Beam Patterns:。