高分子液晶材料的研究现状及开发前景
功能高分子材料发展现状及展望
功能高分子材料发展现状及展望一、引言功能高分子材料是指具有特殊性能的高分子材料,如导电、阻燃、自修复等。
随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。
本文将从功能高分子材料的定义、发展历程、应用领域以及未来展望等方面进行探讨。
二、功能高分子材料的定义功能高分子材料是指在普通高分子材料中加入一些特殊成分或经过改性后,使其具有某种特殊性能的新型高分子材料。
这些特殊性能可以是导电、阻燃、自修复、形状记忆等。
这些新型高分子材料不仅具有传统高分子材料的优点,如重量轻、耐腐蚀等,还具有更多的优势。
三、功能高分子材料的发展历程1. 20世纪50年代至60年代初期:以聚氯乙烯为主要原料生产出各种塑胶制品。
2. 60年代中期至70年代初期:出现了聚碳酸酯、聚酰亚胺等新型高分子材料。
3. 70年代中期至80年代初期:出现了聚苯乙烯、聚苯乙烯共聚物等新型高分子材料。
4. 80年代中期至90年代初期:出现了聚丙烯、聚乙烯等新型高分子材料。
5. 21世纪以来:功能高分子材料得到了广泛应用,如导电高分子材料、阻燃高分子材料、自修复高分子材料等。
四、功能高分子材料的应用领域1. 导电高分子材料:主要应用于电池、太阳能电池板等领域。
2. 阻燃高分子材料:主要应用于建筑材料、电器设备等领域。
3. 自修复高分子材料:主要应用于汽车制造、飞机制造等领域。
4. 形状记忆高分子材料:主要应用于医学器械、智能纺织品等领域。
五、功能高分子材料的未来展望1. 研发更多的功能性高分子材料,满足不同领域的需求。
2. 提高功能高分子材料的性能,使其更加适合实际应用。
3. 推广功能高分子材料的应用,促进产业升级和经济发展。
4. 加强对功能高分子材料的研究和开发,为未来的科技进步提供支持。
六、结论随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。
未来,随着技术的不断提升和需求的不断增加,功能高分子材料将会有更广阔的发展前景。
高分子材料的研究现状及发展前景
SCIENTIST81 高分子材料的基本概念1)高分子化合物指分子量很大的有机化合物,每个分子可含几千、几万甚至几十万个原子,也叫高聚物或聚合物;分子量<500,叫低分子;分子量>500,叫高分子,一般高分子材料的分子量在103~106之间。
如表1所示。
表12)高分子材料指以高分子化合物为主要组分的材料,主要包括塑料、橡胶、化学纤维等。
如图1所示。
图12 高分子材料的研究现状现在高分子材料已经同金属材料及无机非金属材料一样,成为一种重要的材料,在机械工业、燃料电池、农业种子处理及智能隐身技术等各个领域都发挥着重要的作用,也就是说人类已经进入高分子时代,从工农业生产到人们的衣食住行方方面面都渗透着高分子材料的应用。
目前为满足人们的生活生产需求以及市场的需要,我国重点对工程、复合、液晶高分子、高分子分离和生物医药这5项高分子材料进行研究,并已取得重大成果。
2.1 高分子材料应用于机械工业目前材料科学研究的重点和热门是“以塑代钢”和“以塑代铁”,此类研究不仅能够拓宽材料的选择范围,而且比高消耗又笨重的传统材料更加经济耐用、安全轻便。
例如聚甲醛材料的突出特点是具有耐磨性,经机油、四氟乙烯、二硫化钥等改性后,其磨耗系数和摩擦系数减小,被大量应用于各种螺母、齿轮、凸轮、轴承、各种导轨及泵体等机械零件的制造。
2.2 高分子材料应用于燃料电池高分子电解质可大大减薄膜的厚度,从而大大降低电池内阻,使输出功率增大。
全氟磺酸质子交换膜具有很好的化学耐受性和机械强度,同时氟素化合物的僧水性能良好,易于使水排出,但是也降低了电池运转时的保水率,影响了膜导电性,经高分子电解质膜加湿技术后,虽保证了其导电性,但也带来了电池尺寸变大、系统复杂化等一系列问题。
现在研究者正关注能耐高温的增强型全氟磺酸型等高分子材料。
2.3 高分子材料应用于农业种子处理在农业上一般将高分子材料制成干型或者湿型成膜剂,用于包裹种子,不仅可以将农药和其他物质固定在种子表面,还可以改变种子的形状,以便于机械播种,节省人力物力。
液晶高分子ppt课件
结论与展望
03
总结研究成果,指出研究局限性和未来研究方向,展望液晶高
分子领域的发展前景。
05
液晶高分子材料性能及应 用研究
材料性能评价
01
液晶性
液晶高分子具有独特的液晶性,即在一定温度范围内呈现出液晶态。这
种液晶态具有光学各向异性、高粘度、低流动性等特点,使得液晶高分
子在显示、光学、电子等领域具有广泛应用。
光学性质
具有优异的光学性能,如 高透明度、低双折射等。
液晶态特性
取向有序性
液晶分子在某一特定方向排列有序, 形成各向异性。
流动性
连续性与流动性
液晶分子的排列并不像晶体那样完美 ,而是存在一定的缺陷和位错,这些 缺陷和位错使得液晶具有流动性和连 续性。
与晶体不同,液晶具有流动性,其分 子排列不像晶体那样牢固。
01
02
03
主链型液晶高分子
分子主链具有刚性,能形 成液晶态的聚合物。
侧链型液晶高分子
液晶基元作为侧基连接在 柔性主链上,侧基具有足 够大或刚性。
组合型液晶高分子
主链和侧链上同时含有液 晶基元的聚合物。
物理性质
热学性质
具有较宽的液晶相温度范 围,较高的热稳定性和热 氧化稳定性。
力学性质
具有高强度、高模量、低 收缩等优异的力学性能。
电子领域
液晶高分子在电子领域的应用主要包括电子封装材料、电子绝缘材料等。利用液晶高分子 的耐高温、耐化学腐蚀等特性,可以提高电子产品的可靠性和稳定性。
挑战与机遇并存
挑战
液晶高分子的研究和发展面临着一些挑战,如合成难度大、成本高、应用领域受限等。此外,随着科技的不断发 展,新型显示技术不断涌现,对液晶高分子的需求也在不断变化,这对液晶高分子的研究和发展提出了更高的要 求。
高分子材料的应用前景与挑战
高分子材料的应用前景与挑战高分子材料是一种具有重要应用价值的工程材料,在包装、建筑、医疗、汽车、电子等领域都有着广泛的应用。
高分子材料由于其材料成分和特性的不同,其应用范围也不尽相同。
目前,随着工业化和全球化的快速发展,高分子材料技术的应用前景越来越广阔,同时也面临着一些新的挑战。
一、高分子材料的应用前景1. 在环保领域近年来,随着环境问题的日渐严重,环保已成为各国政府和社会的共同关切。
高分子材料因其良好的可塑性、重量轻、性能稳定等特点,在环保领域有着广泛的应用。
例如,生态袋、再生塑料等环保产品的开发,可以有效减少生活垃圾对环境的污染。
2. 在医疗领域高分子材料在医疗、生命科学领域的应用正日益扩大。
其具有生物相容性高、重量轻、易加工成型等特点,常用于人工关节、假肢、戴眼镜、牙齿修复等医疗领域。
同时,高分子材料的应用还可以有效地提高医疗设备的可靠性和性能。
3. 在新能源领域高分子材料在新能源领域中的应用是未来的发展趋势。
目前,各国正在加大对新能源领域的投入,且对材料技术的要求越来越高。
高分子材料因其体积小、重量轻、保温性能好等特点,可以应用于太阳能电池板、风能发电叶片、氢能储存等领域,具有良好的应用前景。
4. 在工业领域高分子材料的应用在各领域中,工业领域占据了重要地位。
例如,塑料、橡胶、纤维等材料,是工业生产中不可或缺的原材料。
高分子材料因其低成本、易加工转化等优点,在工业生产中有着广泛的应用。
未来,高分子材料的应用将覆盖更广泛的工业领域。
二、高分子材料的挑战1. 资源稀缺高分子材料的生产大量耗费化石能源和化学原料等资源,而化石能源的储量日益减少。
因此,高分子材料产业必须积极探索优化生产工艺、提高资源利用率等方面的方法。
2. 环境污染生产过程中,高分子材料的废气、废水和废弃物等会严重污染环境,特别是在塑料生产中。
这对环境造成了不可估量的负面影响,需要通过创新技术、严格监管等方法来减少污染。
3. 功能性能限制高分子材料在应用领域中,难免会遇到一些使用限制的问题。
新材料中的液晶聚合物制备与性能研究
新材料中的液晶聚合物制备与性能研究液晶聚合物是一种新型的高分子材料,具有特殊的结构和性能,被广泛应用于光电领域。
液晶聚合物具有许多优良特性,包括高弹性、优秀的光学特性、棒状分子构成的有序结构等。
在新材料的研究和开发中,液晶聚合物具有较大的潜力和市场前景,因此引起了研究者们的广泛关注。
本文将重点讨论液晶聚合物的制备和性能研究的相关内容。
一、液晶聚合物的制备液晶聚合物的制备方法主要有两种:化学合成法和相分离法。
化学合成法主要是根据单体材料的特性进行反应,通过控制反应条件,制备出液晶聚合物。
相分离法则是通过溶剂的特性和混合度,使液晶分子形成富集相,实现液晶聚合物的制备。
其中,相分离法中比较常用的是熔融混合法和共混物法。
熔融混合法主要是将单体材料一起加热,使其融化,再进行混合,制备出液晶聚合物。
共混物法则是将液晶聚合物与其他高分子混合,通过相互作用来实现液晶的稳定性。
二、液晶聚合物的性能研究液晶聚合物具有非常优秀的性能,但其性能研究也是非常重要的。
液晶聚合物的性能研究可以从以下几个方面进行探究。
1.光学性能液晶聚合物具有很好的光学性质,如折射率、双折射率等特性。
通过光学测试可以分析材料的取向、结构和分子排布等性质,探究材料的光学性能。
2.机械性能液晶聚合物因其分子构成的特殊性,具有较好的弹性和形变性能。
通过机械测试,可以研究液晶聚合物的材料硬度、强度、延展性、可塑性等性质。
3.热性能液晶聚合物在高温下具有较好的稳定性,可以用于高温材料的制备。
通过热学测试,可以研究液晶聚合物的热膨胀系数、热传导性能等特性。
4.电学性能液晶聚合物可以通过改变其分子结构和排布来改变其电学性能。
通过电学测试,可以探究液晶聚合物的电导率、电容率、介电常数等电学性质。
5.应用性能液晶聚合物广泛应用于LCD、OLED、柔性显示器等领域,其应用性能非常重要。
通过应用测试,可以评估液晶聚合物的可用性以及在实际应用中的表现和效果。
三、液晶聚合物的应用前景液晶聚合物在新材料领域有着广泛的应用前景和市场需求。
高分子背景及前沿
高分子背景及前沿高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
既然高分子化学是制造和研究大分子的科学,对制造大分子的反应和方法的研究,显然是高分子化学的最基本的研究内容。
早在19世纪中叶高分子就已经得到了应用,但是当时并没有形成长链分子这种概念。
主要通过化学反应对天然高分子进行改性,所以现在称这类高分子为人造高分子。
比如1839年美国人G oodyear发明了天然橡胶的硫化;1855年英国人Parks由硝化纤维素(guncotton)和樟脑(camphor)制得赛璐珞(celluloid)塑料;1883年法国人d e Chardonnet发明了人造丝rayon等。
可以看到正是由于采用了合适的反应和方法对天然高分子进行了化学改性,使得人类从对天然高分子的原始利用,进入到有目的地改性和使用天然高分子。
回顾过去一个多世纪高分子化学的发展史可以看到,高分子化学反应和合成方法对高分子化学的学科发展所起的关键作用,对开发高分子合成新材料所起的指导作用。
比如70年代中期发现的导电高分子,改变了长期以来人们对高分子只能是绝缘体的观念,进而开发出了具有光、电活性的被称之为“电子聚合物”的高分子材料,有可能为21世纪提供可进行信息传递的新功能材料。
因此当我们探讨21世纪的高分子化学的发展方向时,首先要在高分子的聚合反应和方法上有所创新。
对大品种高分子材料的合成而言,21世纪初,起码是今后10年左右,metallocene 催化剂,特别是后过渡金属催化剂将会是高分子合成研究及开发的热点。
活性自由基聚合,由此而可能发展起来的“配位活性自由基聚合”,以及阳离子活性聚合等是应用烯类单体合成新材料(包括功能材料)的重要途径。
对支化、高度支化或树枝状高分子的合成及表征,将会引起更多的重视。
液晶高分子材料的现状及发展前景
液晶高分子材料的现状及发展前景1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。
这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。
50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。
一、液晶主要分类:1、主链型液晶高分子,主要包括(1)溶液型主链高分子液晶(2)热熔型主链高分子液晶2、侧链型高分子液晶,主要包括(1)溶液型侧链高分子液晶(2)热熔型侧链高分子液晶二、液晶高分子的研究进展关于液晶高分子几年来的主要进展可概括为以下几个方面:(1)合成出一系列含有各种新型介晶基元的液晶高分子,如柱状(或碟状)液晶分子、复合型液晶高分子以及刚性链侧链型液晶高分子.(2)部分液晶高分子品种已实现了工业化生产.基础研究和应用基础研究取得了显著进展,如液晶高分子结构与性能关系;液晶高分子相变动力学和热力学;液晶高分子的固态结构和结晶行为;溶致液晶高分子相图;热致液晶高分子加工流变学及其共混改性理论等,都取得了显著进展.在此基础上开发了复合材料和原位复合材料.(3)新型功能液晶高分子的合成以及液晶高分子在外场作用下的液晶行为研究也取得发显著进展.三、液晶高分子研究趋势液晶高分子虽然近年来有了迅速的发展,但总体上还只是处于发展的初期.预计今后将会更蓬勃的发展.其发展趋势主要有以下几方面:(1)努力降低液晶高分子产品成本.主要途径是扩大生产规模、寻找和选用更廉价的单体、改进合成工艺和采用共混方法等.(2)研究解决制品的各向异性如“焊缝”等问题.主要途径有:改进模具设计和成型条件、玻纤增强和填料填充以及共混技术.(3)大力发展分子复合材料和原位复合材料.(4)发展功能液晶高分子,这主要是侧链型液晶高分子,主要集中于聚硅氧烷类、聚丙烯酸酷类以及含有手性基团的液高分子,以及铁电液晶高分子.其应用领域主要是光记录和存储材料、显示材料、铁电和压电材料非线性光学材料以及具有分离功能的材料和光致变色材料.(5)开发新的成型加工技术和新品种.四、液晶高分子材料攒在的主要问题虽然液晶高分子材料的研究领域广泛,应用宽广,但是从多篇文献及研究结果来分析,整体上还存在一些普遍的问题。
液晶高分子
高分子液晶材料的研究现状及开发前景一摘要液晶高分子是指在熔融状态或溶液中具有液晶特性的高分子,即该类高分子在熔融状态或溶液中,一方面,在一定程度上分子呈类似于晶体的有序排列;另一方面,又具有各项同性液体的流动性。
能够形成液晶相的高分子通常由刚性部分和柔性部分组成,刚性部分多由芳香和脂肪环状结构构成,在生物高分子中,含有手性基团的螺旋结构也具有刚性体的功能,柔性部分则多由可以自由旋转的d键连接起来的饱和链构成。
液晶高分子的制备是将含有刚性结构和柔性结构的单体通过聚合反应连接起来。
由于液晶相的形成,使得高分子的性能发生变化,某些性能显著提高,并出现类似于小分子液晶的特殊性能,从而使其具有更为诱人的应用前景,成为一个研究热点。
高分子液晶是近十几年迅速兴起的一类新型高分子材料[ 1~5] , 它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能, 作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层, 被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。
正是由于其优异的性能和广阔的应用前景, 使得高分子液晶成为当前高分子科学中颇有吸引力的一个研究领域。
二国外对液晶高分子材料的研究1. A series of main-chain liquid-crystalline polymers (LCPs) with pendant sulfonic acid groups have been synthesized by use of biphenyl-4,4-diol, 6,7-dihydroxynaphthalene-2-sulfonic acid, and bis(4-(chlorocarbonyl)phenyl) decanedioate in a one-step esterification reaction. Emeraldine base form of polyaniline (PAN) is doped by the synthesized sulfonic acid-containing LCPs to obtain PAN-LCP ionomers. A series of electrorheological (ER) fluids are prepared using the synthesized PAN-LCP ionomers and silicone oil. The chemical structure, liquid-crystalline behavior, dielectric property of LCPs, and PAN-LCP ionomers, and ER effect of the ER fluids are characterized by use of various experimental techniques. The synthesized sulfonic acid-containing LCPs and PAN-LCP ionomers display nematic mesophase. The PAN-LCP ionomers show a slight elevation of glass transition temperatures and decrease of enthalpy changes of nematic-isotropic phase transition compared with corresponding sulfonic acid-containing LCPs. The relative permittivity of the PAN-LCP ionomers is much higher than that of the corresponding sulfonic acid-containing LCPs. The ER effect of the PAN-LCP ionomer dispersions is better than PAN dispersions, suggesting a synergistic reaction should be occurred among liquid crystalline component, and PAN part under electric fields.已经合成了一系列的主链液晶聚合物(LCP )与磺酸侧基通过使用二苯基-4,4 - 二醇,6,7 - 二羟基萘-2 - 磺酸,和双(4 - (氯羰基)苯基)decanedioate 在一个单步酯化反应。
高分子液晶材料的研究现状及开发前景
高分子液晶材料的研究现状及开发前景示例文章篇一:哇塞!你知道高分子液晶材料吗?我一开始也不知道,后来老师给我们讲了,我才发现这东西可太神奇啦!我就先跟你讲讲啥是高分子液晶材料吧。
你可以把它想象成一群特别有秩序的“小朋友”,它们不像其他材料的“小朋友”那样乱糟糟的,而是整整齐齐地排着队。
就好像我们做课间操的时候,大家都站得笔直,一列一列的,特别整齐。
那现在这种神奇的材料研究得怎么样啦?嘿嘿,告诉你哦,科学家们可没少下功夫!他们发现这种材料有好多厉害的地方。
比如说,它的强度特别高,就像大力士一样,能承受很大的力量。
这要是用来做一些东西,那得多结实呀!还有哦,它的热稳定性也很棒,就像在大火里也能坚强不屈的勇士。
我们班的同学还一起讨论过呢!小明就说:“这要是用来做汽车零件,那车子不得超级耐用啊!”小红接着说:“可不是嘛,说不定还能让飞机变得更厉害呢!”那它未来的开发前景咋样呢?哎呀,我觉得那简直是一片光明啊!你想想,要是能把它用在电子设备上,那我们的手机、电脑是不是能变得又薄又好用?这就好比给它们穿上了超级厉害的“铠甲”。
还有啊,在医疗领域说不定也能大展身手呢。
比如说制造更高级的医疗器械,帮助医生更好地治病救人,那得多棒啊!难道你不觉得高分子液晶材料的未来充满了无限可能吗?反正我是这么认为的!我相信在不久的将来,它会给我们的生活带来翻天覆地的变化,让我们的世界变得更加美好!示例文章篇二:哎呀呀,什么是高分子液晶材料呀?这对我这个小学生来说,可真是个超级难的问题!不过没关系,我可以努力去搞明白。
你知道吗?我们身边有好多好多东西都是由各种材料做成的。
比如说,我们的塑料文具盒、家里的电视机外壳,还有那些漂亮的玩具。
但你有没有想过,有一种很特别的材料叫高分子液晶材料呢?我去问了我的科学老师,老师说高分子液晶材料就像是一群特别听话的“小士兵”,它们排列得整整齐齐的。
这可太神奇啦!难道它们也像我们在操场上做体操一样,会按照规定的动作排好队?听说这种材料有好多厉害的地方。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类以高分子化合物为基础制备的材料,具有广泛的应用领域和巨大的市场潜力。
本文将介绍高分子材料的发展历程,包括其起源、发展阶段和主要应用领域,并展望未来高分子材料的发展趋势。
二、高分子材料的起源高分子材料的起源可以追溯到20世纪初,当时人们开始研究和应用天然高分子材料,如橡胶和纤维素。
随着科学技术的进步,人们开始研究合成高分子材料,首次成功合成高分子材料的里程碑是由赛门·诺瓦克于1907年合成的硅橡胶。
三、高分子材料的发展阶段1. 早期阶段(1907年-1945年):在这个阶段,人们主要关注天然高分子材料的研究和应用,如橡胶、纤维素和天然胶等。
同时,也开始尝试合成高分子材料,如合成橡胶和合成纤维。
2. 发展阶段(1945年-1980年):在二战后的这个阶段,高分子材料的研究和应用得到了极大的推动。
人们成功合成了许多新型高分子材料,如聚乙烯、聚丙烯、聚氯乙烯等。
这些材料具有良好的物理性能和化学稳定性,广泛应用于塑料制品、纺织品、电子产品等领域。
3. 现代阶段(1980年至今):在这个阶段,高分子材料的研究重点逐渐转向功能性高分子材料的开发。
人们开始研究和合成具有特殊功能的高分子材料,如高温耐磨材料、导电高分子材料、生物可降解材料等。
这些材料在航空航天、电子信息、医疗健康等领域有着广泛的应用前景。
四、高分子材料的主要应用领域1. 塑料制品:高分子材料是塑料制品的主要原料,广泛应用于日常生活中的各个方面,如食品包装、家居用品、汽车零部件等。
2. 纤维材料:高分子材料在纺织行业中有着重要的地位,用于制造各种纤维材料,如聚酯纤维、尼龙纤维等。
3. 电子产品:高分子材料在电子产品中的应用越来越广泛,如导电高分子材料用于制造柔性显示屏、电子纸等。
4. 医疗健康:高分子材料在医疗健康领域有着重要的应用,如生物可降解材料用于制造医用缝线、植入器械等。
五、高分子材料的未来发展趋势1. 功能性高分子材料的发展:随着科学技术的不断进步,人们对高分子材料的功能要求也越来越高。
浅谈功能高分子材料的研究现状及其发展前景
材料在人们的日常生活中随处可见,材料能否得到高水 平的发展,关系着人们能否获得高质量的生活。人们在日常 生活中通过应用高分子材料,能够获得较多优势,与现代生 产相适应。同时,还能带来较高的经济效益等。因此,功能高 分子材料在工业领域得到了快速的发展。
功能高分子材料源自20世纪60年代,在这一时期属于新 兴领域,在能源领域、电子领域以及生物领域得到了广泛的 应用。目前,随着科学技术在21世纪的不断创新,人们对功 能高分子材料也进行了有机创新,能够为人们带来更加便捷 的生产和生活。 1 功能高分子材料的性能和种类
目前,导热高 分 子材料 分为两 种,分 别为 添 加型以 及 结构型。为了提高高分子材料的导热性能,需要对一些导 热 性 能比 较 好 的 材 料进 行 相 应 的 研究。由于添 加 型导热 高分子材料的研究方式优于结构型高分子材料,目前研究 领域主要集中于添加型。在研究的过程当中,导热率的高 低与填充物以及聚合物基体之间有着密不可分的关系。 相关科 研人员通 过研究人 造 卫 星的高导热绝 缘 胶 黏 剂发 现,名为环氧树脂的导热胶可以有效提高原胶以及膜状胶 的整体性能。 2.7 磁性高分子材料
料,2018,19(3):233-235. [5]吕海 佳.浅谈化学高分 子材料的应用与发 展前景[J ].云南化工,
2018,45(11):26-27.
- 73 -
目前,我国对高分子材料进行了相关研究,主要研究内 容包括材料的安全性、对组织和血液的相容性、生物学性 能,提高了其力学、机械、物理等性能。
材料在我国具有较长的研究和发展历史,但是产业发展 规模以及开发研究水平还落后于发达国家。自我国加入WTO 以后,材料产业迎来了更大的挑战和机遇。因此,需要进行 跨部门和学科的有效合作,在国家的大力支持下,引进相关 技术,结合自身优势和能力,重点研究材料在智能化药物控 释以及分子设计等方面的应用[5]。
高分子材料现状及未来发展展望
高分子材料发展前景及展望摘要高分子材料是一门内容广阔、与其他许多学科交叉渗透,相互关联的综合型学科。
目前高分子材料的发展十分迅猛,例如高强度,高韧性、耐高温以及极端条件的高性能高分子材料发展很快,与电子、机械、航天航空联系紧密。
高分子材料正在向功能化,智能化,精细化方向发展。
高分子材料也由传统的结构材料转向光、电、声、磁等功能化材料发展,导电材料、储能材料、智能材料、纳米材料、光导材料、生物活性材料、电子信息材料等方面的研究日趋活跃,成果颇丰。
学科交叉以及先进表征加工技术给高分子材料一个崭新的发展机遇,高分子材料正在百花齐放的科学界蓬勃发展。
关键词高分子材料通用高分子材料功能高分子材料改性一、高分子材料的发展史材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,它先于人类存在,人类社会一开始就与材料结下不解之缘,材料的进步和发展直接影响人来生活质量的改善和科学技术的进步。
目前,材料已和能源,信息并列成为现代科学技术进步的三大支柱。
其中材料是工业发展的基础,一个国家的材料品种和总产量是直接衡量其科学技术、经济发展和人民生活水平的重要标志,也是一个时代的标志。
高分子材料相对于传统材料如玻璃,陶瓷,水泥,金属而言是后起的材料,但其发展速度以及应用的广泛性却大大超过了传统材料,它已成为工业农业、国防和科技等领域的重要材料。
高分子材料既可用于结构材料,又可用于功能材料。
高分子材料已广泛渗透与人类生活的各个方面,早人们生活中起到了至关重要的作用,通俗的说就是衣食住行,锅碗瓢盆,现代生活中几乎所有事物都直接或间接与高分子材料联系起来。
高分子材料可分为天然高分子材料和合成高分子材料两大类。
人类远古时期就开始使用皮毛、棉花、天然橡胶、纤维素、虫胶、蚕丝、甲壳苏、木料等一系列天然高分子材料。
随着社会的发展,也相应开发出了天然高分子材料的改性和加工工艺。
例如19世纪中叶,德国人用硝酸溶解纤维素,然后纺成丝或制成膜,并利用其易燃的性能制成炸药。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类以聚合物为基础的材料,具有轻质、高强度、耐热、耐腐蚀等优点,广泛应用于各个领域。
本文将回顾高分子材料的发展历程,分析当前的发展趋势,并展望未来的发展方向。
二、发展历程1. 早期阶段高分子材料的研究始于20世纪初,最早的聚合物是天然高分子,如橡胶和丝绸。
随着化学合成技术的发展,合成高分子材料的研究逐渐兴起。
在20世纪30年代,聚合物材料开始商业化生产,如聚乙烯和聚氯乙烯。
2. 高分子材料的应用拓展随着对高分子材料性能的深入研究,人们发现高分子材料具有良好的绝缘性能、可塑性和可加工性,逐渐应用于电子、汽车、航空航天等领域。
在20世纪50年代,聚酰胺纤维和聚碳酸酯等高性能聚合物材料得到了广泛应用。
3. 高分子材料的功能化随着科技的进步,高分子材料不仅仅用于传统领域,还开始涉足新兴领域。
通过功能化改性,高分子材料可以具备导电性、磁性、光学性等特殊功能。
例如,聚合物太阳能电池、聚合物发光二极管等新型材料的研发取得了重大突破。
三、当前发展趋势1. 绿色环保在当前环保意识日益增强的背景下,高分子材料的研发趋势呈现出绿色环保的特点。
研究人员开始关注可再生资源的利用,开发生物基高分子材料,如生物降解塑料。
同时,高分子材料的回收再利用也成为研究的热点。
2. 高性能化随着科技的不断进步,人们对高分子材料的性能要求也越来越高。
研究人员致力于提高高分子材料的强度、耐热性、耐腐蚀性等性能,以满足不同领域的需求。
纳米技术、复合材料技术等的应用为高分子材料的性能提升提供了新的途径。
3. 多功能化高分子材料的多功能化是当前的发展趋势之一。
通过在高分子材料中引入功能性基团,可以赋予材料独特的性能,如自修复、自清洁等。
多功能高分子材料的研究将为各个领域的应用带来更多可能性。
四、未来发展方向1. 智能化随着人工智能和物联网技术的发展,高分子材料也将朝着智能化方向发展。
智能高分子材料可以感知环境变化并做出相应的响应,具有广阔的应用前景。
高分子材料在各领域的应用与前景
200810230129 许莎莎 08材化(一)班 (材料合成与加工课程论文)高分子材料在各领域的应用及前景1高分子材料的发展现状与趋势高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。
从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。
高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。
鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。
近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进− 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。
2 高分子材料各领域的应用(1)高分子材料在机械工业中的应用高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” 、“ 塑代铁” 成为目前材料科学研究的热门和重点。
这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。
如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。
聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。
又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。
在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。
高分子液晶材料的研究现状及开发前景_郭玉国
第15卷第3期青 岛 大 学 学 报V OL.15NO.32000年9月JOURNAL OF QIN GDAO UNIVERSITYSep.2000文章编号:1006-9798(2000)03-0024-05收稿日期:2000-02-20第一作者简介:郭玉国(1978-),男,青岛大学化工系硕士研究生。
高分子液晶材料的研究现状及开发前景郭玉国,张亚利,赵文元,孙典亭(青岛大学化工系,青岛266071)摘要:综述了高分子液晶材料的研究现状,包括其发展历史、分类、结构、性能及应用。
并就其近期发展目标提出了一些看法。
关键词:高分子;液晶中图分类号:O631 文献标识码:A 高分子液晶是近十几年迅速兴起的一类新型高分子材料[1~5],它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。
正是由于其优异的性能和广阔的应用前景,使得高分子液晶成为当前高分子科学中颇有吸引力的一个研究领域。
1 高分子液晶的研究现状从高分子科学本身来讲,其历史短于液晶研究的历史,早在1888年奥地利植物学家 F.Reinitzer 就发现了液晶,但直到1941年Kargin 提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究[6]。
1966年,Dupont 公司首次使用各向异性的向列态聚合物溶液制备出了高强度、高模量的商品纤维——Fibre B ,使高分子液晶研究走出了实验室。
20世纪70年代,Dupo nt 公司的Kev lar 纤维的问世和商品化开创了高分子液晶的新纪元。
接着,美国人E co nom y 和前苏联的Pla te 和Shibaev 分别合成了热熔型主链聚酯液晶和侧链型液晶聚合物。
高分子材料的发展现状与趋势
高分子材料的发展现状与趋势摘要:当今世界,经济高速发展,社会生产力明显提高,传统材料已无法满足人们日益增长的需求,高分子材料的应用越来越广泛。
随着生产和科学技术的发展和对知识的追求,材料的性能越来越完善。
高分子材料作为现代社会的一种重要的材料,被广泛应用于工业生产的各个领域,与传统材料一起为人类服务。
本文就高分子材料的发展现状与发展趋势进行了简要阐述。
关键词:高分子材料;发展;趋势现在高分子材料已经同金属材料及无机非金属材料一样,成为一种重要的材料,在机械工业、燃料电池、农业种子处理及智能隐身技术等各个领域都发挥着重要的作用,换句话说,人类进入了聚合物时代,高分子材料的应用已经从工农业生产渗透到人们的衣食住行。
目前为满足人们的生活生产需求以及市场的需要,我国重点对工程、复合、液晶高分子、高分子分离和生物医药这5项高分子材料进行研究,并已取得重大成果。
一、高分子材料的基本概念(1)高分子化合物指分子量很大的有机化合物,每个分子可含几千、几万甚至几十万个原子,也叫高聚物或聚合物;分子量<500,叫低分子;分子量>500,叫高分子,一般高分子材料的分子量在103~106之间。
如表1所示。
(2)高分子材料主要包括塑料、橡胶、化纤等,是以高分子化合物为主要组分的材料。
二、高分子材料的发展现状作为一种重要材料,经过五十多年的发展,各个工业领域都可以见到高分子材料的应用。
高分子材料被越来越多地应用到国民经济和现代生活中,预示高分子时代的来临。
高分子材料工业不仅在工农业生产中应用颇多,而且为人民服装、食品、住房等不断提供各种新型材料,而且为高科技材料的开发提供了越来越多有效的高性能结构材料和功能材料。
近年来,随着先进技术领域的发展,为了满足这一发展和进一步发展的需要,高分子材料的功能越来越完善,取得重大突破。
三、高分子材料各领域的应用1.高分子材料在机械工业中的应用高分子材料在机械工业中的应用正变得越来越普遍。
液晶高分子材料的现状及研究进展
液晶高分子材料的现状及研究进展摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。
关键词:液晶高分子研究应用前言高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。
高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。
液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。
研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。
这样人们自然会联想到具有这种结构的高分子材料。
1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。
这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。
50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。
在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。
液晶高分子的现状与发展
液晶高分子的现状与发展
倪铭阳
【期刊名称】《上海塑料》
【年(卷),期】2022(50)5
【摘要】液晶高分子由于具有独特的分子和相态结构而具有高强度、高模量和高耐热等一系列优异性能,也被称为“超高性能塑料”或“超级工程塑料”,也是5G 时代不可或缺的材料之一。
重点分析了近年来国内外液晶高分子的产需形势、产业布局、技术进展、应用趋势、发展方向等,提出了液晶聚合物行业未来的发展方向和促进行业健康发展的措施和建议。
【总页数】6页(P32-37)
【作者】倪铭阳
【作者单位】南京清研高分子新材料有限公司
【正文语种】中文
【中图分类】TQ324.8
【相关文献】
1.液晶高分子的表征性能应用及发展趋势
2.高分子液晶材料的研究现状及开发前景
3.高分子液晶材料的应用及发展趋势
4.浅析功能高分子材料发展现状及未来发展
5.我国液晶产业的发展现状及产业发展的技术选择
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15卷第3期青 岛 大 学 学 报VOL.15NO.32000年9月J OURNAL OF QINGDAO UNIVERSITYSep.2000文章编号:1006-9798(2000)03-0024-05收稿日期:2000-02-20第一作者简介:郭玉国(1978-),男,青岛大学化工系硕士研究生。
高分子液晶材料的研究现状及开发前景郭玉国,张亚利,赵文元,孙典亭(青岛大学化工系,青岛266071)摘要:综述了高分子液晶材料的研究现状,包括其发展历史、分类、结构、性能及应用。
并就其近期发展目标提出了一些看法。
关键词:高分子;液晶中图分类号:O631 文献标识码:A 高分子液晶是近十几年迅速兴起的一类新型高分子材料[1~5],它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。
正是由于其优异的性能和广阔的应用前景,使得高分子液晶成为当前高分子科学中颇有吸引力的一个研究领域。
1 高分子液晶的研究现状从高分子科学本身来讲,其历史短于液晶研究的历史,早在1888年奥地利植物学家F.Reinitzer 就发现了液晶,但直到1941年Kar gin 提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究[6]。
1966年,Dupont 公司首次使用各向异性的向列态聚合物溶液制备出了高强度、高模量的商品纤维——Fibre B ,使高分子液晶研究走出了实验室。
20世纪70年代,Dupont 公司的Kevlar 纤维的问世和商品化开创了高分子液晶的新纪元。
接着,美国人Economy 和前苏联的Plate 和Shibaev 分别合成了热熔型主链聚酯液晶和侧链型液晶聚合物。
20世纪80年代后期,德国的Rings-dor f 合成了盘状主侧链型液晶聚合物[6]。
到目前为止,高分子液晶的研究已成为高分子学科发展的一个重要方向。
目前,高分子液晶的分类方法主要有两种。
一种从液晶的形成过程考虑,将其分为热熔型和溶液型两类;另一种是从高分子的分子结构入手,将其分为主链型和侧链型两类。
从使用情况看,这两种方法互相交叉。
1.1 主链型高分子液晶的研究现状主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。
在20世纪70年代中期以前,它们多是指天然大分子液晶材料。
自从Dupont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。
按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。
1.1.1 溶液型主链高分子液晶 其液晶行为是首先在聚(L-谷氨酸-C -苄酯)体系中发现的。
而研究最多的则是聚芳香酰胺类,如:聚对苯甲酰胺(PBT )和聚对苯二甲对苯二胺(PPT A )和聚芳香杂环类聚合物,如:聚双苯骈噻唑苯(PBT )。
要形成溶液型液晶,无论是小分子还是高分子,都必须具备下述两个条件:(1)必须具有一定尺寸的刚性棒状结构;(2)必须在适当的溶剂中具有超过临界浓度的溶解度。
对于聚肽一类溶液型主链高分子液晶来说,其刚性棒状结构来源于A -螺旋构象,高分子链上的极性基团又与溶剂水有强烈的相互作用,使得上述两个必要条件得到满足。
而对以聚芳香酰胺为代表的一类溶液型高分子液晶而言,要满足上述条件,就必须借助于极强的溶剂,例如,通常使用质量分数大于99%的浓硫酸等。
除了聚肽、聚芳香酰胺和聚芳香杂环类溶液主链高分子液晶以外,纤维素及其衍生物也能形成溶液型液晶。
另外,近期的研究工作表明,容易形成热熔型液晶的聚酯通过共聚,也能获得一些溶液型主链型聚酯液晶。
例如,将环己基酯的齐聚物与芳香酯的齐聚物进行嵌段共聚,即可得到能生成溶液型液晶的聚酯[4]。
溶液型主链高分子液晶,特别是非聚肽类的合成聚合物,主要用于制备超高强度、高模量的纤维和薄膜。
材料的高强度、高模量来源于聚合物链在加工过程中,在一些特殊的溶剂中形成了各向异性的向列态液晶。
这一应用不仅可用于制备超强材料,也给高分子液晶研究提供了推动力。
1.1.2 热熔型主链高分子液晶 对于热熔型液晶高分子,一个重要问题是生成液晶态的温度必须低于聚合物的分解温度。
从化学结构上看,热熔型主链高分子液晶多是主链上含有芳香环的酯基的聚合物。
为了降低这类聚合物的熔点,以保证在分解温度以下得到热稳定的液晶态,最常采用以下三种方法: (1)为改变规整聚合物链的紧密堆积,采用在聚合物链中加入一些萘、联苯和取代苯等体积不等的基团的方法,以破坏刚性聚合物链的规整性,使其熔点下降[2~5];(2)将脂肪族的柔性链段嵌进刚性链的结构单元之间,使整个聚合物链的刚性下降[2~5];(3)改变刚性聚合物链的线型结构,即将间位或邻位取代的亚苯基嵌进结构单元,使聚合链不在一条直线上[2~5]。
高分子液晶材料与普通的高分子材料相比,有较大的性质差别。
(1)高分子液晶具有低得多的剪切粘度,同时在由各向同性至液晶态的相转变处,其粘度会有一个非常明显的降低;(2)由于液晶高分子的取向度增加,使得它沿取向方向具有很高的机械强度;(3)由于结晶程度高,高分子液晶的吸潮率很低,因此由于吸潮率引起的体积变化也非常小;(4)主链高分子液晶还具有良好的热尺寸稳定性;(5)热熔型主链高分子液晶的透气性非常低;(6)它还具有对有机溶剂的良好耐受性和很强的抗水解能力。
基于热熔型主链液晶高分子的上述性质,它特别适用于上述各性质综合在一起的场合。
例如,在电子工业中制作高精度电路的多接点部件。
另外,易流动和低曲翘也使得它能制成较复杂的精密铸件,同时能抗强溶剂。
除了电子工业中的应用以外,它还可用于制备化学工业中使用的阀门等。
另外,最近何向东等[7]采用液晶性的小分子扩链剂与二异氰酸酯及氨基封端的聚硅氧烷齐聚物反应,合成了多嵌段的液晶聚硅氧烷氨酯弹性体,其显示出热致性液晶行为(向列型)。
这种兼具液晶性质与橡胶弹性的特殊弹性体可望具有优良的成膜性能,可制成各种液晶膜,特别是用于性能特异的功能膜。
1.2 侧链型高分子液晶的研究现状侧链型高分子液晶是指介晶基元处于聚合物侧链上的一类高分子液晶。
与主链型高分子液晶相比,侧链高分子液晶的性质在较大程度上取决于介晶基元,而受聚合物主链性质的影响较小。
由于它的介晶基元多是通过柔性链与聚合物主链相接,其平动和转动度的限制变为可控的,因此达到与相应小分子液晶具有同样液晶行为是侧链型高分子液晶研究的目标之一。
侧链型高分子液晶比较好地将小分子液晶性质和聚合物的材料性质结为一体,是具有极大潜力的新型材料。
例如,已有许多文献报道[8~11]侧链型高分子液晶在光信息储存、非线性光学和色谱等领域具有应用价值。
1.2.1 溶液型侧链高分子液晶 为了有利于液晶相在溶液中形成,在溶液型液晶分子中一般都含有双亲活性结构,即结构的一端呈现亲水性,另一端呈现亲油性。
在溶液中当液晶分子达到一定浓度时,这些两亲分子可以在溶液中聚集成胶囊,构成油包水,或水包油结构;当液晶高分子浓度进一步增大时,分子进一步聚集,形成排列有序的液晶结构。
作为溶液型侧链高分子液晶,就是把双亲介晶基元接到聚合物链上,它在溶液中的性质与小分子液晶基本相同。
溶液型侧链高分子液晶最重要的应用在于制备各种特殊性能高分子膜材料,如:LB膜、SA膜和胶囊。
这种微胶囊可作为定点释放和缓释药物使用。
另外,溶液型侧链高分子液晶还可用于制作非线性光学器件和显示装置。
1.2.2 热熔型侧链高分子液晶 同溶液型侧链高分子液晶一样,热熔型侧链高分子液晶的介晶基元通过共价键与聚合物主链相连。
这一主链一般为柔性聚合物链,如:聚丙烯酸酯类、聚硅氧烷、聚苯乙烯以及聚乙烯醇。
由于这里聚合物主链只起到连接的作用而不参与液晶相的形成,因此使其能较完全地25第3期郭玉国,等:高分子液晶材料的研究现状及开发前景呈现小分子液晶的性质。
侧链高分子液晶的非线性光学性质已经在某些领域中崭露头角,特别是信息储存,由于侧链高分子玻璃化转变的特点,信息可以长久地储存,也可以随时消除。
此外,在全息照相和光学透镜等方面也有十分乐观的应用前景[8]。
实现侧链高分子非线性光学变化,首先必须制备出厚度为1~10L m透明的单微区膜。
所谓单微区是指在整个膜中分子取向是一致的,或者平行于膜平面中的某一指定方面或者平行于膜平面的方向。
已经有不少方法出现[8],例如用电场、磁场和表面处理等方法诱导取向。
表面处理方法是将液晶涂层夹在玻璃和聚酰亚胺膜之间,聚酰亚胺膜预先经过磨擦处理,在一定的温度下液晶分子沿着磨擦方向均匀地取向。
对于电场或磁场取向,重要的是选择合适的温度和频率,因为侧链高分子液晶在不同的温度和频率下具有不同的取向机理。
用偶氮类侧链高分子液晶进行信息储存,其过程极为简便,例如,用波长为14.5nm线性偏振绿光照射取向液晶膜(信息读入),读入光强为10 mV/cm,读入时间为10s,伸直的反式结构吸收绿光后变成弯曲的顺式结构,信息读入完成。
用波长为632.8nm的红光进行非破坏性照射,信息读出完成。
若要擦除信息,只要将膜暂时加热到玻璃化温度以上。
整个过程不会引起任何降解现象[8]。
同样,用侧链高分子液晶膜也可以进行可逆式全息成像。
全息成像是一种记录被摄物体反射(或透射)光中全部信息(振幅、相位)的成像技术,它是通过一束参考光和物体反射出来的光叠加和干涉实现的。
有人用线性偏振平面波产生干涉条纹,在不同的相交角进行二次曝光,然后He-Ne激光读出,发现它有很高的衍射效率。
此液晶膜同传统的卤化银感光液相比,它能可逆式地记录图像,而且效果也更好。
此外,侧链高分子液晶膜还可以制成各种光学元件,一个例子是全息Fresenel透镜。
除以上应用以外,侧链型高分子液晶在色谱中也有重要的应用。
它在形成高分子液晶相中的行为提供了合理设计低挥发、好热稳定性和高选择液晶固定相的途径[4]。
已有结果证明的聚合物包括聚硅氧烷和聚丙烯酸酯类组成的侧链型高分子液晶在分离顺、反式脂肪酸甲基酯、杂环芳香化合物和多环芳烃等方面具有较一般固定相高的效率。
另外,手性液晶的引入也对光学异构体的分离提供了一种很好的分离工具。
2 高分子液晶的最新发展动态及开发前景高分子液晶是当前高分子科学中颇有吸引力的一个研究领域。
近十几年来,有关的研究报道日益增多。
从报道的文献看,高分子液晶材料的研究热点主要集中在以下几个方面:2.1 高分子液晶的合成、表征及性能测试一种新材料的开发,其合成和表征应当是首当其冲的,因此有关这方面的研究特别多。