2018年全国高中数学联赛贵州赛区预赛试题+答案

合集下载

2018年全国高中数学竞赛试题

2018年全国高中数学竞赛试题

2018年全国高中数学竞赛试题一、选择题(每题4分,共24分)函数f(x)=4−x2的定义域是().A. [−2,2]B. (−2,2)C. [0,2]D. (0,2)下列命题中,正确的是().A. 若α⊂β,则α∩β=αB. 若直线l与平面α平行,则l与α内的所有直线平行C. 若直线l与平面α相交,则l与α内的无数条直线垂直D. 若平面α∥β,直线a⊂α,则a∥β若x,y∈R,且xy=0,则“x>y”是“x1<y1”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件已知tanα=21,则sin2α=().A. 51B. 52C. 54D. 53设Sn为等比数列{an}的前n项和,若S3,S9−S3,S15−S9成等差数列,则公比q为().A. 2B. −2C. 21D. −21在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2,b=4,cosC=41,则sinB=().A. 815B. 16315C. 23D. 415二、填空题(每题5分,共20分)函数y=log2(x2−2x−3)的定义域是_______.若直线l与平面α垂直,则l与α内所有直线所成的角中().A. 必有一个是直角B. 必有一个是锐角C. 必有一个是钝角D. 都是直角已知函数f(x)=x3−3x2+2x,则f′(x)= _______.在△ABC中,角A,B,C的对边分别为a,b,c,若sinA:sinB:sinC=3:5:7,则cosC= _______.三、解答题(共56分)(12分)求函数f(x)=x+1x2−1在x=2处的导数值.(12分)已知数列{an}满足a1=1,且an+1=2an+1,求数列{an}的通项公式.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=31。

(1)求sinB的值;(2)求△ABC的面积。

2018年全国高中数学联合竞赛试题及解答.(B卷)

2018年全国高中数学联合竞赛试题及解答.(B卷)

a 2018年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。

2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:101 ★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=。

2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列{}n a 满足:对任意正整数n ,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为 ◆答案: 32-★解析:易知直线l 的方程为x y 3-=,因此对任意正整数n ,有n n a a 311-=+,故{}n a 是以31-为a 公比的等比数列.于是23123-=-=a a ,由等比数列的性质知325354321-==a a a a a a2018B 5、设βα,满足3)3tan(-=+πα,5)6tan(=-πβ,则)tan(βα-的值为◆答案: 47-★解析:由两角差的正切公式可知7463tan =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+πβπα,即可得47)tan(-=-βα2018B 6、设抛物线x y C 2:2=的准线与x 轴交于点A ,过点)0,1(-B 作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点N M ,,则KMN ∆的面积为为 ◆答案:21★解析:设直线l 与MN 的斜率为k ,:l 11-=y k x ,:MN 211-=y k x 分别联立抛物线方程得到:0222=+-y k y (*),和0122=+-y ky (**) 对(*)由0=∆得22±=k ;对(**)得2442=-=-k y y NM所以2121=-⋅⋅=-==∆∆∆∆N M KBAN BAM BMN KMN y y AB S S S S2018B 7、设)(x f 是定义在R 上的以2为周期的偶函数,在区间[]2,1上严格递减,且满足1)(=πf ,0)2(=πf ,则不等式组⎩⎨⎧≤≤≤≤1)(010x f x 的解集为◆答案:[]ππ--4,62★解析:由)(x f 为偶函数及在区间[]2,1上严格递减知,)(x f 在[]1,2--上递增,结合周期性知,)(x f 在[]1,0上递增,又1)()4(==-ππf f ,0)2()62(==-ππf f ,所以不等式等价于)4()()62(ππ-≤≤-f x f f ,又14620<-<-<ππ,即不等式的解集为a[]ππ--4,622018B 8、已知复数321,,z z z 满足1321===z z z ,r z z z =++321,其中r 是给定的实数,则133221z z z z z z ++的实部是 (用含有r 的式子表示) ◆答案: 232-r★解析:记133221z z z z z z w ++=,由复数的模的性质可知:111z z =,221z z =,331z z =,因此 133221z z z z z z w ++=。

2018年全国高中数学联合竞赛试题及解答.(A卷)

2018年全国高中数学联合竞赛试题及解答.(A卷)

{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。

2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。

2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。

进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。

若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

2018年全国高中数学联赛模拟试题与参考 答案

2018年全国高中数学联赛模拟试题与参考 答案

解得− ≥ ������> − 4.
注意:函数的定义域不能为空集。
2.已知函数������(������) = 1 −
(������>������)若������(������) = 2 ln √������ − ������(������),则������(������������)的取值范围为____________.
P
注:也可采用联立直线与圆锥曲线的方法解答,但过于繁琐,本解
答采用熟知的结论:������������ + ������������ = ������. 7.对于 ≤ ������ ≤ 1,则(1 + ������) (1 − ������)(1 − 2������) 的最大值为___________.
的等腰三角形,则三棱锥 A-BCD 的高与其外接球的直径的比值为_____________.
A
【解答】如图,易得 AE⊥BE,由等量关系,CE=ED=2,AF=BF=4,AE=BE=2√2.
由垂径定理,OF⊥AB,OE⊥CD,由对称性得 O 在 EF 上.
F
由勾股定理,OF + AF = AO = R = OC = (4 − OF)² + CE²
故������������������������ =
=
=
=
2
²
,若������������������������<0,则������������������������<0,这不可能.
∴ ������������������������>0. ������������������������ ≤ √ .
在 BDP 中由正弦定理得 1 x
sin 2 60

专题06基本初等函数二(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题06基本初等函数二(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题06基本初等函数第二缉1.【2019年重庆预赛】函数f (x )=(√1+x +√1−x −3)(√1−x 2+1)的最小值为m ,最大值为M ,则M m=________.【答案】3−√22【解析】设t =√1+x +√1−x ,则t ≥0且t 2=2+2√1−x 2,∴t ∈[√2,2]. f (x )=(t −3)·t 22,令g (t )=12t 2(t −3),t ∈[√2,2].令g ′(t )=0得t =2,g(√2)=√2−3,g (2)=−2, ∴M =g (t )max =√2−3,m =g (t )min =−2,∴Mm =3−√22.2.【2019年重庆预赛】设f(x)是定义在(0,+∞)上的单调函数,对任意x >0有f(x)>−4x ,f(f(x)+4x )=3,则f(8)=. 【答案】72【解析】由题意存在x 0>0使f(x 0)=3。

又因f(x)是(0,+∞)上的单调函数,这样的x 0>0是唯一的,再由f(f(x 0)+4x 0)=3得x 0=f(x 0)+4x 0=3+4x 0解得x 0=4或x 0=−1(舍)。

所以f(x)=4−4x,f(8)=4−48=72。

3.【2019年北京预赛】函数f (x )满足f (1)=1,且f (n )=f (n −1)+1n (n−1),其中n ≥2,n ∈N +,那么f (2019)=. 【答案】40372019.【解析】因为f(n)−f(n −1)=1n(n−1)=1n−1−1n ,所以 f(2)−f(1)=1−12, f(3)−f(2)=12−13,f(4)−f(3)=13−14,⋯⋯f(2018)−f(2017)=12017−12018,f(2019)−f(2018)=12018−12019,将以上各式等号两边分别相加得f(2019)−f(1)=1−12019,进而有 f(2019)=2−12019=120182019.4.【2019年福建预赛】函数f(x)=√2x −x 2+x 的值域为 .【答案】[0,√2+1]【解析】解法一:f(x)=√1−(x −1)2+x .设x −1=sinα (−π2≤α≤π2),则f(x)=cosα+(1+sinα)=√2sin (α+π4)+1.由−π2≤α≤π2,得−π4≤α+π4≤3π4, −√22≤sin (α+π4)≤1.∴f (x )值域为[0,√2+1]. 解法二:f ′(x)=√2+1=√21 (0<x <2).∵ 0<x <1+√22时,f ′(x)>0;1+√22<x <2时,f ′(x)<0.∴f (x )在区间[0,1+√22]上为增函数,在区间[1+√22,2]上为减函数. ∴f (x )值域为[0,√2+1].5.【2019年福建预赛】已知f(x)=x 3+ax 2+bx +2的图象关于点(2,0)对称,则f (1)=.【答案】4【解析】解法一:由f (x )的图象关于点(2,0)对称,知:f(x +2)=(x +2)3+a(x +2)2+b(x +2)+2=x 3+(a +6)x 2+(b +4a +12)x +4a +2b +10为奇函数.∴{a +6=04a +2b +10=0,{a =−6b =7∴ f(1)=1+a +b +2=1−6+7+2=4. 解法二:由f (x )的图象关于点(2,0)对称,知 对任意x ∈R ,f (2+x )+f (2-x )=0于是,对任意x ∈R ,(2+x)3+a(2+x)2+b(2+x)+2+(2−x)3+a(2−x)2+b(2−x)+2=0. 即(2a +12)x 2+(8a +2b +20)=0恒成立. ∴{2a +12=08a +4b +20=0,{a =−6b =7.∴ f(1)=1+a +b +2=1−6+7+2=4.解法三:依题意,有f (x )=(x -2)3+m (x -2). 利用f (0)=-8-2m =2,得m =-5.于是,f (x )=(x -2)3-5(x -2),f (1)=-1-(-5)=4.6.【2019年福建预赛】已知f(x)=x 5−10x 3+ax 2+bx +c ,若方程f (x )=0的根均为实数,m 为这5个实根中最大的根,则m 的最大值为 .【答案】4【解析】设f (x )=0的5个实根为x 1≤x 2≤x 3≤x 4≤m ,则由韦达定理,得m +x 1+x 2+x 3+x 4=0. m (x 1+x 2+x 3+x 4)+(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=−10. 于是,x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4=−10+m 2.∴ x 12+x 22+x 32+x 42=(x 1+x 2+x 3+x 4)2−2(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=m 2−2(−10+m 2)=20−m 2.另一方面,由柯西不等式,知(x 1+x 2+x 3+x 4)2≤4(x 12+x 22+x 32+x 42)于是,m 2≤4(20−m 2),m 2≤16,m ≤4.又对f(x)=(x −4)(x +1)4=x 5−10x 3−20x 2−15x −4,方程f (x )=0的根均为实数,且5个实根中最大的根m =4. ∴m 的最大值为4.7.【2019年广西预赛】已知xyz +y +z =12,则log 4x +log 2y +log 2z 的最大值为 .【答案】3【解析】log 4x +log 2y +log 2z =log 2x 2+log 2y +log 2z =log 2(xyz⋅y⋅z)2⩽log 2(xyz+y+z 3)32=3.当xyz=y=z=4取到等号.8.【2019年贵州预赛】已知方程x 5−x 2+5=0的五个根分别为x 1,x 2,x 3,x 4,x 5,f(x)=x 2+1.则∏s i=1f (x i )=.【答案】37【解析】设g(x)=x 5−x 2+5,则g(x)=∏(x −x k )5k=1,又f(x)=x 2+1=(x-i)(x+i),所以∏5i=1f (x k )=∏(x k −i )5i=1⋅∏(x k +i )5i=1=g(i)⋅g(−i)=(i 5−i 2+5)⋅[(−i)5−(−i)2+5]=(6+i)(6−i)=37.9.【2019年吉林预赛】已知函数f(x)=-x 2+x+m+2,若关于x 的不等式f(x)≥|x|的解集中有且仅有1个整数,则实数m 的取值范围为.【答案】[-2,-1)【解析】f(x)≥|x|⇔2−|x|≥x 2−x −m . 令g(x)=2−|x|,h(x)=x 2−x −m . 在同一直角坐标系内作出两个函数的图象, 由图象可知,整数解为x=0,故{f(0)≥0−0−m f(1)<1−1−m.解得−2≤m <−1.10.【2019年吉林预赛】已知函数f(x)=a +x −b x 的零点x 0∈(n,n +1)(n ∈Z),其中常数a 、b 满足条件2019a =2020, 2020b =2019,则n 的值为 .【答案】-1【解析】因为2019°=2020,2020b =2019,所以1<a<2,0<b<1,故函数f(x)在R 上为増函数,又f(0)=a −1>0, f(−1)=a −1−1b <a −1−1<0,故由零点定理可知,函数f(x)在区间(1,0)有唯ー的零点,则n 的值是-1. 11.【2019高中数学联赛A 卷(第01试)】已知正实数a 满足a a =(9a)8a ,则log a (3a)的值为.【答案】916【解析】由条件知9a =a 18,故3a =√9a ⋅a =a 916,所以log a (3a)=916.12.【2018年山西预赛】函数y =√1−x 22+x的值域为________.【答案】[0,√33] 【解析】由条件知x ∈[−1,1]. 令x =cosα(α∈[0,π]).则 y =sinα2+cosα(y ≥0),⇒2y =sinα−ycosα=√1+y 2sin (α+θ)≤√1+y 2, ⇒1+y 2≥4y 2⇒y 2≤13, 因为y ≥0,所以,y ∈[0,√33]. 13.【2018年福建预赛】函数f(x)=[log 3(13√x)]⋅[log √3(3x 2)]的最小值为________. 【答案】−258【解析】设log 3x =t ,则log 3(13√x)=−1+12t ,log √3(3x 2)=32log √3=2(1+2t).∴f(x)=g(t)=(−1+12t)⋅2(1+2t)=2t 2−3t −2=2(t −34)2−258.∴当t =34,log 3x =34,x =334时,f (x )取最小值−258.14.【2018年福建预赛】若函数f (x )=x 2-2ax +a 2-4在区间[a -2,a 2](a >0)上的值域为[-4,0],则实数a 的取值范围为________. 【答案】[1,2] 【解析】∵f (x )=x 2-2ax +a 2-4=(x -a )2-4,f (a )=-4,f (a -2)=0,f (x )在区间[a -2,a 2]上的值域为[-4,0],f (x )的图像为开口向上的拋物线.∴{a −2≤a ≤a 2a ≥a−2+a 22 ,解得-1≤a ≤0或1≤a ≤2.结合a >0,得1≤a ≤2. ∴a 的取值范围为[1,2].15.【2018年江苏预赛】设g(n)=∑(k,n)nk=1,期中n ∈N *,(k,n)表示k 与n 的最大公约数,则g(100)的值为________. 【答案】520 【解析】如果(m,n)=1,则g(mn)=g(m)g(n),所以g(100)=g(4)g(25). 又g(4)=1+2+1+4=8.g(25)=5×4+25+(25−5)=65, 所以g(100)=8×65=520. 故答案为:52016.【2018年贵州预赛】牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手,这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是_______.【答案】牛得亨先生的女儿 【解析】由题意知,最佳选手和最佳选手的孪生同抱年龄相同;由②,最佳选手和最差选手的年龄相同;由①,最佳选手的孪生同胞和最差选手不是间一个人.因此,四个人中有三个人的年龄相同.由于牛得亨先生的年龄肯定大于他的儿子和女儿,从而年龄相同的三个人必定是牛得亨先生的儿子、女儿和妹妹.由此,牛得亨先生的儿子和女儿必定是①中所指的孪生同胞.因此,牛得亨先生的儿子或女儿是最佳选手,而牛得亨先生的妹妹是最差选手.由①,最佳选手的孪生同胞一定是牛得亨先生的儿子,而最佳选手无疑是牛得亨先生的女儿. 故答案为:牛得亨先生的女儿17.【2018年贵州预赛】函数z =√2x 2−2x +1+√2x 2−10x +13的最小值是______. 【答案】√10 【解析】因为z =√2x 2−2x +1+√2x 2−10x +13=√(x −0)2+(x −1)2+√(x −2)2+(x −3)2此即为直线y =x 上的点(x ,y )到点(0,1)与到点(2,3)的距离之和,根据镜像原理,z 的最小值应为点(1,0)到点(2,3)的距离√10. 故答案为:√1018.【2018年贵州预赛】若方程a x >x (a >0,a ≠1)有两个不等实根,则实数a 的取值范围是_______. 【答案】1<a <e 1e 【解析】由a x >x 知x >0,故x ⋅lna −lnx =0⇒lna =lnx x,令f(x)=lnx x(x >0),则f ′(x)=1−lnx x 2.当x ∈(0,e)时,f ′(x)>0;当x ∈(e ,+∞)时,f ′(x)<0.所以f(x)在(0,e )上递增,在(e ,+∞)上递减.故0<lna <f(e)=1e,即1<a <e 1e . 故答案为:1<a <e 1e19.【2018年浙江预赛】已知a 为正实数,且f(x)=1a −1a x +1是奇函数,则f(x)的值域为________.【答案】(−12,12) 【解析】由f(x)为奇函数可知1a −1a x +1=−1a +1a −x +1,解得a = 2,即f(x)=12−12x +1, 由此得f(x)的值域为(−12,12).20.【2018年北京预赛】已知实数a,b,c,d 满足5a =4,4b =3,3c =2,2d =5,则(abcd )2018=________. 【答案】1 【解析】化5a =4,4b =3,3c =2,2d =5为对数,有a =log 54=ln4ln5,b =ln3ln4,c =ln2ln3,d =ln5ln2,所以(abcd )2018=(ln4ln5×ln3ln4×ln2ln3×ln5ln2)2018=12018=1.21.【2018年北京预赛】已知函数f (x )满足f (x +1x )=x 2+1x 2,那么f (x )的值域为_______.【答案】[2,+∞) 【解析】设函数y =f (x )满足f (t +1t )=t 2+1t 2,{x =t +1t (|x |≥2)y =t 2+1t 2(y ≥2),y =t 2+1t 2=(t +1t)2−2=x 2−2.所以所求函数是f (x )=x 2−2(|x |≥2),其图像如图,易知f (x )=x 2−2(|x |≥2)的值域是[2,+∞).22.【2018年湖南预赛】函数f(x)=√4−x 2+ln(2x −1)的定义城为_________. 【答案】[−2,12)【解析】由{4−x 2≥02x −1>0得-2≤x <12,所以函数f(x)=√4−x 2+ln(2x −1)的定义城为[−2,12). 故答案为[−2,12)23.【2018年湖南预赛】已知函数f(x)对任意的实数满足:f(x +6)=f(x),且当−3≤x <−1时,f(x)=−(x +2)2,当−1≤x <3时,f(x)=x ,则y =f(x)象与y =lg |1x |的图象的交点个数为___________。

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩
证明:存在 x0 ∈[1, 9] ,使得 f (x0 ) ≥ 2 . 证法 1:只需证明存在 u, v ∈[1, 9] ,满足 f (u) − f (v) ≥ 4 ,进而由绝对值不
等式得
f (u) + f (v) ≥ f (u) − f (v) ≥ 4 ,
故 f (u) ≥ 2 与 f (v) ≥ 2 中至少有一个成立.
注意到 f (4 ) f ( 4) f () 1, f (2 6) f (2) 0 ,
所以
0 f (x) 1 f (2 6) f (x) f (4 ) ,
而 0 2 6 4 1 ,故原不等式组成立当且仅当 x [2 6, 4 ] .

4 7
,即
tan




2


4 7
,从而
tan(

)

cot




2



7 4

6. 设抛物线 C : y2 2x 的准线与 x 轴交于点 A ,过点 B (1, 0) 作一直线 l 与
抛物线 C 相切于点 K ,过点 A 作 l 的平行线,与抛物线 C 交于点 M , N ,则 KMN
…………………5 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
即 log3 a log3 b 2 ,因此 ab 32 9 .于是 abc 9c . 又
…………………10 分
0 f (c) 4 c 1,
…………………15 分
故 c (9, 16) .进而 abc 9c (81, 144) .

2018年全国高中数学联赛试题及答案详解(B卷)

2018年全国高中数学联赛试题及答案详解(B卷)

说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,10 分为一个档次,不得增加其他中间档次.
一、(本题满分 40 分)设 a, b 是实数,函数 f (x) = ax + b + 9 . x
知,满足条件的情况数为 36 × 2 =72 种.从而所求概率为= 72 7= 2 1 . 6! 720 10
4. 在平面直角坐标系 xOy 中,直线 l 通过原点, n (3, 1) 是 l 的一个法向
量.已知数列{an}满足:对任意正整数 n ,点 (an1, an ) 均在 l 上.若 a2 6 ,则
11.(本题满分 20 分)如图所示,在平面直角 坐 标 系 xOy 中 , A 、 B 与 C 、 D 分 别 是 椭 圆
x2 y2 : a2 b2 1 (a b 0) 的左、右顶点与上、下顶 A 点.设 P, Q 是 上且位于第一象限的两点,满足
y
R
P
C
M
Q
O
Bx
OQ ∥ AP , M 是线段 AP 的中点,射线 OM 与椭
是 0 1 2 4 8 16 31 .
2. 已知圆锥的顶点为 P ,底面半径长为 2 ,高为1.在圆锥底面上取一点 Q ,
使得直线 PQ 与底面所成角不大于 45 ,则满足条件的点 Q 所构成的区域的面积


答案: 3 .
解:圆锥顶点 P 在底面上的投影即为底面中心,记之为 O .由条件知, OP tan OQP 1 ,即 OQ 1 ,故所求的区域面积为 22 12 3 . OQ

2018年全国高中数学联合竞赛一试参考答案(A卷)

2018年全国高中数学联合竞赛一试参考答案(A卷)

2018年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设集合 1,2,3,,99,2,2A B x x A C x x A ,则B C 的元素个数为 .答案:24.解:由条件知, 13992,4,6,,198,1,,2,,2,4,6,,48222B C,故B C 的元素个数为24.2. 设点P 到平面的距离为,点Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 .答案:8 .解:设点P 在平面 上的射影为O .由条件知,tan OP OQP OQ ,即[1,3]OQ ,故所求的区域面积为22318 .3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 .答案:910.解:先考虑abc def +为奇数的情况,此时,abc def 一奇一偶,若abc 为奇数,则,,a b c 为1,3,5的排列,进而,,d e f 为2,4,6的排列,这样有3!3!36×=种情况,由对称性可知,使abc def +为奇数的情况数为36272×=种.从而abc def +为偶数的概率为72729116!72010−=−=.4. 在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b的左、右焦点分别是1F 、2F ,椭圆C 的弦ST 与UV 分别平行于x 轴与y 轴,且相交于点P .已知线段,,,PU PS PV PT 的长分别为1,2,3,6,则12PF F 的面积为 .答案解:由对称性,不妨设(,)P P P x y 在第一象限,则由条件知112,122P P x PT PS y PV PU ,即(2,1)P .进而由1,2P x PU PS 得(2,2),(4,1)U S ,代入椭圆C 的方程知2222111144161a b a b,解得2220,5a b .从而121212PF F P P S F F y y .5. 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足()1,(2)2f f ,则不等式组12,1()2x f x的解集为 . 答案:[2,82] .解:由()f x 为偶函数及在[0,1]上严格递减知,()f x 在[1,0] 上严格递增,再结合()f x 以2为周期可知,[1,2]是()f x 的严格递增区间.注意到(2)()1,(82)(2)(2)2f f f f f ,所以1()2(2)()(82)f x f f x f ,而12822 ,故原不等式组成立当且仅当[2,82]x .6. 设复数z 满足1z ,使得关于x 的方程2220zx zx 有实根,则这样的复数z 的和为 .答案:32.解:设22i (,,1)R z a b a b a b .将原方程改为2(i)2(i)20a b x a b x ,分离实部与虚部后等价于2220ax ax ,① 220bx bx .②若0b ,则21a ,但当1a 时,①无实数解,从而1a ,此时存在实数1x 1z 满足条件.若0b ,则由②知{0,2}x,但显然0x 不满足①,故只能是2x ,代入①解得14a ,进而b,相应有z .综上,满足条件的所有复数z 之和为312.7. 设O 为ABC 的外心,若2AO AB AC,则sin BAC 的值为 .答案 解:不失一般性,设ABC 的外接圆半径2R .由条件知,2AC AO AB BO,①故112AC BO .取AC 的中点M ,则OM AC ,结合①知OM BO ,且B 与A 位于直线OM 的同侧.于是1cos cos(90)sin 4MC BOC MOC MOC OC . 在BOC 中,由余弦定理得BC ,进而在ABC中,由正弦定理得sin 2BC BAC R. 8. 设整数数列1210,,,a a a 满足1012853,2a a a a a ,且1{1,2},1,2,,9i i i a a a i ,则这样的数列的个数为 .答案:80.解:设1{1,2}(1,2,,9)i i i b a a i ,则有11011292a a a b b b ,① 2345285567b b b a a a a b b b .②用t 表示234,,b b b 中值为2的项数.由②知,t 也是567,,b b b 中值为2的项数,其中{0,1,2,3}t .因此237,,,b b b 的取法数为021222323333(C )(C )(C )(C )20 .取定237,,,b b b 后,任意指定89,b b 的值,有224 种方式.最后由①知,应取1{1,2}b 使得129b b b 为偶数,这样的1b 的取法是唯一的,并且确定了整数1a 的值,进而数列129,,,b b b 唯一对应一个满足条件的数列1210,,,a a a .综上可知,满足条件的数列的个数为20480 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知定义在R 上的函数()f x 为3log 1,09,()49.x x f x x设,,a b c 是三个互不相同的实数,满足()()()f a f b f c ,求abc 的取值范围.解:不妨假设a b c .由于()f x 在(0,3]上严格递减,在[3,9]上严格递增,在[9,) 上严格递减,且(3)0,(9)1f f ,故结合图像可知(0,3)a ,(3,9)b ,(9,)c ,并且()()()(0,1)f a f b f c . …………………4分由()()f a f b 得331log log 1a b ,即33log log 2a b ,因此239ab .于是9abc c . …………………8分又0()41f c , …………………12分故(9,16)c .进而9(81,144)abc c .所以,abc 的取值范围是(81,144). …………………16分注:对任意的(81,144)r ,取09rc =,则0(9,16)c ∈,从而0()(0,1)f c ∈.过点00(,())c f c 作平行于x 轴的直线l ,则l 与()f x 的图像另有两个交点(,())a f a ,(,())b f b (其中(0,3),(3,9)a b ),满足()()()f a f b f c ,并且9ab ,从而abc r =.10.(本题满分20分)已知实数列123,,,a a a 满足:对任意正整数n ,有(2)1n n n a S a ,其中n S 表示数列的前n 项和.证明:(1) 对任意正整数n ,有n a(2) 对任意正整数n ,有11n n a a .证明:(1) 约定00S .由条件知,对任意正整数n ,有221111(2)()()n n n n n n n n n a S a S S S S S S ,从而220n S n S n ,即n S (当0n 时亦成立). …………………5分显然,1n n n a S S . …………………10分 (2) 仅需考虑1,n n a a 同号的情况.不失一般性,可设1,n n a a 均为正(否则将数列各项同时变为相反数,仍满足条件),则11n n n S S S ,故必有1n n S S ,此时1n n a a从而11n n a a .…………………20分11.(本题满分20分)在平面直角坐标系xOy 中,设AB 是抛物线24y x 的过点(1,0)F 的弦,AOB 的外接圆交抛物线于点P (不同于点,,O A B ).若PF 平分APB ,求PF 的所有可能值.解:设222123123,,,,,444y y y A y B y P y,由条件知123,,y y y 两两不等且非零. 设直线AB 的方程为1x ty ,与抛物线方程联立可得2440y ty ,故124y y . ① 注意到AOB 的外接圆过点O ,可设该圆的方程为220x y dx ey ,与24y x 联立得,4210164y d y ey .该四次方程有123,,,0y y y y 这四个不同的实根,故由韦达定理得12300y y y ,从而312()y y y .②…………………5分因PF 平分APB ,由角平分线定理知,12PA FA yPB FB y ,结合①、②,有2222312222231212112122222222222321222132()()16(2)44()16(2)()44y y y y y y y y y PA yy PB y y y y y y y y y2222422122122224212112(8)16(416)64192(8)16(416)64192y y y y y y y y y y , ………………10分 即62226222112122126419264192y y y y y y y y ,故 224224121122()(192)0y y y y y y .当2212y y 时,21y y ,故30y ,此时P 与O 重合,与条件不符. 当422411221920y y y y 时,注意到①,有22221212()192()208y y y y . …………………15分因22121282y y y y ,故满足①以及2212y y 的实数12,y y 存在,对应可得满足条件的点,A B .此时,结合①、②知222231212()4411444y y y y y PF .…………………20分。

专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题01集合第一缉1.【2021年江西预赛】集合M 是集合A={1,2,…,100}的子集,且M 中至少含有一个平方数或者立方数,则这种子集M 的个数是.【答案】288(212‒1).【解析】集合 中的平方或者立方数构成集合 ,100},A ={1,2,⋯,100}B ={1,4,8,9,16,25,27,36,49,64,81其中有12个元素,从 中挖去集合 后剩下的元索构成集合 ,则 中有88个元索,A B C C 由于 的子集有 个, 的非空子集有 个,C 288B 212‒1集 可表示为 形式,其中 是 的任一非空子集, 是 的任一子集,因此 的个数为M M =B 0∪C 0B 0B C 0C M 288(212‒1).2.【2021年浙江预赛】给定实数集合A,B,定义运算 .设A ⊗B ={x∣x =ab +a +b,a ∈A,b ∈B} ,则 中的所有元素之和为.A ={0,2,4,⋯,18},B ={98,99,100}A ⊗B 【答案】29970【解析】由 ,x =(a +1)(b +1)‒1则可知所有元素之和为 .(1+3+⋯+19)×300‒3×10=299703.【2021年广西预赛】集合 的所有子集的元素的和等于 .M ={1,2,3,4,5,6}【答案】672【解析】所有子集的元素的和为 .25(1+2+3+4+5+6)=6724.【2021年新疆预赛】若实数集合 的最大元素与最小元素之积等于该集合的所有元素之和,则{3,6,9,x}x 的值为 .【答案】94【解析】若 是最大元素,则 ,解得 ,不合题意;x 3x =18+x x =9若 是最小元素,则 ,解得 ;x 9x =18+x x =94若 既不是最大元素也不是最小元素,则 ,解得 ,不合题意;x 27=18+x x =9所以 .x =945.【2021年全国高中数学联赛A 卷一试】设集合,其中为实数.令.若的A ={1,2,m }mB ={a 2∣a ∈A },C =A ∪B C 所有元素之和为6,则的所有元素之积为 .C【答案】‒8【解析】由条件知(允许有重复)为的全部元素.1,2,4,m ,m 2C 注意到,当为实数时,,故只可能是,且m 1+2+4+m +m 2>6,1+2+4+m 2>6C ={1,2,4,m }1+2+4+m =6.于是(经检验符合题意),此时的所有元素之积为.m =‒1C 1×2×4×(‒1)=‒86.【2020高中数学联赛B 卷(第01试)】设集合,A 是X 的子集,A 的元素个数至少是2,且A X ={1,2,⋯,20}的所有元素可排成连续的正整数,则这样的集合A 的个数为 .【答案】190【解析】每个满足条件的集合A 可由其最小元素a 与最大元素b 唯一确定,其中a ,b ∈X ,a <b ,这样的的(a,b)取法共有种,所以这样的集合A 的个数为190.C 220=1907.【2020年福建预赛】已知[x]表示不超过实数的最大整数,集合,x A ={x∣x 2‒x ‒6<0}B =则.{x∣2x 2‒3[x]‒5=0}.A ∩B =【答案】{‒1,222}【解析】易知, .若 ,则A =(‒2,3)x ∈A [x]=‒2,‒1,0,1,2.当 时,若 ,则 ,[x]=‒2x ∈B 2x 2+6‒5=0 不存在.x 当 时,若 ,则[x]=‒1x ∈B 2x 2+3‒5=0⇒x =±1.经检验, 不符合要求, 符合要求.x =1x =‒1当 时,若 ,则 ,[x]=0x ∈B 2x 2‒0‒5=0⇒x =±102均不符合要求.当 时,若 ,则 ,[x]=1x ∈B 2x 2‒3‒5=0⇒x =±2均不符合要求.当 时,若 ,则 .[x]=2x ∈B 2x 2‒6‒5=0⇒x =±222经检验, 符合要求, 不符合要求.故 .x =222x =‒222A ∩B ={‒1,222}8.【2020年甘肃预赛】设集合: , 若 ,则 的取值范A ={(x,y)∣log a x +log a y >0}B =|(x,y)|x +y <a}.A ∩B =∅a 围是.【答案】(1,2]【解析】若 ,则 a >1A ={(x,y)∣xy >1}.而当 与 相切时,x +y =a xy =1.x +1x =a⇒x 2‒ax +1=0⇒a =2于是,当 时, .若 ,则 ,此时, .a ∈(1,2]A ∩B =∅a <1A ={(x,y)∣xy <1}A ∩B ≠∅综上, .a ∈(1,2]9.【2020年广西预赛】已知集合 ,对 的任意非空子集 为集合 中最大数与最小数的M ={1,2,⋯,2020}M A,λA A 和.则所有这样的 的算术平均数为 .λA 【答案】2021【解析】考虑 的子集 若 ,则 若 ,设 中最大数为 ,最小M A '={2021‒x∣x ∈A}.A '=A λA'=λA =2021.A '≠A A a 数为 ,则 '中最大数为 ,最小数为2021- ,此时,b A 2021‒b a λA'+λA2=2021.故所求算术平均数为2021.10.【2020年广西预赛】设集合 ,且对集合 中的任意元素 则集合 的元索M ={1,2,⋯,2020},A ⊆M A x,4x ∉A.A 个数的最大值为 .【答案】1616【解析】首先,构造404个集合 ,其中,{k,4k}k =1;8,9,⋯,31;127,128,⋯,505.其次,集合 中的数除前述已提到的808个外,剩下的每个数 单独构成一个集合 ,有1212个.M x {x}共 个集合.404+1212=1616据抽臣原理,知若集合 中有多于1616个数,则必有两个数取自上述同一集合.从而,存在 ,矛盾.A x,4x ∈A 故集合 中至多有1616个数,满足条件的一个集合是A .A ={2,3,⋯,7,32;33,⋯,126,506,507,⋯,2020}11.【2020年吉林预赛】已知集合 若 ,则 的取值范围是 .A ={x∣log a (ax ‒1)>1}.2∈A a 【答案】(12,1)∪(1,+∞).【解析】由题意,得log 则 或a (2a ‒1)>1.{0<a <1,0<2a ‒1<a {a >1,2a ‒1>a.解得 或12<a <1a >1.12.【2020年浙江预赛】一个正整数若能写成形式,就称其为“好数".则集合20a +8b +27c (a ,b ,c ∈N) 中好数的个数为.{1,2,⋯,200}【答案】153【解析】先考虑 20a +8b =4(5a +2b). 可取5a +2b 2,4,5,6,⋯,50.则 可取 .20a +8b 8,16,20,24,⋯,200故当 时共有48个非零好数 型);c =0(4k 时共有42个好数 型),此时好数为 ;c =1(4k +327,35,43,47,⋯,199 时共有35个好数 型),此时好数为 c =2(4k +254,62,70,74,⋯,198; 时共有28个好数 型),此时好数为c =3(4k +181,89,97,101,⋯,197.综上,共有 个好数.48+42+35+28=15313.【2020年新疆预赛】已知集合 ,对于集合 的每一个非空子集的所有元素,计算它们A ={1,2,3,⋯,2020}A 乘积的倒数.则所有这些倒数的和为 .【答案】2020【解析】集合的 个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2020,1×2,1A 22020‒1 ,它们的倒数和为×3⋯,2019×2020,⋯,1×2×⋯×2020 1+12+…+12020+11×2+11×3+…+12019×2020+⋯+11×2×⋯×2020 .=(1+1)(1+12)⋯(1+12020)‒1=2×32×⋯×20212020‒1=202014.【2019年全国】若实数集合的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值{1,2,3,x }为.【答案】‒32【解析】由题意知,x 为负值,.∴3‒x =1+2+3+x⇒x =‒3215.【2019年江苏预赛】已知集合,,且,则实数A ={x|x 2‒3x +2≥0}B ={x|x ‒a ≥1}A ∩B ={x|x ≥3}a 的值是 .【答案】2【解析】,.又,故,解得.A ={x|x ≥2或x ≤1}B ={x|x ≥a +1}A ∩B ={x|x ≥3}a +1=3a =216.【2019年江西预赛】将集合中每两个互异的数作乘积,所有这种乘积的和为 .{1,2,⋯,19}【答案】16815【解析】所求的和为12[(1+2+⋯+19)2‒(12+22+⋯+192)]=12[36100‒2470]=1681517.【2019年新疆预赛】已知集合,,,则是集合的子集但U ={1,2,3,4,5,6,7,8}A ={1,2,3,4,5}B ={4,5,6,7,8}U 不是集合的子集,也不是集合B 的子集的集合个数为 .A B 【答案】196【解析】解法一:因为,且,所以满足题意的集合所含的元素至少在中取一个A ∪B =U A ∩B ={4,5}{1,2,3}且至少在中取一个,集合中的元素可取或不取,于是满足题意的集合共有{6,7,8}{4,5}(23‒1)(23‒1)×22个.=196解法二:集合的子集个数为,其中是集合或集合的子集个数为.所以满足条件的集合个数为U 28A B 25+25‒22个.28‒(25+25‒22)=19618.【2019年浙江预赛】已知集合为正整数,若集合中所有元素之和为,A ={k +1,k +2,⋯,k +n },k,n A 2019则当取最大值时,集合A =.n 【答案】A ={334,335,336,337,338,339}【解析】由已知.2k +n +12⋅n =3×673当时,得到;n =2m (2k +2m +1)m =3×673⇒m =3,n =6,k =333当时,得到.n =2m +1(k +m +1)(2m +1)=3×673⇒m =1,n =3所以的最大值为,此时集合.n 6A ={334,335,336,337,338,339}19.【2019年重庆预赛】设为三元集合(三个不同实数组成的集合),集合,若A B ={x +y|x,y ∈A, x ≠y},则集合________.B ={log 26, log 210, log 215}A =【答案】{1, log 23, log 25}【解析】设,其中A ={log 2a, log 2b, log 2c}0<a <b <c.则解得,从而。

2018年全国高中数学联赛试题及答案详解(A卷)

2018年全国高中数学联赛试题及答案详解(A卷)


2,
4,
6,,
48

故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为

答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ


tan
OQP



3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为

答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1

an
(2Sn

最新-2018年全国高中数学联赛试题及参考答案精品

最新-2018年全国高中数学联赛试题及参考答案精品

最新-2018年全国⾼中数学联赛试题及参考答案精品2018年全国⾼中数学联赛试题及参考答案试题⼀、选择题(本题满分36分,每⼩题6分)1、函数f (x)=log1/2(x2-2x-3)的单调递增区间是()。

(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3, +∞)2、若实数x,y满⾜(x+5)2+(y-12)2=142,则x2+y2的最⼩值为()。

(A)2 (B)1 (C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数⼜是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB⾯积等于3,这样的点P共有()。

(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。

(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转⼀周所得旋转体的体积为V1;满⾜x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转⼀周所得旋转体的体积为V2,则()。

(A)V1=(1/2)V2 (B)V1=(2/3)V2 (C)V1=V2 (D)V1=2V2⼆、填空题(本题满分54分,每⼩题9分)7、已知复数Z1,Z2满⾜∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹⾓为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。

8、将⼆项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有个。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y = 2 sin πx
1 y=
5−x
y = 2 sin πx
1 y=
5−x
6
2(5 − x) sin πx − 1 = 0
[0, 10]
.
(5, 0)
10
12
y = 2(5 − x) sin πx − 1(0 ≤ x ≤ 10)
60
[0, 10]
[0, 10] 60
15
60

16.
y = 3x + x2 − 2x
6
60
6.
O △ABC
P
.
( −−→ −→ )
P
−O−→P = −O→A + λ
AB AC |A−−→B| + |A−→C|
答案 ∠BAC
.
解析
λ ∈ [0, +∞) P
−−→ −→
( −A−→B
−A→C )
( −A−→B −A→C )
OP = OA + λ −−→ + −→ ⇒ AP = λ −−→ + −→
A: 1
B: 4
C: 5
D:
√ 22 4.
3
A: arcsin 1 3
B: arccos 1 3
C: arcsin 2 3
D: arccos 2 3
5. An = 3n + 5 Bn 5n + 3
{an} a10 = b6
{bn}
An = a1 + a2 + · · · + an, Bn = b1 + b2 + · · · + bn
33
解析 1 △ABC
α
2
2 △ABC 24
0, , . 33
12. 答案 解析
[a ] 33
−2, 2 .
|x − 2a| + |2x − a| ≥ a2
x = ka(k ∈ R) |ka − 2a| + |2ka − a| ≥ a2
1, 2, 3 △ABC
d = h1 + h2 + h3 3
α
x
sin D = sin 30◦ ⇒ sin D = 2 ⇒ sin D = 2
⃝2
⃝1 ⃝2
√ 3
=
√ x2
−1

√ (x + 1) x2
−1
=
√ 3

x4
+ 2x3
− 2x − 4
=
0

(x
+ 2)(x3
− 2)
=
0
2(x + 1)
2
x+2>0
x3 = 2
√ x = 3 2.


10.
z = 2x2 − 2x + 1 + 2x2 − 10x + 13
A: 35 33
1 θ = arccos
3
{an} a10 = b6
{bn}
An = a1 + a2 + · · · + an, Bn = b1 + b2 + · · · + bn
∀ n ∈ N∗
B: 31 29
C: 175 99
D: 155 87
第3页
答案 B.
解析
{an}, {bn}
n
An = 3n + 5
D: 12

n
1

1
2
3

4 ··· n

1 + 1 + 2 + 22 + · · · + 2n−1 ≥ 1000 ⇒ 2n ≥ 1000
n ≥ 10
2.
A:
√ 2
答案 A.
解析
y = ±x

10


x − 3y = 0 3x + y = 0
B:
√ 3
C:
√ 22
x2 − y2 = λ(λ ̸= 0)
.
9.
△ABD
C AD
∠ABC
=
π ,
∠DBC
=
π ,
AB
= CD
=
1
AC =
.
2
6


10.
z = 2x2 − 2x + 1 + 2x2 − 10x + 13
.
11.
6
△ABC
.
α
1, 2, 3 △ABC
G
α
12.
a
|x − 2a| + |2x − a| ≥ a2
x
a
.
13.
ax = x (a > 0, a ̸= 1)
1 0 < ln a < f (e) =
e
1
<
a
<
e
1 e
.
14.
x2 +y2 = 9

答案 6 5.
xy = 3
解析 A(m, n)(m > 0, n > 0)
y=x
B(n, m), C(−m, −n), D(−n, −m)
AB C D


S = |AB| · |CD| = 2(m − n)2 · 2(m + n)2
+
y2
=

m2
+
, 2
y1 · y2 = m2 + 2
⃝1
λ=
S△OM E S△OM F
=
1 2
×
OM
×
y1
1 2
×
OM
×
y2
y1 = λy2
⃝2
⃝1 ⃝2
λ
m2 + 2 1 1
(1 + λ)2 = 8m2 = 8 + 4m2
1
λ
1
8 < (1 + λ)2 < 4
√ 0<λ<3+2 2
λ ̸= 1.
a
.
答案
1
<
a
<
e
1 e
.
解析
ax = x x > 0
ln x x · ln a − ln x = 0 ⇒ ln a = .
x
ln x f (x) = (x > 0)
x f (x) (0, e)
f ′(x)
=
1
− ln x x2
(e, +∞)
x ∈ (0, e) f ′(x) > 0 x ∈ (e, +∞)
a
14.
x2 +y2 = 9
xy = 3
. .
第1页
15.
y = 2(5 − x) sin πx − 1(0 ≤ x ≤ 10)
.
15

16.
y = 3x + x2 − 2x
60
.
17. 8√
|AB| = 9 5 1
x2 y2 C a2 + b2 = 1(a > b > 0)
C
2
M (2, 0)
l
u<0
()
3
1
()
1
1
1

y = − t + + 3 + t + − t = −2t + + 3 ≤ 3 − 2 2
2
t
2
t
t
√ 2
t= 2
√ x= 4−3 2
4
√ (−∞, 3 − 2 2] ∪ [6, +∞).. . . . . 15
17.
8√ |AB| = 9 5
1
x2 y2 C a2 + b2 = 1(a > b > 0)
Bn 5n + 3
An = kn(3n + 5), Bn = kn(5n + 3)
a10 = A10 − A9 = 10k(30 + 5) − 9k(27 + 5) = 62k b6 = B6 − B5 = 6k(30 + 3) − 5k(25 + 3) = 58k
⇒ a10 = 62k = 31 b6 58k 29
. x + y = 2.
π
π
9.
△ABD
C AD ∠ABC = , ∠DBC = , AB = CD = 1 AC =
.

2
6
答案 3 2..
第4页
解析 △ABD

AD
1
3
sin 120◦ = sin D ⇒ sin D = 2(x + 1)
AD = x
⃝1
△B C D


BC
1
x2 − 1
x2 − 1
λ = S△OME
λ
.
S△OM F
√ 2
e= 2
y = 2x − 1 C
A, B
C
EF E
FM
.
1
1
1
1
18.
1 2k + 2k + 1 + 2k + 2 + · · · + 2k+1 − 1 < 1 (n ≥ 2, n ∈ N )
11
1
3
2
1, , , · · · , , · · ·
.
相关文档
最新文档