数学中考二轮复习专题卷---图形的对称、平移与旋转

合集下载

中考数学图形的对称平移与旋转专题卷(附答案)

中考数学图形的对称平移与旋转专题卷(附答案)

中考数学图形的对称平移与旋转专题卷(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A. B. C. D.2.下列图案中既是轴对称图形又是中心对称图形的是()3.点P(2,﹣3)关于原点对称的点的坐标是()A.(﹣2,﹣3) B.(2,3) C.(﹣2,3) D.(﹣3,2)4.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P (2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,-1) B.(1.5,2)C.(1.6,1) D.(2.4,1)5.点P(2,-5)关于x轴对称的点的坐标为( )A.(-2, 5) B.(2,5)C.(-2,-5) D.(2,-5)6.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.7.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形 B.菱形 C.正方形 D.梯形8.将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5) B.(4,﹣2) C.(1,1) D.(﹣2,2)9.在以下图标中,是轴对称图形的是()A .节水标志 B .回收标志 C .绿色食品 D .环保标志10.如图,在平面直角坐标系中,△ABC 绕某一点P 旋转一定的角度得到△A ′B ′C ′,根据图形变换前后的关系可得点P 的坐标为( ).A .(0,1)B .(1,﹣1)C .(0,﹣1)D .(1,0)11.下列运动属于旋转的是( ).A .滚动过程中的篮球的滚动B .钟表的钟摆的摆动C .气球升空的运动D .一个图形沿某直线对折的过程12.下列图形中,是中心对称图形的是( ) . C . D . 评卷人得分 二、填空题ABCD 对角线AC 所在直线上有一点O ,2==AC OA ,将正方形绕O 点顺时针旋转︒60,在旋转过程中,正方形扫过的面积是__________.14.在如图所示的方格中,每个小方格都是边长为1的正方形,△ABC 的三个顶点都在格点上.(1)建立平面的直角坐标系,使A (﹣2,﹣1),C (1,﹣1),则B 点坐标为 .(2)如果△ABC 平移后B 点的对应点B′的坐标变为(4,2),画出平移后的图△A′B′C′.15.如图,在菱形ABCD 中,∠BCD=60°,BC=4,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.16.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6cm,则BC的长是______________ .17.如图,是一块从一个边长为20cm的正方形BCDM材料中剪出的垫片,经测得FG=9cm,则这个剪出的图形的周长是 cm18.如图①,在△AOB中,∠AOB=90º,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为____________.评卷人得分三、解答题OB与底板OA所在的水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?20.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:;(4)求四边形ACBB′的面积.21.如图①,在△ABC中,∠ACB=90°,AC=BC,在AC、BC边上分别截取CD=CE,连结DE.将△DCE绕着点C顺时针旋转θ角,连结BE、AD.(1)当0°<θ<90°时,如图②,直线BE交直线AD于点F.①求证:△ACD≌△BCE.②求证:AF⊥BE.(2)当0°<θ<360°,AC=5,CD=3,四边形CDFE是正方形时,直接写出AF的长度.22.操作题(1)画图并填空.已知△ABC中,∠ACB = 90°,AC = 3个单位,BC = 4个单位.(1)画出把△ABC 沿射线BC方向平移2个单位后得到△DEF;直接写出△DCF的面积为 .(2)小明有一张边长为13cm的正方形纸片(如图1),他想将其剪拼成一块一边为8cm,的长方形纸片.他想了一下,不一会儿就把原来的正方形纸片剪拼成了一张宽8cm,长21cm 的长方形纸片(如图2),你认为小明剪拼得对吗?请说明理由.评卷人得分四、计算题A、B、C在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A //C B ;(2) 线段/CC 被直线l ;(3) 在直线l 上找一点P ,使PB+PC 的长最短,并算出这个最短长度.24.在同一平面内,△ABC 和△ABD 如图①放置,其中AB=BD .小明做了如下操作:将△ABC 绕着边AC 的中点旋转180°得到△CEA,将△ABD 绕着边AD 的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF 是什么特殊四边形,并说明理由;(2)连接EF ,CD ,如图③,求证:四边形CDFE 是平行四边形.25.在△ABC 中,AC=BC ,∠ACB=90°,点D 为AC 的中点.(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连接CF ,过点F 作FH ⊥FC ,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明;(2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.26.如图是一块残缺的圆轮片,点A 、B 、C 在圆弧E 上.(1)画出所在的⊙O ;(2)若AB=BC=60,∠ABC=120°,求所在⊙O 的半径.答案1.B2.C .3.C4.C.5.B6.C7.A8.B9.C 10.B . 11.B . 12.A .13.22+π. 14.(1)B 点坐标为(0,1), 15.27﹣2. 16.15cm 17.9818.(36,0) 19.(1)30°.(2)(36-123)cm .(3)30°.20.(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB 的中点D ,连接CD ,过点A 作AE ⊥BC 的延长线与点E 即可;(3)根据图形平移的性质可直接得出结论;(4)根据S 四边形ACBB′=S 梯形AFGB +S △ABC ﹣S △BGB′﹣S △AFB′即可得出结论.解:(1)如图所示;(2)如图所示;(3)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:平行且相等;(4)S 四边形ACBB′=S 梯形AFGB +S △ABC ﹣S △BGB′﹣S △AFB′=(7+3)×6+×4×4﹣×1×7﹣×3×5=30﹣8﹣﹣=11.21.(1)①根据旋转的性质和已知,运用SAS 证明即可;②由问题原型中的结论:△ACE≌△BCE 得出∠BFO=∠ACB,结合等量代换进行求解即可;(2)运用CD∥BE 结合初步探究中的结论,可证CD⊥AF,结合勾股定理即可求解. 试题解析:(1)①如图②,∵△DCE 绕着点C 顺时针旋转θ角,由旋转的性质可知,∴∠ACD=∠BCE=θ,又∵AC=BC,CD=CE ,在△ACD 和△BCE 中,AC BC ACD BCECD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE;②如图②,设AF 与BC 交点于O ,∵△ACD≌△BCE,∴∠DAC=∠EBC,∵∠AOC=∠BOF,∴∠BFO=∠ACB=90°,∴AF⊥BE;(2)如图③,∵AC=5,CD=3,四边形CDFE 是正方形时,∵AD⊥CD,∴AD=22534-=,∴AF=4+3=7,如图4,∴AF=4﹣3=1.22.(1)、根据平移的性质可得:CF=2,DF=3,从而得出三角形的面积;(2)、首先分别求出正方形和矩形的面积,然后根据是否相等得出答案.试题解析:(1)画图 △DCF 的面积为3 (2)、图1面积为1313169⨯= 图2面积为()1388168+⨯=因为169168≠,所以小明拼的不对23.(1)答案见解析;(2)垂直平分;(3)5.24.(1)四边形ABDF 是菱形.理由如下:∵△ABD 绕着边AD 的中点旋转180°得到△DFA,∴AB=DF ,BD=FA ,∵AB=BD ,∴AB=BD=DF=FA ,∴四边形ABDF 是菱形;(2)∵四边形ABDF 是菱形,∴AB∥DF,且AB=DF ,∵△ABC 绕着边AC 的中点旋转180°得到△CEA,∴AB=CE ,BC=EA ,∴四边形ABCE 为平行四边形,∴AB∥CE,且AB=CE ,∴CE∥FD,CE=FD ,∴四边形CDEF 是平行四边形.考点:1.旋转的性质;2.平行四边形的判定;3.菱形的判定.25.(1)FH 与FC 的数量关系是:FH=FC .证明如下:延长DF 交AB 于点G ,由题意,知∠EDF=∠ACB=90°,DE=DF ,∴DG ∥CB ,∵点D 为AC 的中点,∴点G 为AB 的中点,且,∴DG 为△ABC 的中位线, ∴.∵AC=BC ,∴DC=DG ,∴DC ﹣DE=DG ﹣DF ,即EC=FG .∵∠EDF=90°,FH ⊥FC ,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF 与△ADG 都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF ≌△FGH ,∴CF=FH .(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.26.(1)如图所示:先找到圆心,利用尺规作图,作出线段AB和BC的垂直平分线,两垂直平分线的交点即为圆心O,以O为圆心,OA长为半径画圆,即为弧AC所在的圆O;(2)如图,连接OA、OB、OC,∵AB=BC,AO=BO=CO, ∴△AOB≌△BOC,∠BAO=∠ABO=∠CBO=∠BCO, ∵∠ABC=120°,∴∠CBO=∠ABO=60°,∵BO=CO,∴∠OBC=∠BCO=60°,∴△OBC是等边三角形,∵BC=60,∴半径为60.。

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【答案】(1)图形见解析;图形见解析;旋转中心坐标(0,﹣2).【解析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【考点】1、作图-旋转变换;2、作图-平移变换2.下列图形中,既是轴对称图形又是中心对称图形的是 ()【答案】B.【解析】A、是轴对称图形,不是中心对称图形.故此选项错误;B、是轴对称图形,是中心对称图形.故此选项正确;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选B.【考点】1.中心对称图形;2.轴对称图形.3.下列图形中既是中心对称图形,又是轴对称图形的是A. B. C. D.【答案】D.【解析】A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、不是轴对称图形,是中心对称图形.故本选项错误;D、是轴对称图形,也是中心对称图形.故本选项正确.故选D.【考点】1.中心对称图形;2.轴对称图形.4.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既不是轴对称图形,也不是中心对称图形,故本选项错误.故选B.【考点】1.中心对称图形;2.轴对称图形5.如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于;(2)画出△ABC向右平移2个单位得到的△,则A点的对应点的坐标是;(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△,则A点对应点的坐标是。

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.下面四个标志分别代表:回收、绿色包装、节水、低碳,其中中心对称图形的是()A.B.C.D.【答案】B.【解析】:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.2.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位【答案】A.【解析】根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选A.【考点】坐标与图形变化-平移.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.4.如图是香港特别行政区的区徽,区徽中的紫荆花图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【答案】B.【解析】该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选B.【考点】旋转对称图形.5.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.6.如图,∠XOY内有一点P,试在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.【答案】见解析【解析】解:如图所示,分别以直线OX、OY为对称轴,作点P的对称点与,连接,分别交OX于点M,交OY于点N,则PM+MN+NP最短.7.如图,已知△ABC和△DCE是等边三角形,则△ACE绕着点按逆时针方向旋转度可得到△.【答案】,60,【解析】因为△和△是等边三角形,故∠,则∠.要由△通过旋转得到△,只需要将△绕着点按逆时针方向旋转60°即可得到.8.如图六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是()A.150°B.300°C.210°D.330°【答案】B.【解析】因为六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,所以∠AFC=∠EFC,∠BCF=∠DCF,因为∠AFC+∠BCF=150°,所以∠AFE+∠BCD=150°×2=300°.故选B.【考点】轴对称的性质.9.等腰三角形是轴对称图形,最多有条对称轴.【答案】3【解析】由题, 等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题, 等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.【考点】对称轴的定义.10.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形. 【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形. (1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.11. 下列图形:其中是轴对称图形的共有 A .1个 B .2个C .3个D .4个【答案】C【解析】根据轴对称图形的概念,第2,3,4都是轴对称图形;第1是中心对称图形;所以选C 【考点】轴对称图形点评:本题考查轴对称图形,考生要清楚轴对称图形的概念,并会利用轴对称图形的概念判断图形是否是轴对称图形,12. 如图,边长为1的正方形绕点逆时针旋转30°到正方形,则图中阴影部分的面积为( )A .B .C .D .【答案】B【解析】设B′C′与CD 交于点E .由于阴影部分的面积=S 正方形ABCD -S 四边形AB′ED ,又因为S 正方形ABCD =1,所以关键是求S 四边形AB′ED .为此,连接AE .根据HL 易证△AB′E ≌△ADE ,得出∠B′AE=∠DAE=30°.在直角△ADE 中,由正切的定义得出DE=AD•tan ∠DAE= .再利用三角形的面积公式求出S 四边形AB′ED =2S △ADE .设B′C′与CD 交于点E ,连接AE .在△AB′E 与△ADE 中,∠AB′E=∠ADE=90°,∵AE=AEAB′=AD,∴△AB′E ≌△ADE (HL ),∴∠B′AE=∠DAE .∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=AD•tan ∠DAE=∴S 四边形AB′ED =2S △ADE =∴阴影部分的面积=S 正方形ABCD -S 四边形AB′ED =1-=,故选B【考点】旋转的性质点评:本题主要考查了正方形、旋转的性质,直角三角形的判定及性质,图形的面积以及三角函数等知识,综合性较强,有一定难度13. 如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC(1)将△ABC 向x 轴正方向平移5个单位得△A---1B-1C 1,(2)再以O 为旋转中心,将△A 1B 1C 1旋转180°得△A---2B 2C 2,画出平移和旋转后的图形,并标明对应字母.【答案】图形的平移是常考点,把握好平移的基本知识即可。

中考数学复习《对称、平移与旋转》专项测试卷(含参考答案)

中考数学复习《对称、平移与旋转》专项测试卷(含参考答案)

中考数学复习《对称、平移与旋转》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________知识点一、轴对称1、下列图案中,是轴对称图形的是()A.B.C.D.2、在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是()A.B.C.D.3、如图,△ABC与△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,则∠B的度数为()A.90°B.100°C.70°D.80°4、如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm5、如图,在Rt△ACB中,∠BAC=90°,AD⊥BC,垂足为D,△ABD与△ADB′关于直线AD对称,点B的对称点是点B′,若∠B′AC=14°,则∠B的度数为()A.38°B.48°C.50°D.52°知识点二、中心对称1、搭载神舟十六号载人飞船的长征二号F遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度.下列图标中,其文字上方的图案是中心对称图形的是()A.B.C.D.2、将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.3、在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)4、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣125、在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6、如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点三、平移1、如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是()A.2B.2.5C.3D.52、如图,已知点A(1,0),B(4,m),若将线段AB平移至CD,其中点C(﹣2,1),D(a,n),则m﹣n的值为()A.﹣3B.﹣1C.1D.33、在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=()A.2B.3C.4D.54、如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48B.96C.84D.425、如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm6、如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7、如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.知识点四、旋转1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是()A.30°B.35°C.40°D.45°2、如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°3、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB'C'的位置,使CC'∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=3,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,连接BB′,则BB′的长为()A.6B.C.D.35、如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠C′的度数为()A.18°B.20°C.24°D.28°6、如图,矩形ABCD绕B点旋转,使C点落到AD上的E处,AB=AE,连接AF,AG.(1)求证:AF=AG;(2)求∠GAF的度数.7、已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若P A=3,PB=4,∠APB=150°,求PC的长度.参考答案知识点一、轴对称1-5 ACBCD知识点二、中心对称1-6 CDCDAD知识点三、平移1-7 ABCAC DB知识点四、旋转1-5 BDCCC6、(1)证明:由旋转性质,得∠GBE=∠FEB=90°,BG=CD=EF∵AB=AE∴∠ABE=∠AEB∴∠ABG=∠AEF在△ABG和△AEF中,AB=AE,∠ABG=∠AEF,BG=EF∴△ABG≌△AEF∴AG=AF(2)解:∵AB=AE,∠BAE=90°∴∠ABE=∠AEB=45°∴∠ABG=90°﹣45°=45°由旋转性质,得AB=BG∴∠BAG=∠AGB=67.5°∵△ABG≌△AEF∴∠EAF=∠BAG=67.5°∴∠GAF=360°﹣90°﹣67.5°﹣67.5°=135°7、(1)证明:由旋转性质,得AP=AQ,∠P AQ=60°∴∠P AC+∠CAQ=60°∵△ABC是等边三角形∴∠P AC+∠BAP=60°,AB=AC∴∠BAP=∠CAQ在△BAP和△CAQ中,AP=AQ,∠BAP=∠CAQ,AB=AC ∴△BAP≌△CAQ(2)解:∵AP=AQ=3,∠P AQ=60°∴AP=PQ=3,∠AQP=60°∵∠APB=150°∴∠PQC=∠APB﹣∠AQP=90°∵PB=QC=4∴PC==5。

2024年中考数学复习专题★★ 图形的平移、对称与旋转

2024年中考数学复习专题★★ 图形的平移、对称与旋转

13.【基础回顾】(1)如图①,E 是正方形 ABCD 中 CD 边上任意一点,以点 A 为中心,将△ADE 顺时针旋转 90°后得到△ABE′,若连接 EE′,则△ AEE′的形状为等等腰腰直直角角三三角角形形;
【类比探究】(2)如图②,在(1)的条件下,设 EE′与 AB 相交于点 P,在 AD 上取点 Q,使 DQ=BP,连接 QE,猜想 QE 与 E′P 的数量关系,并给予 证明; 【联想拓展】(3)如图③,在△ABC 中,∠BAC=90°,AB=AC.点 P 在 BC 上,求 AP,BP,CP 之间存在的数量关系.
【类比探究】(2)QE=E′P. 证明:∵将△ADE 顺时针旋转 90°后得到△ABE′, ∴∠D=∠ABE′,DE=BE′, ∵DQ=BP, ∴△DQE≌△BPE′(SAS), ∴QE=E′P.
【联想拓展】(3)CP2+BP2=2AP2. 将△ABP 逆时针旋转 90°后得到△ACD,连接 PD,则△APD 是等腰直角三 角形, 由旋转的性质可知 ∠ABP=∠ACD=45°,BP=CD, ∵∠ACB=45°, ∴∠BCD=∠ACB+∠ACD=90°, ∴PC2+CD2=PD2, ∵AP2+AD2=PD2=2AP2, ∴CP2+BP2=2AP2.
8.(2023·凉山州)如图,在 Rt△ABC 纸片中,∠ACB=90°,CD 是 AB 边 上的中线,将△ACD 沿 CD 折叠,当点 A 落在点 A′处时,恰好 CA′⊥AB, 若 BC=2,则 CA′=22 3 .
9.(2023·龙东)如图,在平面直角坐标系中,矩形 ABCD 的边 AD=5,OA∶ OD=1∶4,将矩形 ABCD 沿直线 OE 折叠到如图所示的位置,线段 OD1 恰好 经过点 B,点 C 落在 y 轴的点 C1 位置,点 E 的坐标是(1(-1- 5,2,)2).

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形【答案】B.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,此图形是轴对称图形但并不是中心对称图形,故选B.【考点】1.中心对称图形和轴对称图形;2.正多边形的性质.2.下列电视台的台标,是中心对称图形的是()A. B. C. D.【答案】A【解析】A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.【考点】中心对称图形3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-5,1),点B的坐标为(-3,3),点C的坐标为(-3,1)。

(1)将Rt△ABC沿x轴正方向平移7个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1的图形;(2)Rt△ABC关于点D(-1,0)对称的图形是Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形,并写出A2、B2、C2点的坐标。

【答案】(1)作图见解析;(2)作图见解析,A2(3,-1),B2(0,-3),C2(0,-1).【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于点D的对称点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,A2(3,-1),B2(0,-3),C2(0,-1).【考点】1.作图-旋转变换;2.作图-平移变换.4.如图,已知点A(1,1)、B(3,2),且P为x轴上一动点,则△ABP的周长的最小值为.【答案】.【解析】本题需先根据已知条件求出AB的长,再根据P为x轴上一动点,确定出P点的位置,即可求出BP+AP的长,最后即可求出△ABP周长的最小值.试题解析:作点B关于x轴的对称点B′,连接AB′,当点P运动到AB′与X轴的交点时△ABP周长的最小值.∵A(1,1),B(3,2),∴AB=又∵P为x轴上一动点,当求△ABP周长的最小值时,∴AB′=∴△ABP周长的最小值为:AB+AB′=【考点】1.轴对称-最短路线问题;2.坐标与图形性质.5.如图,P是等边△ABC内的一点,若将△PAB绕点A逆时针旋转得到△P’AC,则∠PAP’的度数为A.120°B.90°C.60°D.30°【答案】C.【解析】如图,根据旋转的性质得,∠PAP′=∠BAC,∵△ABC是等边三角形,∴∠BAC=60°,∴∠PAP′=60°.故选C.【考点】1.旋转的性质;2.等边三角形的性质.6.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既不是轴对称图形,也不是中心对称图形,故本选项错误.故选B.【考点】1.中心对称图形;2.轴对称图形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A.【解析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【考点】轴对称图形.8.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ()【答案】A【解析】这是一道较容易的题目,主要考查了轴对称图形的概念:对折后直线两侧的部分完全重合,其中B、D显然不是轴对称图形,易产生错误的是C,正确的答案应选A.本题渗透了保护环境思想,这也是出题人指出的方向.9.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1800,得到矩形OEFG,顺次连接AC、CE、EG、GA.(1)请直接写出点F的坐标;(2)试判断四边形ACEG的形状,并说明理由;(3)将矩形OABC沿y轴向下平移m个单位(0<m<4),设平移过程中矩形与重叠部分面积为,当:=11:16时,求m的值.【答案】(1)F(-2,-4);(2)四边形ACEG是菱形,证明见解析;(3)或.【解析】(1)点F与点B关于原点对称,故F(-2,-4);(2)根据对角线互相垂直平分的四边形是平行四边形,即可证得;(3)根据:=11:16,求得,再由∥,得到△∽△,再用含m的代数式表示出和,从而求出m的值.试题解析:(1)F(-2,-4);(2)四边形ACEG是菱形.理由:根据题意得:OA=OE,OC=OG∴四边形ACEG是平行四边形又∵AE⊥GC∴四边形ACEG是菱形;(3)将矩形OABC沿y轴向下平移m个单位得到矩形.设与AC交于点M,与EC交于点N,则当:=11:16时,重叠部分为五边形.∵:=11:16∴∵∥,∴△∽△∴∴∴同理可得:∴解得:或.【考点】1. 旋转的性质,2. 菱形判定,3.三角形相似的应用.10.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)DF=CF,且DF⊥CF;(2)(1)中的结论仍然成立,证明见解析;(3).【解析】(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.【考点】1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.11.如图,将△ABC绕着点C顺时针旋转50°后得到△A'B'C。

(易错题精选)初中数学图形的平移,对称与旋转的专项训练解析含答案

(易错题精选)初中数学图形的平移,对称与旋转的专项训练解析含答案

(易错题精选)初中数学图形的平移,对称与旋转的专项训练解析含答案一、选择题1.点M(﹣2,1)关于y 轴的对称点N 的坐标是( )A .(﹣2,﹣1)B .(2,1)C .(2,﹣1)D .(1,﹣2)【答案】B【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M (-2,1)关于y 轴的对称点N 的坐标是(2,1).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.3.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π, 故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.4.如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点A 在y 轴上,BC ∥x 轴,点B(2,32)-.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22'AB OA-1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B232),∴AE=12BC2,BC=22AB,∴AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'22'AB OA-1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.5.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b-,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.6.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.7.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.8.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.9.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)a a >,那么所得的图案与原来图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位C .图案向上平移了a 个单位D .图案向右平移了a 个单位,并且向上平移了a 个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a (a >1),那么所得的图案与原图案相比,图案向右平移了a 个单位长度,并且向上平移了a 个单位长度. 故选D .【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =- 即直线OA 的解析式为:33y x =- 将点A '的横坐标为34y =-即点A '的坐标为(43,4)-∵点A 向右平移636个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =;∴32BE =. 故选:C .【点睛】 本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.13.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A关于直线PD的对称点,找出PA+PB的值最小时三角形ABC的位置.14.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.15.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.17.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.18.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。

中考数学总复习《平移、旋转及图形的对称》专项测试卷带答案

中考数学总复习《平移、旋转及图形的对称》专项测试卷带答案

中考数学总复习《平移、旋转及图形的对称》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.(2024·重庆中考)下列标点符号中,是轴对称图形的是( )2.(2024·云南中考)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )3.如图,△AOB绕点O逆时针旋转75°得到△COD,若∠A=100°,∠D=50°,则∠BOC 的度数是( )A.30°B.35°C.45°D.60°4.如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是( )A.2B.2.5C.3D.55.如图,将直角三角板ABC绕顶点A顺时针旋转到△AB'C',点B'恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC'为( )A.90°B.60°C.45°D.30°6.(2024·雅安中考)如图,在△ABC和△ADE中,AB=AC,∠BAC=∠DAE=40°,将△ADE 绕点A顺时针旋转一定角度,当AD∥BC时,∠BAE的度数是.7.已知点A(a,2),点B(-3,2)关于y轴对称,点C(1,2),点D(-1,b)关于原点对称,则a+b=.8.在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形P AB,再画出该三角形向右平移2个单位长度后的△P'A'B'.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A'B'C.【B层·能力提升】9.(2024·自贡中考)我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是( )A.是轴对称图形B.是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形10.(2024·河南中考)如图,在Rt△ABC中,∠ACB=90°,CA=CB=3,线段CD绕点C在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为,最小值为.11.在方格上建立平面直角坐标系如图所示,点(-2,m)绕坐标原点O顺时针旋转90°后,恰好落在图中直角三角形阴影区域(包括边界)内.直角三角形顶点都在格点上,则m的取值范围是.12.(2024·山东一模改编)如图,一束光沿CD方向,先后经过平面镜OB,OA反射后,沿EF方向射出,已知∠AOB=120°,∠CDB=20°,则∠AEF=度.【C层·素养挑战】13.(2024·贵阳息烽一模)某校数学兴趣小组的同学在学习了特殊的平行四边形后,结合图形旋转的知识探索相应的数学问题.如图①,E是正方形ABCD边BC上一点(E点不与B,C重合),连接AE,将AE绕点E顺时针旋转到EF,使∠AEF=∠ABC,连接CF.(1)【问题探究】在AB上截取BM=BE,连接ME,此时△AEM≌△EFC,则∠ECF等于度;(2)【拓展延伸】当正方形ABCD变为菱形时,若∠ABC>90°,其余条件不变,如图②,请写出∠ECF 与∠ABC的数量关系,并说明理由;(3)【联系应用】在(2)的条件下,当∠ABC=120°时,若BE=2,求CF的长.参考答案【A层·基础过关】1.(2024·重庆中考)下列标点符号中,是轴对称图形的是(A)2.(2024·云南中考)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为(D)3.如图,△AOB绕点O逆时针旋转75°得到△COD,若∠A=100°,∠D=50°,则∠BOC 的度数是(C)A.30°B.35°C.45°D.60°4.如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是(A)A.2B.2.5C.3D.55.如图,将直角三角板ABC绕顶点A顺时针旋转到△AB'C',点B'恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC'为(B)A.90°B.60°C.45°D.30°6.(2024·雅安中考)如图,在△ABC和△ADE中,AB=AC,∠BAC=∠DAE=40°,将△ADE 绕点A顺时针旋转一定角度,当AD∥BC时,∠BAE的度数是30°或150°.7.已知点A(a,2),点B(-3,2)关于y轴对称,点C(1,2),点D(-1,b)关于原点对称,则a+b= 1.8.在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形P AB,再画出该三角形向右平移2个单位长度后的△P'A'B'.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A'B'C.【解析】(1)如图1,△PAB,△P'A'B'即为所求(答案不唯一);(2)如图2,△A'B'C即为所求.【B层·能力提升】9.(2024·自贡中考)我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是(B)A.是轴对称图形B.是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形10.(2024·河南中考)如图,在Rt△ABC中,∠ACB=90°,CA=CB=3,线段CD绕点C在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为2√2+1,最小值为2√2-1.11.在方格上建立平面直角坐标系如图所示,点(-2,m)绕坐标原点O顺时针旋转90°后,恰好落在图中直角三角形阴影区域(包括边界)内.直角三角形顶点都在格点上,.则m的取值范围是2≤m≤10312.(2024·山东一模改编)如图,一束光沿CD方向,先后经过平面镜OB,OA反射后,沿EF方向射出,已知∠AOB=120°,∠CDB=20°,则∠AEF=40度.【C层·素养挑战】13.(2024·贵阳息烽一模)某校数学兴趣小组的同学在学习了特殊的平行四边形后,结合图形旋转的知识探索相应的数学问题.如图①,E是正方形ABCD边BC上一点(E点不与B,C重合),连接AE,将AE绕点E顺时针旋转到EF,使∠AEF=∠ABC,连接CF.(1)【问题探究】在AB上截取BM=BE,连接ME,此时△AEM≌△EFC,则∠ECF等于度;答案:135【解析】(1)∵四边形ABCD为正方形∴∠B=90°,∵BM=BE∴∠BME=∠BEM=45°∴∠AME=180°-45°=135°∵△AEM≌△EFC∴∠ECF=∠AME=135°.(2)【拓展延伸】当正方形ABCD变为菱形时,若∠ABC>90°,其余条件不变,如图②,请写出∠ECF 与∠ABC的数量关系,并说明理由;【解析】(2)∠ECF=90°+1∠ABC,理由如下:2如图,在AB上截取BM=BE,连接ME,则AM=EC∵∠AEF=∠ABC∴∠AEB+∠FEC=180°-∠AEF,∠AEB+∠BAE=180°-∠ABC∴∠FEC=∠BAE∵AE=EF∴△AEM≌△EFC(SAS)∴∠AME=∠ECF,∵BM=BE(180°-∠ABC)∴∠BME=12∠ABC.∴∠ECF=∠AME=180°-∠BME=90°+12(3)【联系应用】在(2)的条件下,当∠ABC=120°时,若BE=2,求CF的长.【解析】(3)如图,在AB上截取BH=BE,连接EH∵四边形ABCD是菱形,∴AB=BC∴AB-HB=BC-BE,∴AH=CE∵∠HAE +∠ABC +∠AEB =180°,∠FEC +∠AEF +∠AEB =180° 又∵∠ABC =∠AEF ∴∠HAE =∠CEF在△AHE 和△ECF 中,{AH =EC∠HAE =∠CEF AE =EF∴△AHE ≌△ECF (SAS) ∴EH =CF .过点B 作BM 1⊥HE ,垂足为M 1 ∵BH =BE ,∴EH =2EM 1 ∴∠EBM 1=12∠HBE =60°在Rt △BM 1E 中,sin 60°=EM 1EB =√32又∵BE =2,∴EM 1=√3∴CF =EH =2√3.。

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°【答案】B【解析】∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.【考点】旋转的性质2.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红。

【答案】(1)30;(2) 二种包裹纸片的方法使得未包裹住的面积相等.【解析】(1)利用矩形的性质以及得出△ADE ∽△FBE ,求出即可;(2)根据Rt △F ,HN ~Rt △F ,EG ,得到HN=3,从而S △AMH =144;由Rt △GBE ~Rt △C ,B ,G ,得到GB ,=24,从而S △B ,C ,G =144,进行比较即可.⑴BE=AD=15,在RtBCE 中,CE 2="B" E 2-BC 2=152-122,求得CE=9,DE=6, 证Rt △ADE ~Rt △FBE, 求得BF="30"⑵①如图1,将矩形ABCD 和Rt △FBE 以CD 为轴翻折,则△AMH 即为未包裹住的面积,由Rt △F ,HN ~Rt △F ,EG ,得到HN=3, 从而S △AMH =144②如图2,将矩形ABCD 和Rt △ECF 以AD 为轴翻折,由Rt △GBE ~Rt △C ,B ,G ,得到GB ,=24,从而S △B ,C ,G =144,∴未包裹的面积为144. ∴按照二种包裹的方法未包裹的面积相等。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以-1,分别得到对应点A2、B2、C2,画出△A2B2C2,则△ABC和△A2B2C2关于对称;(3)将△ABC在网格中平移,使点B的对应点B3坐标为(-6,1),画出△A3B3C3.【答案】(1) 5,﹣3; (2)画图见解析,原点;(3)画图见解析.【解析】(1)根据题意得出各对应点坐标进而求出即可;(2)利用已知得出各对应点坐标进而求出即可;(3)利用平移规律得出各对应点平移距离,进而求出即可.试题解析:(1)如图所示:△A1B1C1即为所求,点C1的坐标为;(5,﹣3);(2)如图所示:△A2B2C2即为所求,△ABC和△A2B2C2关于原点对称;(3)如图所示:△A3B3C3即为所求.【考点】1.作图-旋转变换;2.作图-轴对称变换;3.作图-平移变换.2.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.【答案】【解析】理解轴对称中心对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称 .根据其特征画出相应图形即可.【考点】1.轴对称;2.中心对称3.在图中,画出△ABC关于轴对称的△A1B1C1,写出△ABC关于轴对称的△A2B2C2的各点坐标.【答案】画图见解析,A2(-3,-2),B2(-4,3),C2(-1,1).【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.试题解析:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【考点】作图-轴对称变换.4.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .【答案】5cm.【解析】∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.下列图形是四家电信公司的标志,其中是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义,沿着某一条直线折叠后,直线两旁的部分能够互相重合,选项A、B、D中的图形无论怎么折叠,都不能使左右两部重合,只有选项C符合题意,选项C可左右对折或上下对折都能使直线两旁的部分重合,故选C.【考点】轴对称图形的定义.7.一个汽车牌在水中的倒影为,则该车牌照号码___________.【答案】【解析】本题是轴对称中的镜面对称问题,水面相当于一个平面镜,因为镜面对称的性质是在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称。

中考数学专题复习卷:轴对称、平移与旋转(含解析)

中考数学专题复习卷:轴对称、平移与旋转(含解析)

轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。

2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。

根据平移规则即可得出平移后的抛物线的解析式。

即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

中考数学专题训练:图形的对称、平移与旋转(附参考答案)

中考数学专题训练:图形的对称、平移与旋转(附参考答案)

中考数学专题训练:图形的对称、平移与旋转(附参考答案)1.下列图形:其中轴对称图形的个数是( )A.4 B.3C.2 D.12.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y 轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( )A.(6,2) B.(-6,-2)C.(2,6) D.(2,-6)3.如图是用七巧板拼成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左、下、右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2 B.3C.4 D.54.在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步:将图1中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图2.根据以上的操作,若AB=8,AD=12,则线段BM的长是( )A.3 B.√5C.2 D.15.如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图1将纸片对折,使AB与DC重合,折痕为EF,展开后如图2;第二步,再将图2中的纸片沿对角线BD折叠,展开后如图3;第三步,将图3中的纸片沿过点E的直线折叠,使点C落在对角线上的点H处,如图4.则DH的长为( )A.32B.85C.53D.956.在平面直角坐标系中,把点P(-3,2)向右平移2个单位长度后,得到对应点的坐标是( )A.(-5,2) B.(-1,4)C.(-3,4) D.(-1,2)7.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移,平移后点A′的横坐标为4√3,则点B′的坐标为( )A.(-6√3,2) B.(6√3,-2√3)C.(6,-2) D.(6√3,-2)8.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移的距离为6,则阴影部分的面积为( )A.24 B.40C.42 D.4810.如图,△ABC沿BC方向平移后的图形为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2C.3 D.411.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D12.如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为( )A.αB.α-45°C.45°-αD.90°-α13.如图,将直角三角尺ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′的度数为( )A.90°B.60°C.45°D.30°14.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,∠BCD的度数为________.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为____________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为______________.18.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______________________.参考答案1.B2.A3.B4.C5.D6.D7.D8.B9.D 10.C 11.B 12.C 13.B 14.C15.33° 16.(7,0) 17.(7,4) 18.90°或180°或270°。

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】C.【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合. 因此,圆弧、角、等腰梯形都是轴对称图形,平行四边形不是轴对称图形.故选C.【考点】轴对称图形.2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为【答案】【解析】由题意画出图形,过D′作D′E⊥BC,根据勾股定理可求出D′E的长,根据BC的长=3,可求出BE的长,再利用勾股定理即可求出D′B的长.试题解析:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E=,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=【考点】旋转的性质.3.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【答案】(1)作图见解析;(2)作图见解析;(3)6.【解析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点M,以OD为半径画弧,与x轴负半轴相交于点N,连接MN即可.(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可.(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′="O" C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.试题解析:解:(1)△OMN如图所示.(2)△A′B′C′如图所示.(3)设OE=x,则ON=x,如答图,过点M作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,∴B′F=B′O=OE=x,F C′="O" C′=OD=3,∵A′C′=AC=5,∴.∴A′B′=x+4,A′O=5+3=8.在Rt△A′B′O中,,解得x=6.∴OE=6.【考点】1.作图(旋转和平移变换);2.旋转和平移变换的性质;3.勾股定理;4.方程思想的应用.4.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:__________(填字母).【答案】c,h,k,m.【解析】如图所示:现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m.故答案是c,h,k,m.【考点】轴对称.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.【答案】(1)(2,﹣2);(2)(1,0);(3)10.【解析】(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=10平方单位.故答案为:10.【考点】1、平移变换;2、位似变换;3、勾股定理的逆定理6.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A B C D【答案】A【解析】A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【考点】轴对称图形7.下列四个图形中,既是轴对称图形,又是中心对称图形是A.⑴、⑵B.⑴、⑶C.⑴、⑷D.⑵、⑶【答案】B.【解析】(1)是轴对称图形,也是中心对称图形,符合题意;(2)不是轴对称图形,也不是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,不是中心对称图形,不符合题意.故选B.【考点】1.中心对称图形;2.轴对称图形.8.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.4个B.3个C.2个D.1个【答案】B.【解析】A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.9.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A.【解析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【考点】轴对称图形.10.下列图案中,既是轴对称图形又是中心对称图形的是()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是中心对称图形,不是轴对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.考点: 1.中心对称图形;2.轴对称图形.11.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC绕点P旋转180°得△A′B′C′.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.【答案】(1)作图见解析;(2)作图见解析;(3)(2.5,0).【解析】(1)、(2)无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.(3)利用观察对应点的连线即可求解.试题解析:(1)(2)如图:(3)由图可知,P'(2.5,0).考点: 1.作图-旋转变换;2.作图-平移变换.12.如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.【答案】(1)旋转中心是点A,150°;(2)60°,2.【解析】(1)根据旋转的性质可知对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等,所以可求出:∠CAE=BAD=180°-∠B-∠ACB=150°,从而确定旋转中心和旋转角度;(2)利用周角的定义可求出∠BAE=360°-150°×2=60°,全等的性质可知AE=AB=2cm.试题解析::(1)∵△ABC逆时针旋转一定角度后与△ADE重合,A为顶点,∴旋转中心是点A;根据旋转的性质可知:∠CAE=∠BAD=180°-∠B-∠ACB=150°,∴旋转角度是150°;(2)由(1)可知:∠BAE=360°-150°×2=60°,由旋转可知:△ABC≌△ADE,∴AB=AD,AC=AE,又C为AD中点,∴AC=AE=AB=×4=2cm.考点: 旋转的性质.13.下列图形中,是中心对称图形,但不是轴对称图形的是()【答案】B.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,只有选项B符合.故选B.【考点】轴对称图形和中心对称图形.14.如图,点O是边长为1的等边△ABC内的任一点,设∠AOB=°,∠BOC=°(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示. 求证:OD=OC。

中考数学常考考点专题之图形的对称、平移与旋转训练卷

中考数学常考考点专题之图形的对称、平移与旋转训练卷

中考数学常考考点专题之图形的对称、平移与旋转训练卷一.选择题(共11小题)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.3.如图,△ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF,根据图中标示的角度,∠EAF的度数为()A.120°B.118°C.116°D.114°4.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A .45°B .α﹣45°C .12αD .90°−12α 5.如图,已知点A (1,0),B (4,m ),若将线段AB 平移至CD ,其中点C (﹣2,1),D (a ,n ),则m ﹣n 的值为( )A .﹣3B .﹣1C .1D .36.如图是一个体积为8的正方体,A 'D 、CD '为它的两个外表面的对角线,若平移CD ',使其端点C 与A 'D 的端点D 重合,此时点D '的对应点为P ,则P A '的长为( )A .2B .2√2C .2√3D .2√67.下列图形中,属于中心对称图形的是( )A .B .C .D .8.下面图形中是中心对称图形但不是轴对称图形的是( )A .科克曲线B .笛卡尔心形线C.阿基米德螺旋线D.赵爽弦图9.如图,在△ABC中,∠C=90°,∠B=20°,将△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角的度数为()A.70°B.90°C.100°D.110°10.如图,在矩形ABCD中,BC=12,点E为AD的中点,点F为CD边上一点,DF=2,将线段EF绕点E顺时针旋转90°得到EH,点H恰好在线段BF上,过H作直线HM⊥AD于点M,交BC于点N,则CF的长为()A.2B.5C.6D.811.围棋起源于我国,古时称“弈”,传为帝尧所作,春秋战国时期即有记载.当白棋落在图中哪个位置时,由棋子摆成的图案(不考虑颜色)为中心对称图形()A.①B.②C.③D.④二.填空题(共8小题)12.如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为.13.如图,△ABC与△A'B'C'关于直线l对称,则∠B的度数为.14.如图,在△ABC中,BC=13,将△ABC沿着射线BC平移m个单位长度,得到△DEF,若EC=7,则m=.15.在直角坐标平面内,已知点A(1,﹣3),B(4,﹣1),将线段AB平移得到线段A1B1(点A的对应点是点A1,点B的对应点是点B1),如果点A1坐标是(﹣2,0),那么点B1的坐标是.16.在正方形ABCD中,AB=6,将正方形ABCD绕点A旋转30°,得到正方形AEFG,则BG的长为.17.如图,在平面直角坐标系xOy中,点A(﹣2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.18.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是.19.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是.三.解答题(共6小题)20.在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),B(﹣1,﹣3),C(﹣1,﹣1).(1)画出△ABC.(2)以O为位似中心,把△ABC扩大到原来的两倍,得到△A1B1C1.21.如图,在平面直角坐标系中,△ABC的顶点均在网格的格点上,其坐标分别为:A(﹣4,4),B(﹣2,1),C(4,2).(1)在图中作出△ABC关于x轴对称的△A1B1C1;(2)在(1)的条件下,分别写出点A、C的对应点A1、C1的坐标.22.有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.23.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A'B'C',图中标出了点B的对应点B'.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A'B'C';(2)画出△ABC的高BD;(3)若连接AA'、CC',那么AA'与CC'的关系是,△ABC的面积为.(4)在AB的右侧确定格点Q,使△ABQ的面积和△ABC的面积相等,这样的Q点有个.24.如图是4×5的小正方形网格,△ABC的顶点都在格点上.按下列要求作图(所画△DEF的顶点都在格点上,并标注对应字母);(1)在图1中,画出△DEF,使△DEF与△ABC关于直线MN成轴对称;(2)在图2中,将△ABC绕某一格点O旋转得到△DEF,使△DEF与△ABC成中心对称,画出△DEF,并在图中标出旋转中心O.25.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B 在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长及点D的坐标.。

初三数学中考总复习 图形的对称、平移、旋转与位似 专题复习练习 含答案

初三数学中考总复习   图形的对称、平移、旋转与位似   专题复习练习 含答案

初三数学中考总复习图形的对称、平移、旋转与位似专题复习练习含答案2019 初三数学中考总复习图形的对称、平移、旋转与位似专题复习练习1. 下面四个手机应用图标中是轴对称图形的是( D )2. 下列图形中,既是轴对称图形又是中心对称图形的是( D )3.已知△ABC顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C ) A.(7,1) B.(1,7) C.(1,1) D.(2,1)4.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是( C )5.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC,A′B′交于点O,则∠COA′的度数是( B )A.50° B.60° C.70° D.80°6.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为( D )A.6 B.6 2 C.2 3 D.3 27.已知两点A(5,6),B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的12得到线段CD,则点A的对应点C的坐标为( A )A.(2,3) B.(3,1) C.(2,1) D.(3,3)8.如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为__(2,4)__.9.如图,△ABC中,BC=5 cm,将△ABC沿BC方向平移至△A′B′C′的位置∴∠EFC =90°,在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC =∠EFC=90°15.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交,设折叠后点C ,D 的对应点分别为点G ,H ,折痕分别与边BC ,AD 相交于点E ,F.(1)判断四边形CEGF 的形状,并证明你的结论;(2)若AB =3,BC =9,求线段CE 的取值范围.解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠GFE =∠FEC,∵图形翻折后点G 与点C 重合,EF 为折线,∴∠GEF =∠FEC,∴∠GFE =∠GEF,∴GF =GE ,∵图形翻折后EC 与GE 完全重合,∴GE =EC ,GF =FC ,∴GF =FC =EC =GE ,∴四边形CEGF 为菱形(2)由(1)得四边形CEGF 是菱形,当点F 与点D 重合时,CE 取最小值.此时,CE =CD =AB =3;如图,当点G 与点A 重合时,CE 取最大值,由折叠的性质得AE =CE ,∵∠B =90°,∴AE 2=AB 2+BE 2,即CE 2=32+(9-CE)2,∴CE =5,∴线段CE 的取值范围3≤CE≤5。

中考数学二轮复习专题卷---图形的对称、平移与旋转

中考数学二轮复习专题卷---图形的对称、平移与旋转

-数学中考二轮复习专题卷-图形的对称、平移与旋转学校:___________姓名:___________班级:___________考号:___________ 1、下列图形中,既是中心对称图形又是轴对称图形的是 A .B .C .D .2、下列图形中,中心对称图形有【 】A .1个B .2个C .3个D .4个3、下列学习用具中,不是轴对称图形的是A .B .C.D .4、(四川绵阳3分)下列“数字”图形中,有且仅有一条对称轴的是【 】 A .B .C .D .5、如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D.O、E两点关于CD所在直线对称6、(四川攀枝花3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A 旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=【】A.30°B.35°C.40°D.50°7、下列图形中,不是轴对称图形的是A.B.C.D.8、如图,正方形地砖的图案是轴对称图形,该图形的对称轴有A.1条B.2条C.4条D.8条9、下列四种图形都是轴对称图形,其中对称轴条数最多的图形是A.等边三角形C.菱形D.正方形10、下列图案中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.11、在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P (2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为A.(1.4,-1)B.(1.5,2)D.(2.4,1)12、下列图形:其中所有轴对称图形的对称轴条数之和为A.13 B.11 C.10 D.813、P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2 D.OP1≠OP214、如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为A.60°B.75°C.85°D.90°15、在下列图形中既是轴对称图形又是中心对称图形的是A.角B.线段C.等腰三角形D.平行四边形A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直17、如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为A.B.C.D.3cm18、如图(1),已知两个全等三角形的直角顶点及一条直角边重合。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【答案】B【解析】正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【考点】1、中心对称图形;2、轴对称图形2.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质3.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。

其中既是轴对称图形,又是中心对称图形的有(填序号)【答案】①⑤⑥.【解析】根据轴对称图形与中心对称图形的概念求解.试题解析:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤是轴对称图形,也是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑤⑥.【考点】1.中心对称图形;2.轴对称图形.4.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.5.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B.【解析】图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.【考点】1.中心对称图形2.轴对称图形.7.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.8.下列图案是我国几家银行的标志,其中是中心对称图形的为( )【答案】A【解析】根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.【考点】1.中心对称图形;2.生活中的旋转现象.9.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.【答案】15【解析】∵点关于的对称点是,关于的对称点是,∴,.∴△的周长为.10.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化11.已知点和关于x轴对称,则的值为_________;【答案】﹣3.【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,所以a=2,b=﹣5,则a+b=﹣3.故答案为:﹣3.【考点】关于x轴、y轴对称的点的坐标.12.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.13.如图,草原上两个居民点A、B在河流L的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.【答案】作图见试题解析.【解析】作点A关于l的对称点A',连接A'B交l于C,点C即为所求.试题解析:①作A关于直线l的对称点A′;②连接A′B交直线l于点C,则点C即为所求点.汽车在C点加水,可使行驶的路程最短.【考点】1.轴对称-最短路线问题;2.作图题.14.下列平面图形中,不是轴对称图形的是()【答案】A.【解析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.15.点(-2,m)关于x轴的对称点的坐标为________________.【答案】(-2,-m)【解析】由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).两点关于x轴对称,横坐标互为相等,纵坐标相反数,由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).【考点】点关于x轴对称.16.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.17.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG⊥CD ,FG=CD;(2)成立【解析】(1)延长ED交AC的延长线于M,连接FC、FD、FM,根据矩形的性质可得CM=BD,根据等腰直角三角形的性质可得ED=BD=CM,再结合∠E=∠A=45º可证得△AEM是等腰直角三角形,由F是AE的中点可证得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可证得△EFD≌△MFC,则可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,从而可以证得结论;(2)证法同(1).解:(1)FG⊥CD ,FG=CD;(2)延长ED交AC的延长线于M,连接FC、FD、FM∴四边形 BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD.【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.18.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.(1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.19.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键20.下列各图案中,不是中心对称图形的是().【答案】B【解析】中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合,由此可知B旋转180度后不能与原图形重合【考点】中心对称图形的判断点评:中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合21.下列图案中是轴对称图形的是()【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得只有D选项符合轴对称图形的定义,故选D.【考点】轴对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.22.把图中的五角星图案,绕着它的中心旋转,旋转角至少为()时,旋转后的五角星能与自身重合A.300B.450C.600D.720【答案】D【解析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D,故选D【考点】旋转对称图形点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角23.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是 _.【答案】5【解析】先作点B关于y轴的对称点,连接,交y轴于点C,根据勾股定理求得的长,即可所求.作点B关于y轴的对称点,连接,交y轴于点C由题意得,则则光线从A点到B点经过的路线长是5.【考点】轴对称的应用,勾股定理点评:本题是勾股定理的应用,同时渗透光学中反射原理,构造直角三角形是解答本题的关键.24.下列四个图形中,不能通过基本图形平移得到的是()【答案】D【解析】根据平移的基本性质依次分析各选项即可判断。

中考数学复习专题16图形变换(平移、旋转、对称(翻折))

中考数学复习专题16图形变换(平移、旋转、对称(翻折))

图形变换(平移、旋转、对称)一、单选题1.(2021·四川广元市)下列图形均表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称及中心对称图形的定义逐一判断即可得答案.【详解】A.是轴对称图形,但不是中心对称图形,故该选项不符合题意,B.是轴对称图形,但不是中心对称图形,故该选项不符合题意,C.是轴对称图形,又是中心对称图形,故该选项符合题意,D.既不是轴对称图形,又不是中心对称图形,故该选项不符合题意,故选:C.【点睛】本题考查轴对称图形及中心对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后能完全重合;中心对称图形的关键是寻找对称中心,图形绕对称中心旋转180°后,两部分能够完全重合;熟练掌握定义是解题关键.2. (2021柳州)以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()A. B.C. D.【答案】D【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D 是轴对称图形,符合题意,故选D .【点睛】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.3.(2021·江西中考真题)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A .2B .3C .4D .5【答案】B【分析】该题可以自己动手进行拼接,根据勾股定理得知①的直角边为1和1,拼接时要依据重合的边要相等,然后根据轴对称图形的概念进行判断即可.【详解】在左侧构成轴对称图形如图:在下方构成轴对称图形如图:在右侧构成轴对称图形如图:【点睛】本题考查勾股定理,图形的拼接以及轴对称图形的判断,掌握轴对称图形的概念是解题的关键. 4.(2021·河北)如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP .若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能..是( )A .0B .5C .6D .7【答案】B【分析】连接112221,,,,OP P OP PP PP P 根据轴对称的性质和三角形三边关系可得结论.【详解】解:连接112221,,,,OP P OP PP PP P ,如图,∵1P 是P 关于直线l 的对称点,∴直线l 是1PP 的垂直平分线,∴1 2.8OP OP ==∵2P 是P 关于直线m 的对称点,∴直线m 是2PP 的垂直平分线,∴2 2.8OP OP ==当12,,P O P 不在同一条直线上时,121212OP OP PP OP OP <<-+即120 5.6PP <<当12,,P O P 在同一条直线上时,1212 5.6PP OP OP =+=故选:B【点睛】此题主要考查了轴对称变换,熟练掌握轴对称变换的性质是解答此题的关键5.(2021·湖北宜昌市)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( ) A . B . C . D .【答案】C【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、是轴对称图形,不是中心对称图形,故本选项不合题意;C 、是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C .【点睛】本题考查了中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.(2021·湖北武汉市)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【分析】逐项分析,利用轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A 选项中的图形既是轴对称图形又是中心对称图形,故该选项正确;B 选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确;C 选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确;D 选项中的图形是轴对称图形,不是中心对称图形,故该选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的定义,解决本题的关键是理解并掌握“能沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形、中心对称图形则是将一个图形绕着平面内某个点旋转180°,旋转后的图形能够与旋转前的图形完全重合”,同时也需要学生具备相应的图形感知能力. 7.(2021·四川广安市)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒【答案】C【分析】由旋转的性质可得∠BAD =55°,∠E =∠ACB =70°,由直角三角形的性质可得∠DAC =20°,即可求解.【详解】解:∵将△ABC 绕点A 逆时针旋转55°得△ADE ,∴∠BAD =55°,∠E =∠ACB =70°,∵AD ⊥BC ,∴∠DAC =20°,∴∠BAC =∠BAD +∠DAC =75°.故选C .【点睛】本题考查了旋转的性质,掌握旋转的性质是本题的关键.8.(2021·四川广安市)下列几何体的主视图既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B 、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C 、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D 、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选B .【点睛】本题考查了几何体的三视图,中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合. 9.(2021·天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不符合题意; C .不是轴对称图形,故本选项不符合题意;D .不是轴对称图形,故本选项不符合题意.故选A .【点睛】本题考查判断轴对称图形,理解轴对称图形的概念是解答的关键.10.(2021·四川成都市)在平面直角坐标系xOy 中,点()4,2M -关于x 轴对称的点的坐标是( )A .()4,2-B .4,2C .()4,2--D .()4,2-【答案】C 【分析】关于x 轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,根据规律解答即可.【详解】解:点()4,2M -关于x 轴对称的点的坐标是:()4,2.-- 故选:.C【点睛】本题考查的是关于x 轴对称的两个点的坐标关系,掌握“关于x 轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数.”是解题的关键.11.(2021·浙江丽水市)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位D .将C 向左平移3.5个单位【答案】C 【分析】直接利用利用关于y 轴对称点的性质得出答案.【详解】解:∵点A (−1,b ) 关于y 轴对称点为B (1,b ),C (2,b )关于y 轴对称点为(-2,b ),需要将点D (3.5,b ) 向左平移3.5+2=5.5个单位,故选:C .【点睛】本题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.(2021·四川自贡市)下列图形中,是轴对称图形且对称轴条数最多的是( )A .B .C .D .【答案】D【分析】利用轴对称图形的定义逐一判断即可.【详解】解:A 是轴对称图形,对称轴有1条;B 不是轴对称图形;C 不是轴对称图形;D 是轴对称图形,对称轴有2条;故选:D .【点睛】本题考查识别轴对称图形,掌握轴对称图形的定义是解题的关键.13.(2021·湖南)下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.(2021·湖北黄冈市)下列图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.正六边形C.正方形D.圆【答案】A【详解】因为平行四边形是中心对称图形,而非轴对称图形;正六边形和圆既是中心对称图形也轴对称图形;等边三角形是轴对称图形而非中心对称图形,所以答案B、C、D错误,应选答案A.15.(2021·浙江绍兴市)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到15个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【答案】B【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】用2个相同的菱形放置,最多能得到3个菱形,用3个相同的菱形放置,最多能得到8个菱形, 用4个相同的菱形放置,最多能得到15个菱形, 用5个相同的菱形放置,最多能得到22个菱形, 用6个相同的菱形放置,最多能得到29个菱形, 故选:B .,【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.二、填空题1.(2021·四川资阳市)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒,则OBA ∠的度数为______.【答案】135°【分析】利用折叠的性质,根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC ,EO ,由折叠性质可得:∠EOC =3603012︒=︒,EC =DC ,OC 平分∠ECD ∴∠ECO =11(180275)1522ECD ∠=︒-⨯︒=︒∴∠OEC =180°-∠ECO -∠EOC =135° 即OBA ∠的度数为135° 故答案为:135°【点睛】主要在考查折叠的性质,学生动手操作的能力,也考查了等腰三角形的性质及内角和定理,掌握折叠及等腰三角形的性质正确推理计算是解题关键.2.(2021·山东临沂市)在平面直角坐标系中,ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是___.【答案】(4,-1)【分析】根据平行四边形的性质得到点C 坐标,再根据平移的性质得到C 1坐标.【详解】解:在平行四边形ABCD 中,∵对称中心是坐标原点,A (-1,1),B (2,1),∴C (1,-1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,∴C 1(4,-1),故答案为:(4,-1).【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.(2021·青海)如图所示的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合,若每个叶片的面积为4cm 2,∠AOB =120°,则图中阴影部分的面积为__________.【答案】4 cm 2【分析】根据旋转的性质和图形的特点解答.【详解】每个叶片的面积为4cm 2,因而图形的面积是12cm 2.∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120°,∴图形中阴影部分的面积是图形的面积的13,因而图中阴影部分的面积之和为4cm 2.故答案为4cm 2.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.4.(2021·江苏南京市)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明△CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,∵平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''∴AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠ ∴BAB DAD ''∠=∠,B D '∠=∠∴ABB ADD ''∆∆∽∴3,4BB AB AB DD AD BC ''=== ∵1BB '=∴43DD '=∴C D C D DD ''''=-CD DD '=-AB DD '=-433=-53= AB C AB C CB M ABC BAB '''''∠=∠+∠=∠+∠∴∠CB M BAB ''=∠∵413B C BC BB ''=-=-=∴B C AB '=∵AB AB '=∴∠AB B AB C ABB ''''=∠=∠ ∵//AB C D ''',//C D CM ''∴//AB CM '∴∠AB C B MC '''=∠∴∠AB B B MC ''=∠在ABB '∆和B MC '∆中,BAB CB M AB B B MC AB B C ∠=∠⎧⎪∠='''∠''⎨⎪=⎩∴ABB B CM ''∆≅∆∴1BB CM '==∵//CM C D ' ∴△CME DC E '∆∽∴13553CM CE DC DE '===∴38CE CD = ∴333938888CE CD AB ===⨯=故答案为:98.【点睛】此题主要考查了旋转的性质,平行四边形的性质,全等三角形的判定与性质以及相似三角形的判定与性质,正确作出辅助线构造全等三角形和相似三角形是解答本题的关键.5.(2021·湖北随州市)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =,将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)【答案】23π. 【分析】利用勾股定理求出AB =2,根据旋转的性质得到旋转角为∠'BAB =60°,再由弧长计算公式,计算出结果.【详解】解:∵90C ∠=︒,30ABC ∠=︒,BC =,∴AB =2AC ,设AC =x ,则AB =2x ,由勾股定理得:222(2)x x +=,解得:x =1,则:AC =1,AB =2,∵将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到'AB C ',且点C '落在AB 边上, ∴旋转角为60°,∴∠'BAB =60°,∴点B 所经过的路径长为:602218018033n r AB ππππ=⨯=⨯= , 故答案为:23π. 【点睛】本题主要考查了勾股定理、旋转的性质和弧长的计算公式,解题关键在于找到旋转角,根据弧长公式进行计算.6.(2021·重庆)如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF =6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.【答案】【分析】根据折叠的性质得到DE 为ABC 的中位线,利用中位线定理求出DE 的长度,再解t R ACE △求出AF 的长度,即可求解.【详解】解:∵将这张纸片沿直线DE 翻折,点A 与点F 重合,∴DE 垂直平分AF ,AD DF =,AE EF =,ADE EDF ∠=∠,∵DE ∥BC ,∴ADE B ∠=∠,EDF BFD ∠=∠,90AFC ∠=︒,∴B BFD ∠=∠,∴BD DF =,∴BD AD =,即D 为AB 的中点,∴DE 为ABC 的中位线,∴152DE BC ==, ∵AF =EF ,∴AEF 是等边三角形,在t R ACE △中,60CAF ∠=︒,6CF =,∴tan 60CF AF ==︒∴AG =∴四边形ADFE 的面积为122DE AG ⋅⨯=故答案为:.【点睛】本题考查解直角三角形、中位线定理、折叠的性质等内容,掌握上述基本性质定理是解题的关键.三、解答题1.(2021·浙江温州市)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(23中.【答案】(1)见解析;(2)见解析【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2的两个,直角边长的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.(2直角三角形可以是如图5或图6当直角边长为时,直角三角形可以是如图7或图8等.【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2.(2021·安徽)如图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90 得到221A B C △,画出221A B C △.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用点平移的规律找出1A 、1B 、1C ,然后描点即可;(2)利用网格特点和旋转的性质画出点2A ,2B 即可.【详解】解:(1)如下图所示,111A B C △为所求;(2)如下图所示,221A B C △为所求;【点睛】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-学年度数学中考二轮复习专题卷-图形的对称、平移与旋转学校:___________姓名:___________班级:___________考号:___________ 1、下列图形中,既是中心对称图形又是轴对称图形的是 A .B .C .D .2、下列图形中,中心对称图形有【 】A .1个B .2个C .3个D .4个3、下列学习用具中,不是轴对称图形的是A .B .C.D .4、(四川绵阳3分)下列“数字”图形中,有且仅有一条对称轴的是【 】A .B .C .D .5、如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称6、(四川攀枝花3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=【】A.30°B.35°C.40°D.50°7、下列图形中,不是轴对称图形的是A.B.C.D.8、如图,正方形地砖的图案是轴对称图形,该图形的对称轴有A.1条B.2条C.4条D.8条9、下列四种图形都是轴对称图形,其中对称轴条数最多的图形是A.等边三角形C.菱形D.正方形10、下列图案中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.11、在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P (2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为A.(1.4,-1)B.(1.5,2)D.(2.4,1)12、下列图形:其中所有轴对称图形的对称轴条数之和为A.13 B.11 C.10 D.813、P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2 D.OP1≠OP214、如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为A.60°B.75°C.85°D.90°15、在下列图形中既是轴对称图形又是中心对称图形的是A.角B.线段C.等腰三角形D.平行四边形A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直17、如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为A.B.C.D.3cm18、如图(1),已知两个全等三角形的直角顶点及一条直角边重合。

将△ACB绕点C按顺时针方向旋转到的位置,其中交直线AD于点E,分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有A.5对B.4对 C.3对 D.2对19、如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A.45° B.60° C.90° D.120°20、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是A.12 B.18 C.D.21、如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2 B.C.D.22、10月8日,江西省第三届花卉园艺博览交易会在宜春花博园隆重开幕,此届花博会的吉祥物的名字叫“迎春”(如图).通过平移,可将图中的“迎春”平移到图()23、下列三个函数:①y=x+1;②;③.其图象既是轴对称图形,又是中心对称图形的个数有A.0 B.1 C.2 D.324、在图中,既是中心对称图形有是轴对称图形的是A.B.C.D.25、把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离A A'是()A.-1 B.C.1 D.二、填空题()26、点A(﹣3,0)关于y轴的对称点的坐标是.27、在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是.28、请写出一个是中心对称图形的几何图形的名称:.29、一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为。

30、粗圆体的汉字“王、中、田”等都是轴对称图形,请再写出三个这样的汉字。

31、如图,直线l是对称轴,点A的对应点是点。

32、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.33、如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是.34、已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O 的对称点P2的坐标是.35、如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.36、夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.37、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.38、如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.39、设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过点P至多存在一条直线将△ABC分成面积相等的两部分;④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.其中结论正确的是.(写出所有正确结论的序号)40、如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到(其中A、B、C的对应点分别为),则点B在旋转过程中所经过的路线的长是cm。

(结果保留π)三、计算题()41、如图1,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图上阴影部分),但是一不小心,少画了一个,请你在备用图上给他补上一个,可以组合成正方体,你有几种画法请分别在备用图上用阴影注明.四、解答题()42、如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.43、在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.44、在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?45、如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.46、操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.47、如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.48、在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=,∠A′BC=,OA+OB+OC= .49、正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转900,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论;(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系:.50、如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点。

将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点。

连结AC,BC,CD,设点A 的横坐标为t,(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段CD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形。

相关文档
最新文档