人教版数学八年级下册期中考试试题含答案
八年级下学期数学期中考试试卷含答案(共5套,人教版)
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
人教版数学八年级下册《期中考试题》及答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。
人教版数学八年级下册《期中考试试卷》(带答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
人教版数学八年级下册期中测试卷4套(含答案解析)
人教版数学八年级下册期中测试卷一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.203.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列计算错误的是()A.B.C.D.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.6.下列根式中,是最简二次根式的是()A.B.C.D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.89.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.7612.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3二、填空题13.已知,则x+y=.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、解答题19.计算:2×3++|﹣1|﹣π0+()﹣1.20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.21.先化简,后计算:,其中a=,b=.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【专题】选择题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【考点】勾股定理.【专题】选择题.【分析】因为知道两个直角边长,根据勾股定理可求出斜边长.【解答】解:∵三角形的两直角边长为12和16,∴斜边长为:=20.故选D.【点评】本题考查勾股定理的应用,根据两直角边长可求出斜边长.3.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【专题】选择题.【分析】根据一次函数y=﹣x+1中k=﹣<0,b=1>0,判断出函数图象经过的象限,即可判断出一次函数y=﹣x+1的图象不经过的象限是哪个.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选C.【点评】此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b <0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.4.下列计算错误的是()A.B.C.D.【考点】二次根式的加减法.【专题】选择题.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.【考点】勾股定理;坐标与图形性质.【专题】选择题.【分析】连接PO,在直角坐标系中,根据点P的坐标是(,),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【解答】解:连接PO,∵点P的坐标是(,),∴点P到原点的距离==3.故选A.【点评】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.6.下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【专题】选择题.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】选择题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.8【考点】菱形的性质.【专题】选择题.【分析】首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:如图∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是:AC•BD=×4×4=8.故选C.【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算【考点】正方形的性质;全等三角形的判定与性质.【专题】选择题.【分析】由正方形ABCD中,FA=AE,易证得Rt△ABF≌Rt△ADE(HL),即可得S四边形AFCE =S正方形ABCD,求得答案.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠D=90°,AB=AD,即∠ABF=∠D=90°,在Rt△ABF和Rt△ADE中,,∴Rt△ABF≌Rt△ADE(HL),∴S Rt△ABF=S Rt△ADE,∴S Rt△ABF+S四边形ABCE=S Rt△ADE+S四边形ABCE,∴S四边形AFCE =S正方形ABCD=16.故选C.【点评】此题考查了正方形的性质以及全等三角形的判定与性质.注意证得Rt △ABF≌Rt△ADE是关键.10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.【考点】正方形的判定.【专题】选择题.【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:过B点作BF⊥CD,与DC的延长线交于F点,则有△BCF≌△BAE(ASA),则BE=BF,S四边形ABCD =S正方形BEDF=8,∴BE==.故选C.【点评】本题运用割补法把原四边形转化为正方形,其面积保持不变,所求BE 就是正方形的边长了;也可以看作将三角形ABE绕B点逆时针旋转90°后的图形.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.76【考点】函数解析式.【专题】选择题.【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【解答】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点评】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n (n+1).12.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3【考点】一次函数与一元一次不等式;一次函数的性质.【专题】选择题.【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b 看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【解答】解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选D.【点评】此题主要考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.13.已知,则x+y=.【考点】二次根式的性质.【专题】填空题.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.【点评】本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【专题】填空题.【分析】由勾股定理的逆定理,判断三角形为直角三角形,再根据直角三角形的性质直接求解.【解答】解:∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC 是直角三角形,∴BD=AC=cm.【点评】解决此题的关键是熟练运用勾股定理的逆定理判定直角三角形,明确了直角三角形斜边上的中线等于斜边上的一半之后此题就不难了.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).【考点】一次函数的性质.【专题】填空题.【分析】设一次函数的解析式为y=kx+b(k≠0),再根据y随着x的增大而减小得出k的取值范围,把点(0,﹣3)代入函数解析式得出k+b的值,写出符合条件的解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵y随着x的增大而减小,∴k<0,∵图象过点(0,﹣3),∴b=﹣3,∴符合条件的解析式可以为:y=﹣x﹣3.故答案为:y=﹣x﹣3(答案不唯一).【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k <0时,y随x的增大而减小是解答此题的关键.16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.【考点】勾股定理.【专题】填空题.【分析】利用勾股定理列式求出AB,再根据阴影部分的面积等于阴影部分所在的两个半圆的面积加上△ABC的面积减去大半圆的面积,列式计算即可得解.【解答】解:∵AC=12,BC=5,∴AB===13,∴阴影部分的面积=π()2+π()2+×12×5﹣π()2=π+π+30﹣π=30.故答案为:30.【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图象表示出阴影部分的面积是解题的关键.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【考点】正方形的性质;全等三角形的判定与性质.【专题】填空题.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.【考点】函数图象的实际应用.【专题】填空题.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为;①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.19.计算:2×3++|﹣1|﹣π0+()﹣1.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【专题】解答题.【分析】根据二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质计算即可.【解答】解:2×3++|﹣1|﹣π0+()﹣1=×3+2+﹣1﹣1+2=6+3.【点评】本题考查了二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质,熟记运算法则是解题的关键,20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【专题】解答题.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.【点评】本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.21.先化简,后计算:,其中a=,b=.【考点】二次根式的混合运算.【专题】解答题.【分析】先通分、化简,然后代入求值.【解答】解:,=,=,=.∵a=,b=,∴ab=•==1,a+b==,∴==.即:=.【点评】本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.【考点】用待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【专题】解答题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)C的坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设函数的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=1.5x﹣3;(2)在y=1.5x﹣3中,令x=0,解得y=﹣3;当y=0时,x=2,则A(2,0)B(0,﹣3);(3)在y=1.5x﹣3中,令x=4,解得:y=3,则P的坐标是:(4,3),设C的坐标是m,则|m﹣2|×3=6,解得:m=﹣2或6.则C的坐标是:(﹣2,0)或(6,0).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.【考点】翻折变换(折叠问题);勾股定理.【专题】解答题.【分析】首先设BE=xcm,由折叠的性质可得:DE=BE=xcm,即可得AE=9﹣x(cm),然后在Rt△ABE中,由勾股定理BE2=AE2+AB2,可得方程x2=(9﹣x)2+32,解此方程即可求得DE的长,继而可得AE的长,则可求得△ABE的面积.【解答】解:∵四边形ABCD是长方形,∴∠A=90°,设BE=xcm,由折叠的性质可得:DE=BE=xcm,∴AE=AD﹣DE=9﹣x(cm),在Rt△ABE中,BE2=AE2+AB2,∴x2=(9﹣x)2+32,解得:x=5,∴DE=BE=5cm,AE=9﹣x=4(cm),∴S=AB•AE=×3×4=6(cm2).△ABE【点评】此题考查了折叠的性质、长方形的性质以及勾股定理.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理;矩形的判定.【专题】解答题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【考点】正方形的性质;正方形的判定.【专题】解答题.【分析】(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q 分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.【解答】解:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠CDE=∠DAF,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.【点评】此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关键.人教版数学八年级下册期中测试卷一、选择题1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣36.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.57.若直角三角形两边分别是3和4,则第三边是()A.5B.C.5或D.无法确定8.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24B.12C.6D.89.若,则x的值等于()A.4B.±2C.2D.±410.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3二、填空题11.已知一直角三角形,两边长为3和4,则斜边上的中线长为.12.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.13.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.15.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、解答题16.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.17.若x,y为实数,且|x+2|+=0,求()2011.18.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.19.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.20.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.21.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.22.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.23.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C 的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.答案1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.【考点】二次根式有意义的条件.【专题】选择题.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=2【考点】二次根式的加减法;二次根式的乘除法.【专题】选择题.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.【点评】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm2【考点】勾股定理;等边三角形的性质.【专题】选择题.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.【点评】求高是关键,把三角形转化为解直角三角形问题就很易求出.5.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣3【考点】二次根式的性质.【专题】选择题.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|。
人教版八年级下册数学《期中考试卷》附答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷选择题一、选择题1.若12x +在实数范围内有意义,则的取值范围在数轴上表示正确的是( ) A. B. C. D.2.已知点A 的坐标为(2,-1),则点A 到原点的距离为( )A. 3B. 3C. 5D. 13. 下列说法中正确的是( )A. 12化简后的结果是22B. 9的平方根为3C. 8是最简二次根式D. ﹣27没有立方根4.下列计算正确的是( )A 310255-= B. 7111()1111711⋅÷= C. (7515)325-÷= D.18183239-= 5.如图,测得楼梯长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少是( )A. 4米B. 5米C. 7米D. 10米6.下列二次根式中的最简二次根式是( )A 30 B. 12 C. 8 D. 0.5 7.如果()212a -=2a -1,那么 ( ) A. a<12 B. a≤12 C. a>12 D. a≥128.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+9.如图,顺次连接四边形ABCD 各边的中点的四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是( )A. AB ∥DCB. AC=BDC. AC ⊥BDD. AB=CD10.如图,P 是矩形ABCD 的对角线AC 的中点,E 是AD 的中点.若AB=6,AD=8,则四边形ABPE 的周长为( )A. 14B. 16C. 17D. 18第Ⅱ卷非选择题二、填空题11.38a -172a -,那么 a 值为__________.12.有一个直角三角形的两边为4、5,要使三角形为直角三角形,则第三边等于_____.13.已知、为两个连续的整数,且28a b <<,则+a b =________.14.一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________cm.15.如图,将长8cm ,宽4cm 的矩形ABCD 纸片折叠,使点A 与C 重合,则折痕EF 的长为_________cm .三、解答题16.计算下列各题:(1)122053455-+- (2)4118285433⎛⎫-÷⨯ ⎪⎝⎭(3)20511235+-⨯ (4)2093(3)|2|28π-⨯+---+⨯(5)(37)(37)2(22)-++-(6)0(3)(6)|21|(52)π-⨯-+-+-17.如图,BD 是▱ABCD 的对角线,AE ⊥BD 于E,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.18.已知32,32x y ==求x 2+y 2+2xy ﹣2x ﹣2y 的值.19.如图,公路 MN 和公路 PQ 在点 P 处交会,且∠QPN=30°.点 A 处有一所中学,AP=160m ,一辆拖拉机从 P 沿公路 MN 前行,假设拖拉机行驶时周围 100m 以内会受到噪声影响,那么该所中学是否会受到噪声影响,请说明理由,若受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多长?20.如图,将▱ABCD的边AB延长至点E,使BE=AB,连接DE、EC、BD、DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.21.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=14S四边形ABCD,求P的坐标.22.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm 速度移动;点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果点P,Q同时出发,那么过3s时,△BPQ 的面积为多少?23. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.答案与解析第Ⅰ卷选择题一、选择题1.若12x+在实数范围内有意义,则的取值范围在数轴上表示正确的是()A. B. C. D.[答案]B[解析][分析]根据二次根式有意义,分式的分母不为0,建立关于x的不等式,解不等式求出x的取值范围,再观察各选项中的数轴上的不等式的解集,可得答案。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
人教版数学八年级下册《期中考试试题》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.二次根式1x -有意义的的取值范围是( ) A. 1x > B. 1x < C. 1x ≥ D. 1x ≤2.下列式子中是最简二次根式的是( )A. 8B. 22C. 23D. 1.5 3.下列计算正确的是( )A. 5335-=B. 222()-=-C. 1222÷=D. 235⋅= 4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是( )A. B. C. 7 D. 或7 5.下列条件中,不能判断ABC ∆为直角三角形是( )A 2a =,3b =,5c =B. ::1:2:3a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠=6.等腰三角形腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 647.如图,在ABCD 中,AC 与BD 相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD8.下列说法中错误的是( )A. 四边相等四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形9.如图,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF,你认为( )A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对 10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知112y x x =-+--,则x y -值为_________.12.24化简后与最简二次根式51a +的被开方数相等,则a =_________.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.15.如图,在ABCD 中,按以下步骤作图:①以为圆心,以AB 长为半径作弧,交AD 于点;②分别以、为圆心,以大于12BF 的长为半径作弧,两弧相交于点;③作射线AG ,交边BC 于点.若16BF =,10AB =,则AE 的长为_________.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)(4820)(3125)-;(22148330(223)5++. 18.已知32a =32b =求223a ab b a b ++-+的值.19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.25.△ABC 是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,交射线AC 于点G ,连接BE .(1)如图1所示,当点D 在线段BC 上时,求证:四边形BCGE 是平行四边形;(2)如图2所示,当点D 在BC 的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.答案与解析一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.( )A. 1x >B. 1x <C. 1x ≥D. 1x ≤[答案]D[解析][分析]根据二次根式的被开方数为非负数,可得关于x 的不等式,解之即可.[详解],∴1-x ≥0,解得:x ≤1,故选:D .[点睛]本题考查二次根式的定义、解一元一次不等式,熟练掌握二次根式有意义的条件是解答的关键. 2.下列式子中是最简二次根式的是( )B. 2 [答案]B[解析][分析] 分析每个式子,根据最简二次根式的定义判断即可.[详解故A 错误;是最简二次根式,故B 正确;故C 错误;2,故D 错误; 故选:B .[点睛]本题主要考查了最简二次根式判定,准确利用二次根式的性质化简是解题的关键.3.下列计算正确的是( )A. 5= 2=- 2= = [答案]C[解析][分析]通过对二次根式的化简,利用二次根式的性质进行求解即可得到答案.[详解]=,故A 错误;2=,故B 错误;=,故C 正确;=故D 正确;故答案选C .[点睛]本题主要考查了二次根式性质的应用,准确计算是解题的关键.4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是()A. B.D. [答案]D[解析][分析]根据勾股定理即可求解.[详解]当4为斜边时,当x 为斜边是,5故选D. [点睛]此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.5.下列条件中,不能判断ABC ∆为直角三角形的是( )A. 2a =,3b =,c =B. ::1:a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠= [答案]D[解析][分析]分别根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.[详解]A 、24a =,29b =,25c =,∵222a c b +=,∴△ABC 是直角三角形,故本选项错误;B 、∵2221+=, ∴△ABC 是直角三角形,故此选项不合题意;C 、∵A B C ∠+∠=∠,而180A B C ∠+∠+∠=︒,计算得∠A=90,∴△ABC 为直角三角形,故此选项不合题意;D 、∵180A B C ∠+∠+∠=︒,计算得∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故此选项符合题意;故选:D .[点睛]本题主要考查了勾股定理逆定理和三角形内角和定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形就是直角三角形.6.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.7.如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD [答案]D[解析]试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.8.下列说法中错误的是()A. 四边相等的四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形[答案]B[解析][分析]根据菱形、正方形的判定方法分别分析即可求解.[详解]解:A. 四边相等的四边形是菱形,正确,不合题意;B. 对角线相等的矩形是正方形,错误,符合题意;C. 一组邻边相等的平行四边形是菱形,正确,不合题意;D. 对角线互相垂直平分的四边形是菱形,正确,不合题意.故选B.[点睛]本题考查了菱形、正方形的判定方法,正确把握相关定义是解题关键.9.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为()A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对[答案]C[解析][分析]分别过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,根据正方形的性质可得EG=MP;对于小明的说法,先利用“HL”证明Rt△EFG≌Rt△MNP,根据全等三角形对应角相等可得∠MNP=∠EFG,再根据角的关系推出∠EQM=∠MNP,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义即可证得MN⊥EF;对于小亮的说法,先推出∠EQM=∠EFG,∠EQM=∠MNP,然后得到∠EFG=∠MNP,然后利用“角角边”证明△EFG≌△MNP,根据全等三角形对应边相等可得EF=MN.[详解]如图,过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD 正方形,∴EG=MP ,对于小明的说法:在Rt △EFG 和Rt △MNP 中,MN EF EG MP ⎧⎨⎩==, ∴Rt △EFG ≌Rt △MNP (HL ),∴∠MNP=∠EFG ,∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG=∠MNP ,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ 中,∠MOQ=180°-(∠EQM+∠NMP )=180°-90°=90°,∴MN ⊥EF ,故甲正确.对小亮的说法:∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG ,∵MN ⊥EF ,∴∠NMP+∠EQM=90°,又∵MP ⊥CD ,∴∠NMP+∠MNP=90°,∴∠EQM=∠MNP ,∴∠EFG=∠MNP ,在△EFG 和△MNP 中,90EFG MNP EGF MPN EG MP ∠∠⎧⎪∠∠︒⎨⎪⎩==== , ∴△EFG ≌△MNP (AAS ),∴MN=EF ,故小亮的说法正确,综上所述,两个人的说法都正确.故选C .[点睛]本题考查了正方形的性质、全等三角形的判定与性质、同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5[答案]A[解析][分析] 先依据菱形的性质求得OA 、OD 的长,然后依据勾股定理可求得AD 的长,最后依据三角形中位线定理求的EF 的长即可.[详解]∵四边形ABCD 为菱形,∴AC ⊥BD ,OA=OC=12AC=4,OB=OD=12BD=3 在Rt △AOD 中,依据勾股定理可知: 2222435AD OA OD∵点E ,F 分别为AO ,DO 的中点,∴EF 是△AOD 的中位线∴EF=12AD=2.5 故选:A[点睛]本题考查了菱形的性质:菱形的对角线互相垂直平分;三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知2y =,则x y -的值为_________. [答案]3[解析][分析]由二次根式有意义的条件列不等式组,解不等式组求得,再求,从而可得答案.[详解]解:2y x =-1010x x -≥⎧∴⎨-≥⎩①② 由①得:1,x ≥由②得:1,x ≤1,x ∴=2,y ∴=-()12 3.x y ∴-=--=故答案为:[点睛]本题考查的是二次根式有意义的条件,掌握二次根式有意义的条件列不等式组是解题的关键.,则a =_________.[答案]5[解析][分析]化简为最简二次根式,继而利用题干信息“被开方数相同”列方程求解.[详解=其中被开方数为6;1a + ,故有:16a +=,则5a =.故本题答案为5.[点睛]本题考查最简二次根式的化简以及对二次根式概念的理解,需注意化简原则为被开方数不含分母,也不含能开的尽方的因数或因式.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.[答案]25[解析][分析]先根据勾股定理算出大正方形的边长,再根据勾股定理的面积证明可得结果.[详解]由题可得大正方形的边长=2213-12=5,根据勾股定理的性质可得阴影部分的面积=25=25.故答案为25.[点睛]本题主要考查了勾股定理的理解,准确理解图形面积与勾股定理的关系是解题的关键.14.如图,矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.[答案]16[解析][分析]根据直角三角形30°角所对的直角边等于斜边的一半可得AC =2AB ,再根据矩形的对角线相等解答.[详解]在矩形ABCD 中,∠ABC =90°,∵∠ACB =30°,AB =8,∴AC =2AB =2×8=16,∵四边形ABCD是矩形,∴BD=AC=16.故答案为:16.[点睛]本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.15.如图,在ABCD中,按以下步骤作图:①以为圆心,以AB长为半径作弧,交AD于点;②分别以、为圆心,以大于12BF的长为半径作弧,两弧相交于点;③作射线AG,交边BC于点.若16BF=,10AB=,则AE的长为_________.[答案]12[解析][分析]设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.[详解]如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB =BE =AF ,∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴四边形ABEF 是菱形,∴OA =OE ,OB =OF =8,在Rt △AOB 中,∵∠AOB =90°,∴OA =22221086AB OB -=-=,∴AE =2OA =12.故答案为:12.[点睛]本题考查平行四边形的性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.[答案]23+[解析][分析]首先根据四边形ABCD 是正方形得出AB=AD ,∠B=∠D=90°,根据△AEF 是等边三角形得出AE=AF ,最后根据HL 即可证明△ABE ≌△ADF ;根据全等性质:CE=CF ,∠C=90°,从而得出△ECF 是等腰直角三角形,再根据勾股定理得出EC 的值,设BE x =,则2AB x =在Rt △ABE 中,222AB BE AE +=,求出的值,即可得出正方形ABCD 的边长,最后求出正方形ABCD 的面积.[详解]解:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°, ∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt△ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,∴CE=CF ,∠C=90°,即△ECF 是等腰直角三角形,由勾股定理得222CE CF EF +=,∴EC =在Rt △ABE 中,2AE =,∴222AB BE AE +=,即(224x x +=,解得12x =或22x =(舍去),∴AB =∴2ABCD S =正方形故答案为2.[点睛]本题主要考查了正方形的性质、全等三角形的判定与性质、等边三角形的性质和等腰三角形的性质.解答本题的关键是对正方形和三角形的性质以及勾股定理的运用要熟练掌握.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)-;(22++.[答案](1);(2)15+[解析][分析](1)先逐个化简二次根式,再去括号合并同类二次根式即可;(2)先算乘方、再算乘除、最后算加减合并即可.[详解](1)原式=43256353523+-+=-; (2)原式=42684631526-+++=+.[点睛]本题考查了二次根式的混合运算,解答的关键是熟练掌握二次根式的混合运算法则,会利用二次根式的性质将二次根式化为最简根式.18.已知32a =-,32b =+,求223a ab b a b ++-+的值.[答案]1322+[解析]试题分析:先根据题意求出a-b 的值和ab 的值,然后把已知的式子变形为完全平方和a-b 及ab 的整体形式,然后整体代入即可.试题解析:∵32a =-,32b =+∴323222a b -=---=-,()()32321ab =-+= ∴223a ab b a b ++-+=()()25a b a b ab ---+=()()2222251---+⨯ =8225++=1322+19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?[答案]发生火灾住户窗口距离地面14米[解析][分析]在Rt △ACB 中,利用勾股定理求出BC 即可解答.[详解]由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得: 222215912BC AB AC =-=-=,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.[点睛]本题考查勾股定理得应用,熟练掌握勾股定理在实际生活中的应用是解答的关键. 20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.[答案]75︒[解析][分析]连接BD ,根据3BC DC ==,可得45BDC ∠=︒,223+3=32BD =,由26AD =,AB 6=,可得30ADB ∠=︒,即可求解.[详解]解:如图,连接BD ,∵3BC DC ==,∠C=90°∴45BDC ∠=︒,223+3=32BD =; ∵26AD =,AB 6=, ∴()22=26=24AD ,()2266AB ==,()223218BD ==, ∴△ABD 是直角三角形,且90ABD ∠=︒,又∵60A ∠=︒,∴30ADB ∠=︒,∴75ADC ADB CDB ∠=∠+∠=︒.故答案为75︒.[点睛]本题主要考查四边形的应用,灵活应用勾股定理及其逆定理,是解题的关键. 21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.[答案](1)36;(2)60.[解析][分析](1)根据AB ∥CD ,AE 平分∠BAD ,得∠BAE =∠AEB ,AB =BE =5,求得BC =5+8=13,据此可得平行四边形ABCD 的周长;(2)AB =5,BC =13,AC =12,得△ABC 为直角三角形,则平行四边形ABCD 的面积=AB ×AC =60. [详解]解:(1)如图,∵在平行四边形ABCD 中,AB ∥CD ,∴∠DAE =∠AED ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴AB =BE =5,∵EC =8,∴BC =5+8=13∴平行四边形ABCD 的周长为:2×(5+13)=36;(2)∵AB =5,BC =13,AC =12,AB 2+AC 2=BC 2,∴△ABC 为直角三角形,即AC ⊥AB ,∴平行四边形ABCD 的面积=AB ×AC =60. [点睛]本题考查了角平分线的性质,等腰三角形的性质和平行四边形的性质,熟悉相关性质是解题的关键. 22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.[答案](1)见解析;(2)12°. [解析][分析](1)根据四边形ABCD 是菱形,∠ABC=60°和等边△BEF ,可以证明△FAB ≌△ECB ,进而可得CE=AF ;(2)利用三角形的内角和定理可求∠CBE 的度数.[详解](1)证明:∵四边形ABCD 是菱形,∴AB =BC.∵△BEF 是等边三角形,∴BF =BE ,∠FBE =∠FEB =60°.∵∠ABC =60°,∴∠ABC =∠FBE ,∴∠ABC -∠ABE =∠FBE -∠ABE ,即∠EBC =∠FBA .∴△EBC ≌△FBC (SAS ).∴CE =AF .(2)解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠D =∠ABC =60°.∴∠C =180°-∠D =120°.在△PDE 中,∠D +∠DPE +∠PED =180°,∴∠DEP =72°.由(1)得,∠FEB =60°,∴∠BED =∠DEP +∠BEP =72°+60°=132°.∴∠CBE =∠BED -∠C =132°-120°=12°.[点睛]本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.[答案](1)证明见详解;(2)5[解析][分析](1)依据矩形的性质,即可得出△AEG ≌△CFH ,进而得到GE=FH ,∠CHF=∠AGE ,由∠FHG=∠EGH ,可得FH ∥GE ,即可得到四边形EGFH 是平行四边形;(2)由菱形的性质,即可得到EF 垂直平分AC ,进而得出AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,依据Rt △ADF 中,AD 2+DF 2=AF 2,即可得到方程,即可得到AE 的长.[详解]解:(1)∵矩形ABCD 中,AB ∥CD ,∴∠FCH=∠EAG ,又∵CD=AB ,BE=DF ,∴CF=AE ,又∵CH=AG ,∴△AEG ≌△CFH ,∴GE=FH ,∠CHF=∠AGE ,∴∠FHG=∠EGH ,∴FH ∥GE ,∴四边形EGFH 是平行四边形;(2)如图,连接EF ,AF ,∵EG=EH ,四边形EGFH 是平行四边形,∴四边形GFHE 为菱形,∴EF 垂直平分GH ,又∵AG=CH ,∴EF 垂直平分AC ,∴AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,在Rt △ADF 中,AD 2+DF 2=AF 2,∴42+(8-x )2=x 2,解得x=5,∴AE=5.[点睛]此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.[答案](1)9-2t ,2t -9;(2)t 的值为3或9;(3)t =4.5.[解析][分析](1)求出运动路线BF 的长度,分当F 在线段BC 上时,CF =BC -BF ,当F 在线段BC 的延长线上运动时,CF =BF -BC ,求解即可;(2)分别从当点F 在C 的左侧时与当点F 在C 的右侧时去分析,由当AE =CF 时,以A 、C 、E 、F 为顶点四边形是平行四边形,可得方程,解方程即可求得答案;(3)当,两点间的距离最小时,即EF ⊥BC ,取线段BC 的中点D ,四边形ADFE 是矩形,利用AE =DF 可得方程,解方程即可得出答案.[详解]解:(1)∵运动时间为()t s ,∴2BF t =,∵△ABC 为等边三角形,∴AB =BC =AC =9,∴当点F 在线段BC 上运动时,CF =9-2t ,当点F 在线段BC 的延长线上运动时,CF =2t -9;故答案为:9-2t ,2t -9;(2)当点F 在C 的左侧时(含点C ),根据题意得:CF =9-2t ,AE =t ,∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t=9-2t,解得:t=3;当点F在C的右侧时,根据题意得:CF=2t-9,∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即2t-9=t,解得:t=9,综上可得:当以点A,C,E,F为顶点的四边形是平行四边形时,t的值为3或9;(3)若E,F两点间的距离最小,则EF⊥BC,过A作AD⊥BC于D,则AD也是BC边的中线,∵AB=BC=AC=9,∴BD=CD=4.5,∴DF=2t-4.5∵AD⊥BC∴四边形AEFD为矩形,∴此时AE=DF,∴t=2t-4.5,解得t=4.5,∴当t=4.5时,,两点间的距离最小;[点睛]本题主要考查了平行四边形的判定,矩形的判定,利用了分类讨论思想和方程的思想是解决本题的关键.25.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B,C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点G,连接BE.(1)如图1所示,当点D在线段BC上时,求证:四边形BCGE是平行四边形;(2)如图2所示,当点D在BC的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.[答案](1)证明见解析;(2)结论仍成立,理由见解析;(3)当点D在BC的延长线上,CD=BC时,四边形BCGE 是菱形,理由见解析.[解析][分析](1)利用SAS定理证明△AEB≌△ADC,根据全等三角形的性质得到∠ABE=∠ACB=60°,得到BE∥CG,根据平行四边形的判定定理证明结论;(2)仿照(1)的证明方法解答;(3)分点D在BC上、点D在BC的延长线上两种情况,根据菱形的判定定理解答.[详解](1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=∠BAC=60°.∵△ADE是等边三角形,∴AE=AD,∠EAD=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,∵AE ADEAB DAC AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACB=60°,∠EBC+∠ACB=∠ABE+∠ABC+∠ACB=180°, ∴BE∥CG,∵EG∥BC,∴四边形BCGE是平行四边形;(2)解:(1)中的结论仍成立,理由如下:由(1)可知,△ABE≌△ACD,∴∠BEA=∠CDA.∵EG∥BC,∴∠G=∠ACB=60°,∠GED=∠BDE,∴∠BEG+∠G=∠BEA+∠AED+∠GED+∠G=∠AED+(∠CDA+∠BDE) +∠G=180°,∴BE∥CG,又∵EG∥BC,∴四边形BCGE是平行四边形;(3)解:当点D在BC上时,由(2)可知,△ABE≌△ACD,∴BE=CD.∵BE=CD<BC,∴四边形BCGE不是菱形,当点D在BC的延长线上,CD=BC时,四边形BCGE是菱形,由(2)可知,△ABE≌△ACD,四边形BCGE是平行四边形,∴BE=CD=BC时,四边形BCGE是菱形.[点睛]本题考查平行四边形的判定、菱形的判定、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、平行四边形、菱形的判定定理是解题的关键.。
人教版数学八年级下册《期中考试题》含答案
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)-在实数范围内有意义,则x取值范围_______.1. 若13x2. 如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前的高度是___________.3. 比较大小:23________13.4. 已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是________cm2.a-是同类二次根式,那么a=________.5. 如果最简二次根式1+a与426. 如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=___厘米.二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7. 下列式子中,属于最简二次根式是A. 9B. 7C. 20D. 138. 下列各组数中,能构成直角三角形是()A. 4,5,6B. 1,12C. 6,8,11D. 5,12,239. 下列计算错误..的是 ( ) A. 14772⨯= B. 60302÷= C. 9258a a a += D. 3223-=10. 已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形其中能判断是平行四边形的命题个数为( )A. 1个B. 2个C. 3个D. 4个11. 设191a =-,a 在两个相邻整数之间,则这两个整数( )A. 1和2B. 2和3C. 3和4D. 4和512. 矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )A. 12B. 10C. 7.5D. 513. 等腰三角形的一腰长为13,底边长为10,则它的面积为( )A. 65B. 60C. 120D. 13014. 如图,将一个边长为4和8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是()A. 3B. 23C. 5D. 25三、解答题(共9小题,共70分)15. 计算:(1)(56)(56)+- (2) 4545842+-+(3) 123121335÷⨯ (4)1018|21|2π-⎛⎫+--+ ⎪⎝⎭16. (2009年安顺)先化简,再求值:244(2)24x x x x -+⋅+-,其中5x =17. 有一块菜地, 形状如下, 试求它的面积.(单位:米)18. 如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.19. 如图,在□ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25°,求∠C、∠B的度数.20. 如图,矩形ABCD中,AC与BD相交于点O.若 AO=3,∠OBC=30°,求矩形的周长和面积.21. 如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形22. 如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.23. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.若∠ADC=90︒,求证:四边形MPND是正方形.答案与解析一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1. 若13x -在实数范围内有意义,则x 的取值范围_______.[答案]1x 3≤. [解析][分析][详解]解:根据二次根式被开方数必须是非负数的条件,要使13x -在实数范围内有意义,必须13x 0-≥ 解得:1x 3≤. 故答案为:1x 3≤. 2. 如图由于台风的影响,一棵树在离地面6m 处折断,树顶落在离树干底部8m 处,则这棵树在折断前的高度是___________.[答案]16米.[解析]分析]根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.详解]由题意得BC=8m ,AB=6m ,在直角三角形ABC 中,根据勾股定理得:226+8米).所以大树的高度是10+6=16(米).故答案为16米.[点睛]此题考查勾股定理的应用,解题关键在于利用勾股定理进行计算.3. 比较大小:[答案]<[解析]试题解析:∵∴4. 已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是________cm2. [答案]30[解析]菱形的面积=12×5×12=30(cm2).故答案为30.5. 是同类二次根式,那么a=________.[答案]1[解析]分析]根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.[详解]是同类二次根式∴1+a=4a-2解得:a=1故答案为:1.[点睛]本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.6. 如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=___厘米.[答案]3[解析]试题分析:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD .又∵AC+BD=24厘米,∴OA+OB=12厘米.∵△OAB 的周长是18厘米,∴AB=6厘米.∵点E,F 分别是线段AO,BO 的中点,∴EF 是△OAB 的中位线. ∴EF=12AB=3厘米. 二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7. 下列式子中,属于最简二次根式的是 A. 9 B. 7 C. 20 D. 13[答案]B[解析][分析][详解]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件 (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是. 139320=253==,,,7属于最简二次根式.故选B. 8. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,12C. 6,8,11D. 5,12,23[答案]B[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.[详解]解:A 、222456+≠,故不是直角三角形,错误;B 、22211,+= ,故是直角三角形,正确;C 、2226811,+≠ 故不是直角三角形,错误;D 、22251223,+≠故不是直角三角形,错误.故选:B .[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9. 下列计算错误..的是 ( )= == D. 3= [答案]D[解析][分析]根据二次根式的运算法则即可计算,进行判断.[详解]=正确;=正确;==正确;-=故错误,故选D.[点睛]此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.10. 已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形其中能判断是平行四边形的命题个数为( )A. 1个B. 2个C. 3个D. 4个[答案]C[解析][分析]平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形.[详解]解:根据平行四边形的判定方法,知①、②、④正确;③错误.故选C .[点睛]本题考查的是平行四边形的判定定理,比较简单.11. 设1a =,a 在两个相邻整数之间,则这两个整数是( )A. 1和2B. 2和3C. 3和4D. 4和5 [答案]C[解析][分析],的取值范围.[详解]∵45<<,∴314<<,故34a <<,故选C[点睛]此题主要考查了估算无理数的大小,12. 矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )A. 12B. 10C. 7.5D. 5[答案]C[解析][分析]如图所示:∠AOD=∠BOC=60°,即:∠COD=120°>∠AOD=60°,AD是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA=OD=OC=OB=7.5,又因为∠AOD=∠BOC=60°,所以AD 的长即可求出.[详解]如图所示:矩形ABCD,对角线AC=BD=15,∠AOD=∠BOC=60°,∵四边形ABCD是矩形,∴OA=OD=OC=OB=12×15=7.5(矩形的对角线互相平分且相等),又∵∠AOD=∠BOC=60°,∴OA=OD=AD=7.5,∵∠COD=120°>∠AOD=60°,∴AD<DC,所以该矩形较短的一边长为7.5,故选C.[点睛]本题主要考查矩形的性质:矩形的对角线相等且互相平分,且矩形对角线相交所的角中“大角对大边,小角对小边”.13. 等腰三角形的一腰长为13,底边长为10,则它的面积为()A. 65B. 60C. 120D. 130[答案]B[解析][分析]根据题意画出图形,先根据勾股定理求出等腰三角形底边上的高,再求出其面积即可.[详解]∵等腰△ABC中,AB=AC=13,BC=10,AD⊥BC于点D,∴BD=12BC=12×10=5,∴AD=222213512AB BD-=-=,∴1110126022ABCS BC AD∆=⋅=⨯⨯=.故选B.[点睛]此题考查勾股定理、等腰三角形的性质,解题关键在于作辅助线AD.14. 如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )A. 3B. 23C. 5D. 25[答案]D[解析][分析][详解]根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=25.故选D.三、解答题(共9小题,共70分)15. 计算:(1)(56)(56)+- (2) 4545842+-+(3) 123121335÷⨯ (4)1018|21|2π-⎛⎫+--+ ⎪⎝⎭[答案](1)-1;(2)7522+;(3)255;(4)32[解析][分析] (1)利用平方差公式化简; (2)先化为最简二次根式,然后合并同类二次根式;(3)先将带分数化为假分数,然后算乘除;(4)先化简,然后算加减.[详解](1)(56)(56)解:原式=5-6 =-1(2) 4545842解:原式=45352242=7522(3123121335解:原式488335 255(4101821|2π-⎛⎫-+ ⎪⎝⎭解:原式=222112-+=32[点睛]本题考查计算求解,注意有根号,尽量先化简为最简二次根式的形式,然后再进行其他计算.16. (2009年安顺)先化简,再求值:244(2)24x x x x -+⋅+-,其中5x = [答案]242x -,12 [解析][分析]先根据分式的运算法则进行化简,再代入求值.[详解]解:原式()()()22•222x x x -=+- 242x -= 5x =时,原式()254122-==17. 有一块菜地, 形状如下, 试求它的面积.(单位:米)[答案]24平方米[解析][分析]如下图,连接AC ,现在哎Rt △ACD 中,求得AC 的长,从而判断出△ACB 是直角三角形,从而求出阴影部分面积.[详解]解:连结ACAD CD⊥△ADC是直角三角形2222435 AC AD CD∴=+=+= 12BC=13AB=222AC BC AB+=△ABC是直角三角形菜地面积为:11512432422⨯⨯-⨯⨯=(平方米)[点睛]本题考查勾股定理和勾股定理的逆定理,解题关键是判断△ACB是直角三角形.18. 如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.[答案]6[解析][分析]根据菱形的性质得出AC⊥BD,DO=BO,然后根据Rt△AOB的勾股定理求出BO的长度,然后根据BD=2BO 求出答案.[详解]∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO=22=3,∴BD=2BO=2×3=654考点:菱形的性质19. 如图,在□ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25°,求∠C、∠B的度数.[答案]∠C=50°,∠B=130°.[解析][分析]根据角平分线的定义得到∠BAD=2∠DAE=50°,再根据平行四边形的邻角互补和平行四边形的对角相等,就可求得∠C和∠B的度数.[详解]∵∠BAD的平分线AE交DC于E,若∠DAE=25°,∴∠BAD=50°.∴在平行四边形ABCD中,∠C=∠BAD=50°,∠B=180°-∠C=130°.[点睛]本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.20. 如图,矩形ABCD中,AC与BD相交于点O.若 AO=3,∠OBC=30°,求矩形的周长和面积.[答案]33[解析][分析]根据矩形的性质得出∠ABC=90°,AD=BC,AB=DC,AO=OC,OB=OD,AC=BD,求出AC=BD=2AO=6,OB=OC,求出AB、BC,最后求出周长和面积即可.[详解]∵四边形ABCD是矩形,AO=3,∴∠ABC=90°,AD=BC,AB=DC,AO=OC,OB=OD,AC=BD,∴AC=BD=2AO=6,OB=OC,∴AB12=AC =3,由勾股定理得:BC =33,∴AB =DC =3,AD =BC =33,∴矩形ABCD 的周长是AB +BC +CD +AD =6+63,矩形ABCD 的面积是AB ×BC =3×3393=.[点睛]本题考查了矩形的性质,勾股定理,含30度角的直角三角形性质的应用,注意:矩形的四个角都是直角,矩形的对边相等,矩形的对角线相等且互相平分,题目比较典型,难度适中.21. 如图平行四边形ABCD 中,对角线AC 与BD 相交于O ,E .F 是AC 上的两点,并且AE =CF ,求证:四边形BFDE 是平行四边形[答案]见解析[解析][分析]要证明四边形BFDE 是平行四边形,可以证四边形BFDE 有两组对边分别相等,即证明BF=DE ,EB=DF 即可得到.[详解]证明:∵ABCD 是平行四边形,∴AB=DC ,AB ∥DC ,∴∠BAF=∠DCE ,又∵对角线AC 与BD 相交于O ,E .F 是AC 上的两点,并且AE =CF ,所以在△ABF 和△DCE 中,BA DC BAF DCE AF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CDE (SAS ),∴BF=DE ,同理可证:△ADF ≌△CBE (SAS ),∴DF=BE,∴四边形BFDE 是平行四边形.[点睛]本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.22. 如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F .求证:AF =EC .[答案]证明见解析.[解析][分析]由四边形ABCD 是平行四边形,AE 平分∠BAD ,CF 平分∠BCD ,易证得△ABE ≌△CDF (ASA ),即可得BE=DF ,又由AD=BC ,即可得AF=CE .[详解]证明:∵四边形ABCD 是平行四边形,∴∠B=∠D ,AD=BC ,AB=CD ,∠BAD=∠BCD ,∵AE 平分∠BAD ,CF 平分∠BCD ,∴∠EAB=12∠BAD ,∠FCD=12∠BCD , ∴∠EAB=∠FCD ,在△ABE 和△CDF 中,B D AB CDEAB FCD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△ABE ≌△CDF (ASA ),∴BE=DF .∵AD=BC ,∴AF=EC .[点睛]本题主要考查平行四边形的性质与判定;证明四边形AECF 为平行四边形是解决问题的关键. 23. 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N . 若∠ADC =90︒,求证:四边形MPND 是正方形.[答案]证明见解析[解析][分析]先通过证△ABD ≌△CBD 得到∠ADB=∠CDB, BD 是∠ADC 的角平分线,得到PM PN =,又易知四边形MPND 是矩形,从而得证四边形MPND 是正方形.[详解]证明:BD 平分 ∠ABC∠ABD=∠CBD在△ABD 和△CBD 中AB CB ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩△ABD ≌△CBD ()SAS∠ADB=∠CDBBD 是∠ADC 的角平分线PM ⊥AD ,PN ⊥CDPM PN =PM ⊥AD ,PN ⊥CD∠PMD=∠PND =90o∠ADC =90︒四边形MPND 是矩形PM PN =四边形MPND 是正方形[点睛]本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.。
人教版数学八年级下册《期中检测试卷》(含答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。
人教版八年级数学下册期中试卷及答案【完整版】
人教版八年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.使x2-有意义的x的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
人教版八年级下册数学《期中测试题》含答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各式是二次根式是( ) A.3-B.2C.33D.3π-2.在直角三角形中,若勾为3,股为4,则弦为( ) A. 5B. 6C. 7D. 83.式子1x -在实数范围内有意义,则的取值范围是( ) A 0x >B. 1x -C. 1xD. 1x ≤4.下列线段不能组成直角三角形的是( ) A. a =6,b =8,c =10 B. a =1,b =2,c =3 C. a =1,b =1,c =2D. a =2,b =3,c =65.在平行四边形ABCD 中,5AB =,3BC =.则平行四边形ABCD 的周长是( ). A. 16B. 13C. 10D. 86.下列各式中,计算不正确的是( ) A. 2(3)3=B.2(3)3-=- C. 2(3)3-= D. 2(3)3--=-7.在▱ABCD 中,∠A :∠B :∠C :∠D 可能是( ) A. 1:2:3:4B. 2:3:2:3C. 2:2:1:1D. 2:3:3:28.如图,在▱ABCD 中,下列结论一定成立的是( )A. AC ⊥BDB. ∠BAD +∠ABC =180°C. AB =ADD. ∠ABC =∠BCD9.如图,数轴上的点表示的数是-1,点表示的数是1,CB AB ⊥于点,且2BC =,以点为圆心,AC 为半径画弧交数轴于点,则点表示的数为( )A. 221-B. 22C. 2.8D. 221+10.已知在同一平面内,直线a ,b ,c 互相平行,直线a 与b 之间的距离是3cm ,直线b 与c 之间的距离是5cm ,那么直线a 与c 的距离是( ) A. 2cmB. 8cmC. 8或2cmD. 不能确定二.填空题(共8小题)11.计算12的结果是______.12.如果一个无理数a 与8的积是一个有理数,写出a 的一个值是______.13.如图,△ABC 中,∠ACB =90°,以它的各边为边向外作三个正方形,面积分别为S 1,S 2,S 3,已知S 1=6,S 2=8,则S 3=_____.14.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 周长为_____.15.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行__________米.16.如图,点D ,E ,F 分别是△ABC 的AB ,BC ,CA 边的中点.若△DEF 的周长为10,则△ABC 的周长为_____.17.如图,将一张矩形纸片沿着AE 折叠后,点D 恰好与BC 边上的点F 重合,已知AB =6cm ,BC =10cm ,则EC 的长度为_____cm .18.如图,▱ABCD 的对角线AC,BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB =12BC,连结OE.下列结论:①∠CAD=30°;②S ▱ABCD =AB·AC;③OB=AB ;④OE =14BC,成立结论有______.(填序号)三.解答题(共7小题)19.计算:(1036|21|(3)π++- (2)(24827)3÷20.计算252)52)(52)+-21.如图,▱ABCD 的对角线AC ,BD 相交于O ,AE =CF .求证:DE =BF .22.已知:如图,△ABC中,AB=4,∠ABC=30°,∠ACB=45°,求△ABC的面积.23.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF,求证:四边形ACFD 为平行四边形.24.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=1BC.若2AB=12,求EF的长.25.规定:[m]为不大于m的最大整数;(1)填空:[3.2]=,[﹣4.8]=;(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a取值范围;(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.答案与解析一.选择题(共10小题)1.下列各式是二次根式的是( ) A.B.C.D.[答案]B [解析] [分析]二次根式有意义的条件是被开方数是非负数,即可判断.[详解]解:A 、﹣3<0,,故选项不符合题意; B 、符合二次根式,符合题意; C 、是三次根式,故选项不符合题意;D 、3﹣π<0,,故选项不符合题意. 故选:B .[点睛],必须有a≥0.2.在直角三角形中,若勾为3,股为4,则弦为( ) A. 5 B. 6C. 7D. 8[答案]A [解析]分析:直接根据勾股定理求解即可. 详解:∵在直角三角形中,勾为3,股为4,故选A .点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.,则的取值范围是( ) A. 0x > B. 1x -C. 1xD. 1x ≤[答案]C[分析]根据二次根式有意义的条件进行求解即可. [详解]由题意得:x-1≥0, 解得:x ≥1, 故选C.[点睛]本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键. 4.下列线段不能组成直角三角形的是( )A. a =6,b =8,c =10B. a =1,b ,cC. a =1,b =1,cD. a =2,b =3,c[答案]D [解析] [分析]根据勾股定理的逆定理对四个选项进行逐一分析即可.[详解]解:A 、∵62+82=102,∴能组成直角三角形,故本选项不符合题意;B 、∵12+)2=2,∴能组成直角三角形,故本选项不符合题意;C 、∵12+12=2,∴能组成直角三角形,故本选项不符合题意;D 、∵22+32≠)2,∴不能组成直角三角形,故本选项符合题意. 故选:D .[点睛]本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.在平行四边形ABCD 中,5AB =,3BC =.则平行四边形ABCD 的周长是( ). A. 16 B. 13C. 10D. 8[答案]A [解析]根据平行四边形的性质:平行四边形的对边相等可得DC=5,AD=3,然后再求出周长即可. [详解]∵四边形ABCD 是平行四边形, ∵AB=CD ,AD=BC , ∵AB=5,BC=3, ∴DC=5,AD=3,∴平行四边形ABCD 的周长为:5+5+3+3=16, 故选A .[点睛]此题主要考查了平行四边形的性质,关键是掌握平行四边形的对边相等. 6.下列各式中,计算不正确的是( )A. 23= 3=-C. 2(3=D. 3=-[答案]B [解析] [分析]按照根式的运算规则运算即可.[详解]解:A. 23=,正确,B.3=-,错误,3=,C. 2(3=,正确,D. 3=-,正确, 所以选B.[点睛]a =的运用.7.在▱ABCD 中,∠A :∠B :∠C :∠D 可能是( ) A. 1:2:3:4 B. 2:3:2:3C. 2:2:1:1D. 2:3:3:2[答案]B [解析]由平行四边形的对角相等得出∠A =∠C ,∠B =∠D ,即可得出结果. [详解]解:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,∠B =∠D ,∴∠A :∠B :∠C :∠D 可能是2:3:2:3; 故选:B .[点睛]本题考查了平行四边形的对角相等的性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.8.如图,在▱ABCD 中,下列结论一定成立的是( )A. AC ⊥BDB. ∠BAD +∠ABC =180°C. AB =ADD. ∠ABC =∠BCD[答案]B [解析] [分析]根据平行四边形的性质判断即可.[详解]解:A 、∵四边形ABCD 是菱形,∴AC ⊥BD ,选项不能成立; B 、∵四边形ABCD 是平行四边形,∴∠BAD+∠ABC =180°,选项成立; C 、∵四边形ABCD 是菱形,∴AB =AD ,选项不能成立;D 、∵四边形ABCD 是平行四边形,∴∠ABC+∠BCD =180°,选项不成立; 故选:B .[点睛]本题考查了平行四边形性质;熟练掌握平行四边形的性质是解题的关键.9.如图,数轴上的点表示的数是-1,点表示的数是1,CB AB ⊥于点,且2BC =,以点为圆心,AC 为半径画弧交数轴于点,则点表示的数为( )A. 221B. 22C. 2.8D. 221[答案]A[解析][分析]根据勾股定理求出AC,根据实数与数轴的概念求出点D表示的数.[详解]解:由题意得,AB=2,由勾股定理得,AC2222AB BC,2222∴AD=2则OD=2,即点D表示的数为22,故选A.[点睛]本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.已知在同一平面内,直线a,b,c互相平行,直线a与b之间的距离是3cm,直线b与c之间的距离是5cm,那么直线a与c的距离是( )A. 2cmB. 8cmC. 8或2cmD. 不能确定[答案]C[解析][分析]分(1)直线a在直线b、c外,(2)直线a在直线b、c之间两种情况,画出图形(1)(2),根据图形进行计算即可.[详解]解:有两种情况:如图(1)直线a与c的距离是3厘米+5厘米=8厘米;(2)直线a与c的距离是5厘米-3厘米=2厘米.故选C.[点睛]本题考查平行线之间的距离,注意需分两种情况讨论求解是解题的关键.二.填空题(共8小题)11.12______.[答案]3[解析][分析]根据二次根式的乘法公式化简即可.[详解]12434323⨯==故答案为:3[点睛]此题考查的是二次根式的化简,掌握二次根式的乘法公式是解决此题的关键.12.如果一个无理数a8,写出a的一个值是______.[答案2.[解析][分析]=一个无理数a与22,那么即可判断a2是同类二次根式,即可写出a的值, 82答案不唯一.=∴由题意得一个无理数a与2的积是有理数,[详解]82∴a与2是同类二次根式,答案不唯一.故答案为:2.[点睛]本题主要考查实数的性质以及同类二次根式的性质,解题的关键是掌握有理数和无理数的基本定义以及同类二次根式的积为有理数即可.13.如图,△ABC中,∠ACB=90°,以它的各边为边向外作三个正方形,面积分别为S1,S2,S3,已知S1=6,S2=8,则S3=_____.[答案]14.[解析][分析]根据勾股定理即可得到结论.详解]解:∵∠ACB=90°,S1=6,S2=8,∴AC2=6,BC2=8,∴AB2=14,∴S3=14,故答案为:14.[点睛]本题考查了勾股定理,正方形的面积,正确的识别图形是解题的关键.14.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.[答案]14[解析][分析]根据平行四边形的性质,三角形周长的定义即可解决问题;[详解]解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行__________米.[答案]10[解析][分析]从题目中找出直角三角形并利用勾股定理解答.[详解]解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8−2=6米.根据勾股定理得BD=10米.故填:10.[点睛]注意作辅助线构造直角三角形,解题的关键是熟知勾股定理的应用.16.如图,点D,E,F分别是△ABC的AB,BC,CA边的中点.若△DEF的周长为10,则△ABC的周长为_____.[答案]20[解析][分析]先根据中位线性质得:AB=2EF,BC=2DF,AC=2DE,由周长得:EF+DE+DF=10,所以2EF+2DE+2DF=20,即AB+BC+AC=20.[详解]∵点D,E,F分别是△ABC的AB,BC,CA边的中点,∴EF、DE、DF为△ABC的中位线,∴AB=2EF,BC=2DF,AC=2DE,∵△DEF的周长为10,∴EF+DE+DF=10,∴2EF+2DE+2DF=20,∴AB+BC+AC=20,∴△ABC的周长为20.故答案为:20.[点睛]本题考查了三角形中位线的性质,解题的关键在于根据中位线等于第三边的一半转换求解.17.如图,将一张矩形纸片沿着AE折叠后,点D恰好与BC边上的点F重合,已知AB=6cm,BC=10cm,则EC 的长度为_____cm.[答案]3.[解析][分析]先根据翻折变换的性质得出Rt△ADE≌Rt△AEF,再先设EC的长为x,则AF=10cm,EF=DE=(8﹣x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,又CF=BC﹣BF=10﹣BF,在Rt△ECF中由勾股定理可得:EF2=EC2+CF2,即:(8﹣x)2=x2+(10﹣BF)2,将求出的BF的值代入该方程求出x的值,即求出了EC的长.[详解]解:∵△AEF由△ADE翻折而成,∴Rt△ADE≌Rt△AEF,∴∠AFE=90°,AD=AF=10cm,EF=DE,设EC=xcm,则DE=EF=CD﹣EC=(8﹣x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm),在Rt△ECF中由勾股定理可得:EF2=EC2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即EC=3cm,故答案为:3.[点睛]本题考查是图形的翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.18.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连结OE.下列结论:①∠CAD=30°;②S▱ABCD=AB·AC;③OB=AB;④OE=14BC,成立的结论有______.(填序号)[答案]①②④[解析][分析]由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=12BC,得到AE=12BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=12BC,OB=12BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=12AB,于是得到OE=14BC,故④正确.[详解]∵四边形ABCD是平行四边形, ∴∠ABC=∠ADC=60°,∠BAD=120°, ∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=12 BC,∴AE=12 BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=12BC,OB=12BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=12AB , ∴OE=14BC ,故④正确. 故答案为①②④.[点睛]本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.三.解答题(共7小题)19.计算:(10|1|(3)π+-(2)÷[答案](1);(2)2[解析][分析](1)直接利用二次根式的乘法运算法则以及绝对值的性质、零指数幂的性质分别计算得出答案;(2)直接化简二次根式进而利用二次根式的除法运算法则计算得出答案.[详解]解:(10|1|(3)π+-=1+1=;(2)÷=()==2.[点睛]此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.计算22)2)+-[答案][解析][分析]直接利用乘法公式计算得出答案.[详解]解:(5+2)2+(5+2)(5﹣2)=5+4+45+5﹣4=10+45.[点睛]此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.21.如图,▱ABCD的对角线AC,BD相交于O,AE=CF.求证:DE=BF.[答案]详见解析[解析][分析]根据平行四边形的性质可得BO=DO,AO=CO,再利用等式的性质可得EO=FO,然后再利用SAS定理判定△BOE≌△DOF,进而利用平行四边形的判定和性质解答即可.[详解]证明:连接BF,DE,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴AO﹣AE=CO﹣FO,∴EO=FO,在△BOE和△DOF中,0B DO BOE DOF EO FO =⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (SAS ),∴BE =DF ,∠AEB =∠CFD ,∴∠BEO =∠DFO ,∴BE ∥DF ,∴四边形BEDF 是平行四边形,∴BF =DE .[点睛]此题主要考查了平行四边形的性质、全等三角形的判定与性质,熟练掌握平行四边形的对角线互相平分,证明三角形全等是解题的关键.22.已知:如图,△ABC 中,AB =4,∠ABC =30°,∠ACB =45°,求△ABC 的面积.[答案]3[解析][分析]作AD ⊥BC 于D ,利用30°的直角三角形的性质即可求得BD 、再根据勾股定理可求得AD 长,利用∠C =45°可求得AD=CD ,进而求得CD 的长度,即可得到BC 的长,然后利用三角形的面积公式即可求解.[详解]解:作AD ⊥BC 于D ,则∠ADB=∠ADC=90°, ∵∠B =30°,∠ADB=90°,∴AD =12AB =4; BD 22-AB AD 3∵∠C =45°,∠ADC=90°,∴∠DAC =∠C =45°,∴DC =AD =2,∴BC =BD +CD =3+2∴S △ABC =12AD •BC =23+2[点睛]本题考查了30°的直角三角形的性质,勾股定理,等腰三角形的判定,正确作出辅助线把三角形转化成两个直角三角形是关键.23.如图,点E 是平行四边形ABCD 边CD 上的中点,AE 、BC 的延长线交于点F ,连接DF ,求证:四边形ACFD 为平行四边形.[答案]证明见解析.[解析][分析]根据平行四边形的性质证出∠ADC=∠FCD ,然后再证明△ADE ≌△FCE 可得AD=FC ,根据一组对边平行且相等的四边形是平行四边形可得结论.[详解]证明:∵在▱ABCD 中,AD ∥BF .∴∠ADC=∠FCD .∵E 为CD 的中点,∴DE=CE .在△ADE 和△FCE 中,{AED FECADE FCE DE CE∠=∠∠=∠=,∴△ADE ≌△FCE(ASA)∴AD=FC .又∵AD ∥FC,∴四边形ACFD 是平行四边形.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形两组对边分别平行.24.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=12,求EF的长.[答案]5[解析][分析]如图,连接DC,根据三角形中位线定理可得,DE=12BC,DE∥BC,又因CF=12BC,可得DE=CF,进而得出四边形DEFC是平行四边形,即可得出答案.[详解]解:连接DC,∵点D,E分别是边AB,AC的中点,∴DE=12BC,DE∥BC,∵CF=12 BC,∴DE=CF,∴四边形CDEF是平行四边形, ∴DC=EF,DC=12AB=5,所以EF=DC=5.考点:三角形中位线定理;平行四边形的判定与性质;直角三角形斜边上的中线.25.规定:[m]为不大于m的最大整数;(1)填空:[3.2]=,[﹣4.8]=;(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a的取值范围;(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.[答案](1)3,-5;(2)﹣2≤a<5;(3)﹣134≤t<﹣54或134<t≤193.[解析][分析](1)根据[m]为不大于m的最大整数数即可求解;(2)根据[m]为不大于m的最大整数,可得﹣2≤a<5即可求解;(3)分两种情形:当点D在点B右边时,当点D在点B的左边时分别求解即可.[详解]解:(1)[3.2]=3,[﹣4.8]=﹣5.故答案为3,﹣5.(2)∵﹣2≤[a]≤4∴﹣2≤a<5.(3)如图,当点D在点B的右边时,∵6≤[n]≤7,∴6≤n<8,当n=8时(t﹣1)=8,解得t=134,当n=6时(t﹣1)=8,解得t=193,观察图象可知,134<t≤193.当点D在点B的左边时,同法可得﹣134≤t<﹣54,综上所述,满足条件t的值为﹣134≤t<﹣54或134<t≤193.[点睛]本题考查实数与数轴,勾股定理,无理方程等知识,解题的关键是理解题意,学会结合新定义考查估算无理数的大小,灵活运用所学知识解决问题.。
人教版数学八年级下册《期中考试题》含答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷一、选择题1.下列运算正确的是( )A.2=- B. =C.x =D.=2.下列式子是最简二次根式的是( )A.B.C.D.3.,则x 的取值范围是( ) A. 2x ≤B. 2x ≥-C. 2x <-D. 2x >-4.下列二次根式中,是同类二次根式的是( )A.B.C.D.5.下列计算正确的是( ) A.=±2B. 23=6C.D.6.下列计算正确的是( )x B. 2510x x x =C. 236()x x ==7.下列各组数据不是勾股数的是( ) A. 2,3,4B. 3,4,5C. 5,12,13D. 6,8,108.如图,正方形ABCD 的面积是( )A. 5B. 25C. 7D. 19.如图,数轴上的点A 表示的数是-2,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A. 13B. 132+C. 132-D. 210.由下列条件不能判断△ABC 是直角三角形是( ) A. ∠A :∠B :∠C =3:4:5 B. AB :BC :AC =3:4:5 C. ∠A +∠B =∠CD. AB 2=BC 2+AC 211.如图,ABC ∆中,90ACB ∠=︒,2AC =,3BC =.设AB 的长是,下列关于的四种说法,其中,所有正确说法的序号是( )①是无理数 ②是13的算术平方根③23m << ④可以用数轴上的一个点来表示 A ①②B. ①③C. ①②④D. ②③④12.如图,高速公路上有,两点相距10km ,,为两村庄,已知4km DA =,6km CB =.DA AB ⊥于,CB AB ⊥于,现要在AB 上建一个服务站,使得,两村庄到站的距离相等,则EB 的长是( ).A 4km B. 5km C. 6km D. 20km第Ⅱ卷二、填空题13.将二次根式50化为最简二次根式____________.14.化简:1=_______.3a-是同类二次根式,那么a=________.15.如果最简二次根式1+a与4216.已知a11=-1,则a2+2a+2的值是_____.17.如图,两树高分别为10米和4米,相距8米,一只鸟从一树树梢飞到另一树的树梢,问小鸟至少飞行_______米.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为___________.三、解答题19.计算:23)(1)(775)(2)220.计算:(1) 24812+⨯(2)12322768÷+-⨯21.计算:(3-7)(3+7)+2(2-2).22.已知a=32-,分别求下列代数式的值:+,b=32(1)a2﹣b2(2)a2﹣2ab+b2.∆的顶点都在格点上.23.如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,ABCA B C的坐标;(1)直接写出点,,∆是不是直角三角形,并说明理由.(2)试判断ABC24.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?25.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.任选一题作答,只计一题的成绩:一、如图,某工厂和一条笔直的公路AB ,原有两条路AC ,BC 可以到达AB ,经测量600m AC =,800m BC =,1000m AB =,现需要修建一条新公路,使到AB 的距离最短.请你帮设计一种方案,并求新建公路的长.二、如图,90ADC ∠=︒,4=AD ,3CD =, 13AB =,12BC =. (1)试判断以点,,为顶点的三角形的形状,并说明理由; (2)求该图的面积.答案与解析一、选择题(共12道小题,每小题3分,共36分)1. ,则x 的取值范围是( )A. x >1B. x ≥1C. x <1D. x ≤1[答案]B [解析] [分析]根据被开方数大于等于0列式计算即可得解. [详解]解:由题意得,x ﹣1≥0, 解得x ≥1. 故选:B .[点睛]本题主要考查了二次根式有意义的条件,掌握被开方数大于等于0是解题的关键. 2.[ ]B.2C. D. [答案]C [解析]相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.故选C . 考点:相反数.3. 3b =-,则( ) A. 3b > B. 3b <C. 3b ≥D. 3b ≤[答案]D [解析]等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围. [详解]解:2(3b)3b -=-,3b 0∴-≥,解得b 3.≤故选D .[点睛]()0a 0≥≥()a a 0=≥. 4. 下列式子中,为最简二次根式的是( )[答案]B [解析] [分析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:2被开方数含有分母,不是最简二次根式,不合题意;B. ,符合题意;C. =2被开方数含能开得尽方的因数,不是最简二次根式,不符合题意;D.被开方数含能开得尽方的因数,不是最简二次根式,不符合题意.故选:B[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 5. 下列计算正确的是( ) A. ()222a b a b -=- B. ()322x x 8x ÷=+C. 1a a a a÷⋅= 4=-[答案]B[分析]根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.[详解]解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误; D .()2444-=-=,选项错误.故选:B .6. 下列二次根式中,不能与3合并的是( ) A. 23 B. 12C. 18D. 27[答案]C [解析]A 选项中,因为23与3是同类二次根式,所以两者可以合并;B 选项中,因为1223=,与3是同类二次根式,所以两者可以合并;C 选项中,因为1832=,与3不是同类二次根式,所以两者不能合并;D 选项中,因为2733=,与3是同类二次根式,所以两者可以合并. 故选C.7. 如图,Rt △ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积之和为( )A. 150cm 2B. 200cm 2C. 225cm 2D. 无法计算[答案]C [解析]小正方形的面积为AC 的平方,大正方形的面积为BC 的平方.两正方形面积的和为AC 2+BC 2,对于Rt △ABC ,由勾股定理得AB 2=AC 2+BC 2.AB 长度已知,故可以求出两正方形面积的和. [详解]解:正方形ADEC 的面积为AC 2, 正方形BCFG 的面积为BC 2;在Rt △ABC 中,AB 2=AC 2+BC 2,AB =15, 则AC 2+BC 2=225cm 2. 故选:C .[点睛]本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.8. 在△ABC 中,AB =1,AC =2,BC 则该三角形为( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等腰直角三角形[答案]B [解析]解:在△ABC 中,AB =1,AC =2,BC 22212+=,∴△ABC 是直角三角形. 故选B .点睛:本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9. 已知一个直角三角形的两边长分别为3和5,则第三边长是( )A. 5B. 4D. 4[答案]D [解析][详解]解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x ;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x 故选:D10. 如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A. 48B. 60C. 76D. 80 [答案]C[解析]试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.11. 如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A. 10米B. 15米C. 25米D. 30米[答案]B[解析][分析]如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.[详解]解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.[点睛]本题主要利用定理--在直角三角形中30°角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.12. 如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )A. 6B. 5C. 4D. 3[答案]D[解析][分析]设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.[详解]解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:2210=+=,AC AB BC设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x )2=42+x 2,解得:x=3,则BD=3.故答案为3.[点睛]此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.二、填空题(共6道小题,每小题3分,共18分.把正确的答案写在答题卡相应的横线上) 13. 已知2a =则代数式21a -的值是________. [答案]1[解析][分析] 直接把2a =[详解]∵2a =∴222)1211a --=-=.故答案为:1.[点睛]此题主要考查了二次根式的性质,注意:2(0)a a a =≥.14. 23(1)0m n -+=,则m -n 的值为_____.[答案]4[解析][分析]根据二次根式与平方的非负性即可求解.[详解]依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4[点睛]此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.15. 计算:528-=______.[答案]32[解析][分析]先化简二次根式,再合并即可.[详解]528522232-=-=;故答案是:32.16. 直角三角形两直角边长分别为和,则它斜边上的高为____________________.[答案]12 5[解析][分析]设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案, [详解]设斜边为c,斜边上的高为h,∵直角三角形两直角边长分别为和,∴2234+,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:12 5[点睛]本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,熟练掌握面积法是解题关键.17. 如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.[答案]17[解析]试题解析:根据勾股定理可知,∵S 正方形1+S 正方形2=S 大正方形=49,S 正方形C +S 正方形D =S 正方形2,S 正方形A +S 正方形B =S 正方形1,∴S 大正方形=S 正方形C +S 正方形D +S 正方形A +S 正方形B =49.∴正方形D 的面积=49-8-10-14=17(cm 2).18. 如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为_____.[答案]20cm 2[解析][详解]解:由图可知,阴影部分的面积=12π(12AC )2+12π(12BC )2+S △ABC ﹣12π(12AB )2, =8(AC 2+BC 2﹣AB 2)+S △ABC , 在Rt △ABC 中,AC 2+BC 2=AB 2,∴阴影部分的面积=S △ABC =20cm 2.故答案为20cm 2.三、解答题(共8小题,共66分.解答应写出必要的文字说明或演算步骤.)19. 计算下列各题:(1)545842+-+(2)|1|+()02020π-(3)( -[答案](1)(24;(3). [解析][分析](1)先化为最简二次根式,后合并同类项;(2)先求绝对值,零次幂,立方根,再合并同类项;(3)括号内的部分先化为最简二次根式,合并同类项,再计算除法,最后进行分母有理化.详解](1)==(2)|1|+()02020π-114=+-4=(3)( -)(23=⨯⨯==[点睛]本题考查了二次根式,绝对值,零次幂的混合运算,熟知以上运算法则是解题的关键.20. 已知11x y ==,,求下列各式的值: (1)222x xy y ++;(2)22x y -.[答案][解析][分析]观察可知:(1)式是和的完全平方公式,(2)是平方差公式.先转化,再代入计算即可.[详解](1)当x =3+1,y =3-1时, 原式=(x +y )2=(3+1+3-1)2=12;(2)当x =3+1,y =3-1时,原式=(x +y )(x -y )=(3+1+3-1)(3+1-3+1)=43.21. 先化简,再求值,已知=2+1 求+1-21x x -的值. [答案]化简得1212x -=-- [解析][分析]首先把原式化成21111x x x ---- ,然后进行通分,相减即可对分式进行化简,然后代入数值化简求值即可. [详解]+1-21x x -=21111x x x ----=2211111x x x x x --=---- 当x=2+1时,原式=112=-=-22+1-12. [点睛]此题考查分式的化简求值,解题关键在于掌握运算法则.22. 如图所示,∠B =∠OAF =90°,BO =3 cm ,AB =4 cm ,AF =12 cm ,求图中半圆的面积.[答案]图中半圆的面积是169π8cm 2. [解析][分析] 先根据勾股定理求出AO,FO 的长,再根据半圆面积计算公式计算半圆面积即可.[详解]解:如图,∵在直角△ABO 中,∠B =90°,BO =3 cm ,AB =4 cm , ∴AO =22BO AB +=5 cm. 则在直角△AFO 中,由勾股定理,得到FO =22AO AF +=13 cm ,∴图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. [点睛]此题重点考察学生对勾股定理的实际应用能力,熟练掌握勾股定理是解题的关键.23. 如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.[答案]30[解析][分析]作DE AB ⊥于E ,利用角平分线的性质得DE=CD=15,AE=AC ,在Rt BED 中,求出BE ,在Rt ABC 中,求出AC .[详解]作DE AB ⊥于E ,如图所示∵AD 为CAB ∠的角平分线,且90︒∠=C ,∴DE=CD=15,AE=AC ,在Rt BED 中,2220BE BD DE =-=,在Rt ABC 中,222AC BC AB +=,即222()()AC CD BD AE BE ++=+,∴22240(20)AC AC +=+,解得30AC =.[点睛]本题考查了角平分线的性质,勾股定理的计算,熟知以上知识,是解题的关键.24. 如图,在△ABC 中,∠B=30°,∠C=45°,AC=22.求BC 边上的高及△ABC 的面积.[答案]2,3[解析][分析]先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由2得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.[详解]∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵2,∴2AD=AC,即2AD=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴2222=4-2=23AB AD,∴3+2,∴S ABC=12BC⋅AD=123+2)×3.[点睛]此题考查勾股定理,解题关键在于求出BD的长.25. 如图所示,在四边形ABCD中,5BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.[答案]四边形ABCD的面积是6.[解析][分析]连接BD,根据勾股定理可计算出BD的长度,再由勾股定理逆定理可判断出△ABD为直角三角形,分别计算出△ABD和△BCD的面积,求和即可.[详解]连接BD,∵∠C=90°,∴△BCD为直角三角形,∴BD2=BC2+CD2=22+1252,BD>0,∴BD5在△ABD中,∵AB2+BD2=20+5=25,AD2=52=25,∴AB2+BD2=AD2,∴△ABD直角三角形,且∠ABD=90°,∴S四边形ABCD=S△ABD+S△BCD=12×5×512×2×1=6.∴四边形ABCD的面积是6.[点睛]本题关键在于利用勾股定理逆定理判定出直角三角形,从而求出三角形的面积.26. 观察下列各式及其验算过程:2 2+323,22+323+2332323(1)按照上述两个等式及其验证过程的基本思路,的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.[答案](1)见解析;(2)见解析.[解析]试题分析:(1)利用已知,的值,再验证;(2)由(1)根据二次根式的性质可以总结出一般规律.解:(1),,正确;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,=,正确.。
人教版八年级数学下册期中考试题及答案【完整版】
人教版八年级数学下册期中考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.计算:16=_______.3.4的平方根是 .4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:()()22141a a a +--,其中18a =.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF=CE . 求证:BE=DF .6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、A6、D7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、43、±2.4、8.5、26、20三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、23、(1)-3x+2<-3y+2,理由见解析;(2)a<34、(1)略;(2)45°;(3)略.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版数学八年级下册《期中考试题》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.有意义,则x 的取值范围为( ) A. x≤0 B. x ≥-1 C. x ≥0 D. x≤-12.下列运算正确的是( )A. =B.3=C. 2=-D. = 3.下列二次根式中属于最简二次根式的是( )A. B. C. D. 4.设n 为正整数,且n n+1,则n 的值为( )A. 5B. 6C. 7D. 85.在以下列线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( )A. a =9 b =41 c =40B. a =b =5 c = C a :b :c =3:4:5 D. a =11 b =12 c =156.某班七个兴趣小组人数如下:5,6,6,,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 87.平行四边形ABCD 的对角线AC ,BD 相交于点,下列结论正确的是( )A. 4ABCD AOB S S ∆=B. AC BD =C. AC BD ⊥D. AB AD =8. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A. 极差是47B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月9.在平行四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶2∶1∶2D. 1∶1∶2∶210.一个三级台阶,它每一级的长宽和高分别为20、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为( )A. 481B. 25C.D. 11. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A. 12B. 24 3312.如图,在ABC ∆中,90ACB ∠=︒,是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A. ①②③B. ①②C. ①③D. ②③二.填空题13.计算:273-=_____.14.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E,若∠1=20°,则∠2的度数为__.15.某招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,小王笔试成绩分,面试成绩分,那么小王的总成绩是_______分. 16.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.三.解答题 17.计算:14363(53)(53)3⎛ ⎝18.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,其中2x =19.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F .(1)试说明:AF =FC ;(2)如果AB =3,BC =4,求AF 的长.20.某学校举行演讲比赛,选出了名同学担任评委,并事先拟定从如下个方案中选择合理的方案来确定每个演讲者的最后得分(满分为分):方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分然后再计算其余给分的平均数.方案3:所有评委所给分中位数.方案4:所有评委所给分的众数.为了探究上述方案合理性.先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图: 分别按上述个方案计算这个同学演讲的最后得分.21.平行四边形ABCD 中,AF CH =,DE BG =.求证:EG 和HF 互相平分.22.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?23.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.24.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点按顺时针方向旋转,使点落在BC边上,如图2,连接AE和GC.你认为(1)中结论是否还成立?若成立,给出证明;若不成立,请说明理由.答案与解析一.选择题1.有意义,则x的取值范围为( )A. x≤0B. x≥-1C. x≥0D. x≤-1[答案]B[解析][分析]根据二次根式有意义有条件进行求解即可.[详解]有意义,则被开方数1x+要为非负数,x+≥,即10x≥-,∴1故选B.[点睛]本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.2.下列运算正确的是()A. =B. 3=C. 2=- D. =[答案]B[解析][分析]根据二次根式的加减法,二次根式的性质逐一进行计算即可.[详解]A,故A选项错误;B3=,正确;C2,故C选项错误;D,故D选项错误;故选:B.[点睛]本题考查了二次根式的运算,熟练掌握二次根式加减法的运算法则以及二次根式的性质是解题的关键.3.下列二次根式中属于最简二次根式的是()[答案]B[解析][分析]根据最简二次根式的定义分别判断即可.[详解]A,故错误;B,故正确;C,故错误;D,故错误;2故答案选B.[点睛]本题主要考查了二次根式的化简,准确运用公式是解题的关键.4.设n为正整数,且n n+1,则n的值为()A. 5B. 6C. 7D. 8[答案]D[解析][分析],即可得出n的值.[详解]∴89,∵n n+1,∴n=8,故选;D.[点睛]此题主要考查了估算无理数,5.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )A. a=9 b=41 c=40B. a=b=5 c=C. a:b:c=3:4:5D. a=11 b=12 c=15[答案]D[解析][分析]根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.[详解]解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=()2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选D.[点睛]本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c+=关系时,则三角形为直角三角形.6.某班七个兴趣小组人数如下:5,6,6,,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 8[答案]C[解析][分析]根据平均数求出x的值,再利用中位数定义即可得出答案.[详解]∵5,6,6,,7,8,9,这组数据的平均数是7,∴()775667898x =⨯-+++++=,∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7,∴这组数据的中位数是7.故选C .[点睛]此题主要考查了中位数,根据平均数正确得出的值是解题关键.7.平行四边形ABCD 的对角线AC ,BD 相交于点,下列结论正确的是( )A. 4ABCD AOB S S ∆=B. AC BD =C. AC BD ⊥D. AB AD =[答案]A[解析][分析]根据平行四边形的性质分别判断得出答案即可.[详解]A .∵平行四边形ABCD 的对角线AC ,BD 相交于点,∴AO=CO ,BO=DO ,∴△△DOC △△AOD BOC AOB S S S S ===,∴平行四边形△=4ABCD AOB S S ,故A 正确;B .无法得到AC=BD ,故B 错误;C .无法得到AC BD ⊥,故C 错误;D .平行四边形邻边不相等,故D 错误;故答案选A .[点睛]本题主要考查了平行四边形的性质,准确进行分析是解题的关键.8. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A. 极差是47B. 众数是42C. 中位数是58D. 每月阅读数量超过40有4个月[答案]C[解析][分析]根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.[详解]A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.9.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶2∶1∶2D. 1∶1∶2∶2[答案]C[解析][分析]根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.详解]如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A∶∠B∶∠C∶∠D的值可以是1∶2∶1∶2.故选C.[点睛]本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.10.一个三级台阶,它的每一级的长宽和高分别为20、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为()A. 481B. 25C.D.[答案]B[解析][分析]先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.[详解]如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长AB.由勾股定理得:2AB =220+()2[233]+⨯=225, 解得:25AB =.故选:B .[点睛]本题考查了平面展开-最短路径问题以及勾股定理的应用,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A. 12B. 24C. 123D. 163[答案]D[解析]如图,连接BE,∵在矩形ABCD 中,AD∥BC ,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD 沿EF 翻折点B 恰好落在AD 边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF -∠BEF=120°-60°=60°.在Rt△ABE 中,3∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD 的面积=AB•AD=23×8=163.故选D .考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.12.如图,在ABC ∆中,90ACB ∠=︒,是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A. ①②③B. ①②C. ①③D. ②③[答案]A[解析][分析] 证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,CD=23再算出AB 长可得四边形ACEB 的周长是10+13[详解]①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,故①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=cos30AD ⋅︒=23, ∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB ,∴EB=4,DB=23,∴BC=43,∴AB=()2222243213AC BC +=+=,∴四边形ACEB 的周长是10213+,故③正确;综上,①②③均正确,故选:A .[点睛]本题主要考查了平行四边形判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法.二.填空题13.计算:273-=_____.[答案]23[解析][详解]解:原式=33323-=.故答案为23.14.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E,若∠1=20°,则∠2的度数为__.[答案]110°.[解析]根据平行四边形的性质可得AB ∥CD ,根据平行线的性质可得∠1=∠CAB=20°,因BE ⊥AB ,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.15.某招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,小王笔试成绩分,面试成绩分,那么小王的总成绩是_______分.[答案]87[解析][分析]根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.[详解]∵笔试按40%,面试按60%,∴总成绩是()9040%+8560%=87⨯⨯分,故答案是87分.[点睛]本题主要考查加权平均数的知识点,准确分析是解题的关键.16.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.[答案](8076,0)[解析][分析]先利用勾股定理求得AB 的长,再找到图形变换规律为:△OAB 每连续3次后与原来的状态一样,然后求得△2020的横坐标,进而得到答案.[详解]∵A (-3,0),B (0,4),∴OA=3,OB=4,∴22OA OB +=5,∴△ABC 的周长=3+4+5=12,图形变换规律为:△OAB 每连续3次后与原来的状态一样,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组后第一个三角形的直角顶点,∴△2020的直角顶点的横坐标=673×12=8076,∴△2020的直角顶点坐标为(8076,0)故答案为(8076,0).[点睛]本题主要考查图形的变换规律,勾股定理,解此题的关键在于准确理解题意找到题中图形的变化规律.三.解答题17.计算:⎛ ⎝[答案]8[解析][分析]先利用乘法分配律计算,再利用平方差公式计算,最后把结果相加即可.[详解]解:原式=12-6+(5-3)=6+2=8.[点睛]本题考查了实数的混合运算,解题的关键是熟练运用乘法公式,注意运算顺序.18.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,其中x =[答案]21x x -,2 [解析]分析]原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.[详解]2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭2(1)21(1)(1)(1)x x x x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 当2x =时,原式21x x =- 2(2)2-1= 2(21)(21)(21)+=-+ 222=+[点睛]本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解本题的关键.19.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F .(1)试说明:AF =FC ;(2)如果AB =3,BC =4,求AF 的长.[答案](1)证明见解析;(2)258. [解析][分析](1)观察图形,可得AE=DC ,又∵∠FEA=∠DFC ,∠AEF=∠CDF ,由全等三角形判定方法证△AEF ≌△CDF ,即得EF=DF ,从而得到AF =FC ;(2)在Rt △CDF 中应用勾股定理即可得.[详解]解:(1)证明:由矩形性质可知,AE=AB=DC ,根据对顶角相等得,∠EFA=∠DFC ,而∠E=∠D=90°,∴由AAS 可得,△AEF ≌△CDF .∴AF =FC.(2)设FA=x ,则FC=x ,FD=4x -,在Rt △CDF 中,CF 2=CD 2+DF 2,即()222x 34x =+-,解得x=258. [点睛]本题考查翻折变换(折叠问题),矩形的性质,全等三角形的判定与性质,勾股定理.20.某学校举行演讲比赛,选出了名同学担任评委,并事先拟定从如下个方案中选择合理的方案来确定每个演讲者的最后得分(满分为分):方案1:所有评委所给分平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图: 分别按上述个方案计算这个同学演讲的最后得分.[答案]方案一:7.8分;方案二:8分;方案三:8分;方案四:8分和8.4分[解析][分析]方案1:平均数=总分数10;方案2:平均数=去掉一个最高分和最低分的总分数8;方案3:10个数据,中位数应是第5个和第6个数据的平均数;方案4:求出评委给分中,出现次数最多的分数;[详解]方案1最后得分:()1 5.2+7.0+7.8+38+38.4+9.8=7.810⨯⨯⨯. 方案2最后得分:()17.0+7.8+38+38.4=88⨯⨯⨯. 方案3最后得分:8+8=82. 方案4最后得分:次数最多的分数是8分和8.4分.[点睛]本题主要考查了数据分析的知识点应用,准确判断各个数是解题的关键.21.平行四边形ABCD 中,AF CH =,DE BG =.求证:EG 和HF 互相平分.[答案]见解析[解析][分析]先证四边形EFGH 是平行四边形,再利用平行四边形的性质,即可得证.[详解]证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,AD=BC ,AB=DC ,又∵AF=CH ,DE=BG ,∴DH=BF ,AE=CG ,∵AE=CG ,∠A=∠C ,AF=CH ,∴△AEF ≌△CGH ,∴EF=GH ,∵DH=BF ,∠B=∠D ,DE=BG ,∴△DEH ≌△BGF ,∴EH=FG ,∵EF=GH ,EH=FG ,∴四边形EFGH 是平行四边形.∴EG 和HF 互相平分.[点睛]本题考查了三角形全等的判定和性质、平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗[答案]乙船沿南偏东30°方向航行.[解析][分析]首先根据速度和时间计算出AO 、BO 的路程,再根据勾股定理逆定理证明∠AOB =90°,进而可得答案.[详解]解:由题意得:甲船的路程:AO =8×2=16(海里), 乙船的路程:BO =15×2=30(海里), ∵222301634+=,∴∠AOB =90°, ∵AO 是北偏东60°方向,∴BO 是南偏东30°. 答:乙船航行的方向是南偏东30°. [点睛]本题主要考查了勾股定理逆定理,以及方向角,解题关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c 满足222+=a b c ,那么这个三角形就是直角三角形.23.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.[答案](1)证明见解析;(2)∠CBE=70°.[解析][分析](1)证明AD∥BC,AD=BC,FH∥BC,FH=BC;(2)∠CBE是等腰△CBE的底角,求出顶角∠ECD即可.[详解](1)证明:∵BF=BE,CG=CE,∴BC∥12FG,BC=12FG又∵H是FG的中点,∴FH∥12FG,FH=12FG,∴BC∥FH,且BC=FH,又∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴四边形AFHD是平行四边形;(2)∵四边形ABCD是平行四边形,∠BAE=60°, ∴∠BAE=∠DCB=60°,又∵∠DCE=20°,∴∠ECB=∠DCB-∠DCE=60°-20°=40°,∵CE=CB,∴∠CBE=∠BEC=12(180°-∠ECB)=12(180°-40°)=70°.[点睛]此题考查了平行四边形的判定.考查平行四边形的判定方法,具体选用哪种方法,需要根据已知条件灵活选择;把所求角与已知角集中到同一个三角形中.24.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点按顺时针方向旋转,使点落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.[答案](1)AE=GC,AEGC;(2)成立,见解析[解析][分析](1)由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,AE=CG,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,AE=CG,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得证.[详解](1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.[点睛]本题主要考查了旋转的性质、正方形的性质以及全等三角形的判定和性质.需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.。
人教版数学八年级下册《期中考试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。
人教版八年级下册数学《期中检测题》含答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共16小题)1.,必须满足( ) A. 52x ≥-B. 52x ≤-C. 为任何实数D. 为非负数2.下列根式中, ( )3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为( ) A. 9.6环B. 9.5环C. 9.4环D. 9.3环4.下列运算正确的是( )213C. =D. 25.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是( ) A. 甲B. 乙X. 丙∆. 丁6.对于函数22y x =-+,下列结论正确的是( ) A. 它的图像必经过点(1,2)- B. 当1x >时,0y <C. 的值随值的增大而增大D. 的图像经过第一、二、三、象限7.已知一次函数y kx b =+图象如图所示,则不等式0kx b +<的解集为( )A. 5x >B. 5x <C. 4x >D. 4x <8.关于12的叙述,错误..的是( ) A.12是有理数B. 面积为12的正方形的边长是12C.12=23D. 在数轴上可以找到表示12的点9.如图,在平面直角坐标系中,矩形ABCD 的顶点A (6,0),C (0,4)点D 与坐标原点O 重合,动点P 从点O 出发,以每秒2个单位的速度沿O ﹣A ﹣B ﹣C 的路线向终点C 运动,连接OP 、CP ,设点P 运动的时间为t 秒,△CPO 的面积为S ,下列图象能表示t 与S 之间函数关系的是( )A.B.C.D.10.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( ) A. 平均数、中位数 B. 众数、中位数C. 平均数、方差D. 中位数、方差11.估计1832⨯+的运算结果应在( ) A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间12.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A. 3B. 4C. 5D. 913.A ,B 两地相距20km ,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 (km )与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个14.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( ) A. m >-1B. m <1C. -1<m <1D. -1≤m≤115.直线:(3)2l y m x n =-+-(, 为常数)的图象如图,化简:︱3m -244n n -+( )A. 5m n --B. 5C. -1D. 5m n +-16.在平面直角坐标系中,已知直线y =﹣34x +3与x 轴、y 轴分别交于A 、B 两点,点C 在线段OB 上,把△ABC 沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( ) A. (0,﹣34) B. (0,43) C. (0,3) D. (0,4)二.填空题(共4小题)17.将直线21y x =-向上平移个单位,得到直线_______. 18.函数()125m y m x-=-+是关于的一次函数,则m =__________.19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________. 20.如图,直线142y x =+与坐标轴交于A,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是________________.三.解答题(共5小题)21.计算:(1)(π﹣3)0205(﹣1)﹣1; (2)2(253)(52)(52)--22.已知函数y =(2m +1)x +m -3. (1)若函数图象经过原点,求m 值(2)若函数的图象平行于直线y =3x -3,求m 的值(3)若这个函数是一次函数,且y 随着x 增大而减小,求m 的取值范围.23.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到学生人数为________,图2中的值为_________.(2)本次调查获取样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.答案与解析一.选择题(共16小题)1.,必须满足()A.52x≥- B.52x≤- C. 为任何实数 D. 为非负数[答案]A[解析][分析]根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.[详解],则2x+5≥0,解得:52x≥-.故选A.[点睛]本题考查二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列根式中,( )[答案]C[解析][分析]首先根据二次根式的化简法则将二次根式化简,经化简后如果被开方数相同,则能进行合并.[详解]A、原式=3,合并;B、原式;C、原式,;D、原式,故选C.3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为( ) A. 9.6环 B. 9.5环C. 9.4环D. 9.3环[答案]A [解析] [分析]根据题目中的数据和加权平均数的计算方法,可以求得小明这10次射击的平均成绩. [详解]解:小明这10次射击的平均成绩为:110(10×6+9×4)=9.6(环), 故选:A .[点睛]本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法. 4.下列运算正确的是( )213C. =D. 2[答案]C [解析] [分析]根据同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质逐一判断即可.[详解]A .不是同类二次根式,故本选项错误;B . ≠213,故本选项错误;C . ()428=⨯⨯=⨯=故本选项正确;D . 2-2,故本选项错误.故选C .[点睛]此题考查的是二次根式的运算,掌握同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质是解决此题的关键.5.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁[答案]D [解析] [分析]根据方差的意义求解可得.[详解]解:∵S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45, ∴S 丁2<S 丙2<S 乙2<S 甲2, ∴跳远成绩最稳定的是丁, 故选:D .[点睛]本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 6.对于函数22y x =-+,下列结论正确的是( ) A. 它的图像必经过点(1,2)- B. 当1x >时,0y <C. 的值随值的增大而增大D. 的图像经过第一、二、三、象限[答案]B [解析] [分析]根据一次函数的定义以及性质对各项进行判断即可. [详解]A.将1x =-代入22y x =-+中,解得4y =,错误;B.当1x =时0y =,因为20-<,所以y 随着x 的增大而减小,即当1x >时,0y <,正确;C. 因为20-<,所以y 随着x 的增大而减小,错误;D.该函数图象经过第一、二、四象限,错误; 故答案为:B .[点睛]本题考查了一次函数的问题,掌握一次函数的定义以及性质是解题的关键.7.已知一次函数y kx b =+的图象如图所示,则不等式0kx b +<的解集为( )A. 5x >B. 5x <C. 4x >D. 4x <[答案]C [解析] [分析]根据图象得出一次函数图象和x 轴的交点坐标为(4,0),y 随x 的增大而减小,再得出不等式的解集即可. [详解]解:∵从图象可知:一次函数图象和x 轴的交点坐标为(4,0),y 随x 的增大而减小, ∴不等式kx+b <0的解集是x >4, 故选:C .[点睛]本题考查了一次函数与一元一次不等式、一次函数的性质等知识点,能熟记一次函数的性质是解此题的关键.8.12的叙述,错误..的是( ) 12是有理数B. 面积为1212 12=3D. 12的点 [答案]A [解析]12,A 项错误,故答案选A. 考点:无理数.9.如图,在平面直角坐标系中,矩形ABCD的顶点A(6,0),C(0,4)点D与坐标原点O重合,动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,连接OP、CP,设点P运动的时间为t 秒,△CPO的面积为S,下列图象能表示t与S之间函数关系的是( )A.B.C.D.[答案]B[解析][分析]根据动点运动的起点位置、关键转折点,结合排除法,可得答案.[详解]解:∵动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,△CPO的面积为S∴当t=0时,OP=0,故S=0∴选项C、D错误;当t=3时,点P和点A重合,∴当点P在从点A运动到点B的过程中,S的值不变,均为12,故排除A,只有选项B符合题意.故选:B.[点睛]本题考查了动点问题的函数图象,数形结合及正确运用排除法,是解题的关键.10.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差[答案]B[解析][分析]由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.[详解]由表可知,年龄为15岁与年龄为16岁的频数和为3051510--=,故该组数据的众数为14岁,中位数为:1414142+=(岁),关于年龄的统计量不会发生改变的是众数和中位数,故选B.[点睛]考查频数(率)分布表,加权平均数,中位数,众数,掌握中位数以及众数概念是解题的关键.11.1832( )A 1到2之间 B. 2到3之间 C. 3到4之间 D. 4到5之间[答案]C[解析][分析]先计算出原式,再进行估算即可.[详解的数值在1-2之间,所以3-4之间.故选C .12.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 9[答案]C[解析][分析]先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可.[详解]解:∵一组数据4,m ,5,n ,9的众数为9,∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6, 45965m n ++++= ∴12m n +=∴m ,n 中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.[点睛]本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.13.A ,B 两地相距20km ,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 (km )与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析] 根据题意结合图象依次判断即可.[详解]①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.[点睛]此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.14.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( )A. m >-1B. m <1C. -1<m <1D. -1≤m≤1[答案]C[解析] 试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m >﹣1,解不等式②得,m <1,所以,m 的取值范围是﹣1<m <1.故选C .考点:两条直线相交或平行问题.15.直线:(3)2l y m x n =-+-(, 为常数)的图象如图,化简:︱3m -244n n -+( )A. 5m n --B. 5C. -1D. 5m n +-[答案]A[解析] [详解]根据一次函数图像可得: 30m -<, 20n ->,解得3m <, 2n >,所以︱3m -()22443232325n n m n m n m n m n -+=--=---=--+=--, 故选A .. 16.在平面直角坐标系中,已知直线y =﹣34x +3与x 轴、y 轴分别交于A 、B 两点,点C 在线段OB 上,把△ABC 沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A. (0,﹣34) B. (0,43) C. (0,3) D. (0,4)[答案]B[解析][分析]设C (0,n ),过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD =CO =n ,DA =OA =4,则DB =5﹣4=1,BC =3﹣n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.[详解]解:设C (0,n ),过C 作CD ⊥AB 于D ,如图,对于直线y =﹣34x+3, 当x =0,得y =3;当y =0,x =4,∴A (4,0),B (0,3),即OA =4,OB =3,∴AB =5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD =CO =n ,则BC =3﹣n ,∴DA =OA =4,∴DB =5﹣4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3﹣n )2,解得n =43, ∴点C 的坐标为(0,43). 故选:B .[点睛]本题考查了求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y 或x 的值;也考查了折叠的性质和勾股定理. 二.填空题(共4小题)17.将直线21y x =-向上平移个单位,得到直线_______.[答案]23y x =+[解析][分析]根据平移k 不变,b 值加减即可得出答案.[详解]平移后解析式为:y=2x−1+4=2x+3,故答案为y=2x+3[点睛]此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质18.函数()125m y m x-=-+是关于的一次函数,则m =__________. [答案]-2[解析][分析]根据一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1,即可得出m 的值.[详解]根据一次函数的定义可得:m-2≠0,|m|-1=1,由|m|-1=1,解得:m=-2或2,又m-2≠0,m≠2,则m=-2.故答案为:-2.[点睛]此题考查一次函数的定义,解题关键在于掌握其定义,难度不大,注意基础概念的掌握.19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.[答案] (1). 20 (2). 12[解析] ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ ,∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.20.如图,直线142y x =+与坐标轴交于A,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是________________.[答案]()()3,0,458,0-[解析][分析]把x=0,y=0分别代入函数解析式,即可求得相应的y 、x 的值,则易得点A 、B 的坐标;根据等腰三角形的判定,分两种情况讨论即可求得.[详解]当y=0时,x=-8,即A(-8,0),当x=0时,y=4,即B(0,4),∴OA=8,OB=4在Rt △ABO 中,2245AO BO +=若5则5∴点5若AP'=BP',在Rt △BP'O 中,BP'2=BO 2+P'O 2=16+(AO-BP')2.∴BP'=AP'=5∴OP'=3∴P'(-3,0)综上所述:点故答案为([点睛]本题考查了一次函数图象上点的坐标特征,等腰三角形的性质,利用分类思想解决问题是解题的关键.三.解答题(共5小题)21.计算:(1)(π﹣3)0(﹣1)﹣1;(2)2--[答案](1)-2;(2)[解析][分析](1)先计算零指数幂、计算二次根式的除法和负整数指数幂,再计算加减可得;(2)先利用完全平方公式和平方差公式计算,再计算加减可得.[详解]解:(1)原式=1﹣1=1﹣2﹣1=﹣2;(2)原式=﹣(5﹣2)= 3=20+.[点睛]本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.22.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.[答案](1)m=3;(2)m=1;(3)m<﹣1.2[解析]试题分析:(1)把原点坐标(0,0)代入函数关系式,即可求得m的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m的方程,解出即可;(3)根据一次函数的性质即可得到关于m的不等式,解出即可.(1)由题意得,,;(2)由题意得,,;(3)由题意得,,考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,y随x的增大而增大;当时,y随x的增大而减小.23.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?[答案](1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;[解析][分析](1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;[详解](1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=1450x100%=28%,∴=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数849510111114121610.6650x⨯+⨯+⨯+⨯+⨯==,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:11+11=11 2,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;[点睛]本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.[答案](1)A奖品的单价是10元,B奖品的单价是15元;(2)当购买A种奖品75件,B种奖品25件时,费用W 最小,最小为1125元.[解析]试题分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得 3260{5395x y x y +=+=, 解得:1015x y =⎧⎨=⎩. 答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W=10m+15(100-m)=-5m+1500∴()515001150{? 3100m m m -+≤≤-, 解得:70≤m≤75.∵m 是整数,∴m=70,71,72,73,74,75.∵W=-5m+1500,∴k=-5<0,∴W 随m 的增大而减小,∴m=75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元. 考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用. 25.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式.(2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的14?若存在求出此时点M 的坐标;若不存在,说明理由.[答案](1)y =﹣x +6;(2)S △OAC =12;(3)存在,M 的坐标是:M 1(1,12)或M 2(1,5)或M 3(﹣1,7) [解析][分析](1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OMC 的面积是△OAC 的面积的14时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.[详解]解:(1)设直线AB 的解析式是y kx b =+, 根据题意得:4260k b k b +=⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线的解析式是:y x 6=-+;(2)在y =﹣x +6中,令x =0,解得:y =6,OAC 1S 64122∆=⨯⨯=; (3)设OA 解析式是y =mx ,则4m =2, 解得:1m 2=, 则直线的解析式是:12y x =, ∵当△OMC 的面积是△OAC 的面积的14时, ∴当M 的横坐标是1414⨯=, 在12y x =中,当x =1时,y =12,则M 的坐标是1(1,)2; 在y x 6=-+中,x =1则y =5,则M 的坐标是(1,5).则M的坐标是:M1(1,12)或M2(1,5).当M的横坐标是:﹣1,在y x6=-+中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7).[点睛]本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。
人教版八年级数学下册期中考试卷及答案【完整版】
人教版八年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2 B.0 C.-1 D.14.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、A6、B7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、12、22()1y x =-+3、204、﹣2<x <25、49136、32°三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、112x -;15.3、(1)102b -≤≤;(2)2 4、(1) 65°;(2) 25°. 5、(1)略(2)等腰三角形,理由略6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级下册数学《期中考试卷》及答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 下列有理式224013922,,,,2x x ab a x x aπ+--中,分式有( )个 A. 1 B. 2C. 3D. 42. 分式2222,,42x y y x x y y -+中,最简分式有( ) A. 0个 B. 1个C. 2个D. 3个3. 若把分式32x yx+的x 、y 同时缩小12倍,则分式的值( ) A 扩大12倍 B. 缩小12倍C. 不变D. 缩小6倍4. 点()0,1( ) A. 轴上 B. 轴上 C. 第一象限 D. 第三象限5. 函数y=12x +中,x 的取值范围是( ) A. x≠0B. x >﹣2C. x <﹣2D. x≠﹣26. 一次函数0y kx b kb =+,<,且随的增大而增大,则其图象可能是( ) A. B. C. D.7. 如图,直线3y kx =+经过点(2,0),则关于的不等式30kx +≥的解集是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤8. 若关于x 的分式方程1322m x x x++=--有增根,则m 的值是( ) A. m =-1 B. m =2C. m =3D. m =0或m =39. 关于的方程:11ax =+的解是负数,则的取值范围是( ) A. 1a <B. 1a <且0a ≠C. 1aD. 1a 且0a ≠10. 已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(, 3y ),则1y ,2y ,3y 的大小关系是( ) A. 1y >2y >3yB. 2y >1y >3yC. 3y >1y >2yD. 3y >2y >1y11. 张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是A. 加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25B. 途中加油21升C. 汽车加油后还可行驶4小时D. 汽车到达乙地时油箱中还余油6升 12. 如图,在平面直角坐标系中,点是函数()0ky x x=>在第一象限内图象上一动点,过点分别作AB x ⊥轴于点B AC y ⊥、轴于点,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点的纵坐标逐渐增大时,四边形OFAE 的面积( )A. 不变B. 逐渐变大C. 逐渐变小D. 先变大后变小二.填空题13. 当x =____时,分式225x x -+的值为0. 14. 在现代科学技术中,纳米是一种长度单位,1纳米等于十亿分之一米(即1纳米=-910米),经科学检测,新冠病毒的直径约为100纳米,用科学计数法表示:100纳米=__________米。
人教版数学八年级下册《期中考试题》及答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若x y >,则下列式子错误的是( )A. 33x y ->-B. 33x y ->-C. 32x y +>+D. 33x y>2.下面的图形中,既是轴对称图形又是中心对称图形的是[ ]A. B. C. D. 3.要使分式242x x --为零,那么x 的值是A. B. 2 C. 2± D. 04.下列从左到右的变形,是分解因式的是( )A. xy 2(x -1)=x 2y 2-xy 2B. x 2+x -5=(x -2)(x +3)+1C. (a +3)(a -3)=a 2-9D. 2a 2+4a =2a(a +2)5.不等式14x >x-1的非负数解的个数是( )A. 1B. 2C. 3D. 无数个 6.如图,直线y kx b =+与坐标轴的两交点分别为 A(2, 0) 和 B(0,-3) ,则不等式30kx b ++≤的解为()A. 0x ≤B. 0x ≥C. 2x ≥D. 2x < 7.下列多项式中不能用公式进行因式分解的是( )A. a 2+a +14B. a 2+b 2-2abC. 2225a b -+D. 24b --8.如图所示.在△ABC 中,∠C =90°,DE 垂直平分AB ,交BC 于点E ,垂足为点D ,BE =6cm ,∠B =15°,则AC 等于( )A. 6cmB. 5cmC. 4cmD. 3cm9.如图,已知正方形ABCD 的边长为3,E 为CD 上一点,DE=1,以点A 为中心,把△ADE 顺时针旋转90°得△ABE',连接EE',则EE'的长度为( )A. 25B. 4C. 3D. 5210.某次自然灾害导致某铁路遂道被严重破坏,为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?某原计划每天修米,所列方程正确的是( )A.12012045x x -=+ B. 12012045x x -=+ C. 12012045x x -=- D. 12012045x x -=- 二.填空题11.已知123x y -=, 2xy =,则222x y xy -=____________. 12.函数12y x =-中,自变量的取值范围是 . 13.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数____.14.如图,ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点A′处折痕交AE 于点G ,则∠ADG=____°EG=___cm .15.当k=_____时,100x2﹣kxy+49y2是一个完全平方式.16.已知不等式组2123x ax b-<⎧⎨->⎩的解集是11x-<<,则(1)(1)a b++的值是的___.17.某商品的标价比成本高%p,当该商品降价出售时,为了不亏本,降价幅度不得超过%d,若用表示,则d=___.18.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OCCD的值为__________19.如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2.下面四个结论:①BF=2;②∠CBF=45°;③∠CED=30°;④△ECD的面积为223,其中正确的结论有_____.(填番号)三.解答题20.(1)解不等式组: 245(2)213x x x x +≤+⎧⎪⎨-<⎪⎩并把它解集在数轴上表示出来; (2)因式分解:32484x x x -+.21.先化简23a 2a 1a 2a 2a 2-+⎛⎫-+÷ ⎪++⎝⎭,再从﹣2,0,1中选择一个你喜欢的数代入求值. 22.解分式方程:214111x x x +-=-- 23. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 向上平移4个单位长度后所得到的△A 1B 1C 1;(2)画出△DEF 绕点O 按顺时针方向旋转90°后所得到的△D 1E 1F 1;(3)△A 1B 1C 1和△D 1E 1F 1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.24.如图,在△ABC 中,∠CAB 的平分线AD 与BC 的垂直平分线DE 交于点D ,DM ⊥AB 于M ,DN ⊥AC 的延长线于N .(1)求证:BM=CN ;(2)若AB=8,AC=4,求BM 的长.25.如图,等边△ABC 中, AO 是∠BAC 角平分线, D 为 AO 上一点,以 CD 为一边且在 CD 下方作等边△CDE ,连接BE .(1)求证:△ACD ≌△BCE .(2)延长BE 至Q, P 为BQ 上一点,连接 CP 、CQ 使 CP=CQ=5,若 BC=6,求PQ 的长.26.已知关于x 、y 的方程组212x y x y m +=⎧⎨-=⎩的解都小于1,若关于a 的不等式组1215231a n a ⎧+≥⎪⎨⎪-≥⎩恰好有三个整数解. (1)分别求出m 与n 取值范围;(2)化简:2312|28|m m m n +-+++27. 为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表: 运动鞋价格甲 乙 进价(元/双) mm ﹣20 售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?28.图1,在平面直角坐标系xOy中,直线l1,l2都经过点A(﹣6,0),它们与y轴的正半轴分别相交于点B,C,且∠BAO=∠ACO=30(1)求直线l1,l2的函数表达式;(2)设P是第一象限内直线l1上一点,连接PC,有S△ACP=243.M,N分别是直线l1,l2上动点,连接CM,MN,MP,求CM+MN+NP的最小值;(3)如图2,在(2)的条件下,将△ACP沿射线P A方向平移,记平移后的三角形为△A′C′P′,在平移过程中,若以A,C',P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点C′的坐标.答案与解析一、选择题1.若x y >,则下列式子错误的是( )A. 33x y ->-B. 33x y ->-C. 32x y +>+D. 33x y > [答案]B[解析][分析]根据不等式的基本性质逐一判断即可.[详解]A .将不等式的两边同时减去3,可得33x y ->-,故本选项正确;B .将不等式的两边同时乘(-1),可得x y -<-,再将不等式的两边同时加3,可得33x y -<-,故本选项错误;C . 将不等式的两边同时加2,可得22x y +>+,所以32x y +>+,故本选项正确;D . 将不等式的两边同时除以3,可得33x y >,故本选项正确. 故选B .[点睛]此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.2.下面图形中,既是轴对称图形又是中心对称图形的是[ ] A. B. C. D.[答案]C[解析][分析]根据轴对称图形和中心对称图形的定义进行判断即可.[详解]解:A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.[点睛]本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.3.要使分式242xx--为零,那么x的值是A. B. 2 C. 2± D. 0[答案]A[解析][分析]根据分式值为0的条件进行求解即可得.[详解]由题意得:2x40-=且x20-≠,解得x2=-,故选A.[点睛]本题考查了分式值为0的条件,熟练掌握分子为0且分母不为0时分式值等于0是解题的关键.4.下列从左到右的变形,是分解因式的是( )A. xy2(x-1)=x2y2-xy2B. x2+x-5=(x-2)(x+3)+1C. (a+3)(a-3)=a2-9D. 2a2+4a=2a(a+2)[答案]D[解析][分析]根据因式分解的意义对各选项进行逐一分析即可.[详解]A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式的积,故B错误;C、是整式的乘法,故C错误;D、符合因式分解的意义,是因式分解,故本选项正确,故选D.[点睛]本题考查了因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.不等式14x >x-1的非负数解的个数是( ) A. 1B. 2C. 3D. 无数个[答案]B[解析]试题分析:移项得: 34x <1, 解得:x <43, 则不等式14x >x-1的非负整数解为1,0,共2个. 故选B .考点:一元一次不等式的整数解.6.如图,直线y kx b =+与坐标轴的两交点分别为 A(2, 0) 和 B(0,-3) ,则不等式30kx b ++≤的解为( )A. 0x ≤B. 0x ≥C. 2x ≥D. 2x <[答案]A[解析][分析] 从图象上知,直线y=kx+b 的函数值y 随x 的增大而增大,与y 轴的交点为B (0,-3),即当x=0时,y=-3,由图象可看出,不等式kx+b+3≤0的解集是x≤0.[详解]由kx+b+3≤0得kx+b≤-3,直线y=kx+b 与y 轴的交点为B (0,-3),即当x=0时,y=-3,由图象可看出,不等式kx+b+3≤0的解集是x≤0.故选:A .[点睛]考查了一次函数与不等式(组)的关系及数形结合思想的应用.解题关键是仔细观察图形,注重数形结合.7.下列多项式中不能用公式进行因式分解的是( )A. a 2+a +14B. a 2+b 2-2abC. 2225a b -+D. 24b -- [答案]D[解析][分析]A.B 可以用完全平方公式()2222a ab b a b ±+=±;C.可以用完全平方公式()()22a b a b a b -=+-;D. 不能用公式进行因式分解.[详解]A. 221142a a a ⎛⎫++=+ ⎪⎝⎭,用完全平方公式; B .()2222a b ab a b +-=-,用完全平方公式;C. ()()222555a b b a b a -+=+-,用平方差公式;D. ()2244b b--=-+不能用公式.故正确选项为D. [点睛]此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.8.如图所示.在△ABC 中,∠C =90°,DE 垂直平分AB ,交BC 于点E ,垂足为点D ,BE =6cm ,∠B =15°,则AC 等于( )A. 6cmB. 5cmC. 4cmD. 3cm [答案]D[解析][分析]根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,即可求出∠EAC,根据含30°角的直角三角形性质求出即可.[详解]∵在△ABC中,∠ACB=90°,∠B=15°∴∠BAC=90°-15°=75°∵DE垂直平分AB,BE=6cm∴BE=AE=6cm,∴∠EAB=∠B=15°∴∠EAC=75°-15°=60°∵∠C=90°∴∠AEC=30°∴AC=12AE=12×6cm=3cm故选:D[点睛]本题考查了三角形内角和定理,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,直角三角形中,30°角所对的边等于斜边的一半.9.如图,已知正方形ABCD的边长为3,E为CD上一点,DE=1,以点A为中心,把△ADE顺时针旋转90°得△ABE',连接EE',则EE'的长度为( )A. 25B. 4C. 3D. 52[答案]A[解析][分析]根据旋转的性质得到:BE′=DE=1,在直角△EE′C中,利用勾股定理即可求解.[详解]根据旋转的性质得到:BE′=DE=1,在直角△EE′C 中:EC=DC-DE=2,CE′=BC+BE′=4.根据勾股定理得到:EE′=== 故选:A .[点睛]考查了旋转的性质和勾股定理,旋转的性质旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.10.某次自然灾害导致某铁路遂道被严重破坏,为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?某原计划每天修米,所列方程正确的是() A. 12012045x x -=+ B. 12012045x x -=+ C. 12012045x x -=- D. 12012045x x -=-[答案]B[解析][分析]等量关系为:原计划用的时间-实际用的时间=4,据此列方程即可.详解]解:原计划修120x 天,实际修了1205x +天, 可列得方程12012045x x -=+,故选:B .[点睛]本题考查了分式方程的应用,从关键字找到等量关系是解决问题的关键.二.填空题11.已知123x y -=, 2xy =,则222x y xy -=____________.[答案]23[解析][分析]将原式提取公因式,再将各自的值代入计算即可求出值.即()2222x y xy xy x y -=-.[详解]∵2x-y=13,xy=2,∴()222212323x y xy xy x y -=-=⨯= 故正确答案为23. [点睛]此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.12.函数12y x =-中,自变量的取值范围是 . [答案]x >2[解析][分析]根据分式有意义和二次根式有意义的条件求解.[详解]解:根据题意得,x ﹣2>0,解得x >2.故答案为x >2.[点睛]本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式二次根式时,被开方数非负.13.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数____.[答案]50[解析][分析]根据旋转的性质得知∠A=∠C ,∠AOC 为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.[详解]∵将△OAB 绕点O 逆时针旋转80°∴∠A=∠C ,∠AOC=80°∴∠DOC=80°-α ∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°-α=180° 解得α=50°. 故答案为:50.[点睛]考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.14.如图,ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点A′处折痕交AE 于点G ,则∠ADG=____°EG=___cm .[答案] (1). 15 (2). 436[解析][分析]由ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,可得AE=DF=2cm ,EF=AD=4cm ,由翻折可得AG=A′G ,AD=A′D ,在Rt △DF 中,利用勾股定理可求得答案.求得'A F ,在Rt △DF 中利用正切值即可求得'FDA ∠度数,进而求得∠ADG 度数;在Rt △EG 中,设EG=x ,则G=AG=2−x ,利用勾股定理即可求得x 值.[详解]∵ABCD 是一张边长为4cm 的正方形纸片,E 、F 分别为AB ,CD 的中点,∴AE=DF=2cm ,EF=AD=4cm ,DG 为折痕,∴AG=G ,AD=D ,Rt △DF 中,'AF =='tan 'A F FDA DF ∠===∴'60FDA ∠=︒∴∠ADG =∠DG =11(90')301522FDA ⨯︒-∠=⨯︒=︒∴'4A E =-Rt △EG 中,设EG=x ,则G=AG=2−x ,∴=解得x=6故答案为:15°,6[点睛]本题考查了图形的翻折问题,翻折后找到相等的边和相等的角,作为解题依据,考查了正方形的性质,在直角三角形中可利用锐角三角函数值求得角度和边长,勾股定理也是解直角三角形常用方法. 15.当k =_____时,100x 2﹣kxy +49y 2是一个完全平方式.[答案]±140.[解析][分析]利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a ±b )2= a 2±2ab+b 2.[详解]∵100x 2﹣kxy+49y 2是一个完全平方式,∴k =±140. 故答案为±140. [点睛]此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.已知不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,则(1)(1)a b ++的值是的___. [答案]-2[解析][分析]先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解.[详解]2123x a x b -<⎧⎨->⎩①②, 由①得,12a x +<, 由②得,23x b >+,所以,不等式组的解集是1232a b x ++<<, 不等式组的解集是11x -<<,231b ∴+=-,112a +=, 解得1a =,2b =-,所以,(1)(1)(11)(21)2a b ++=+-+=-.故答案为.[点睛]本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.某商品的标价比成本高%p ,当该商品降价出售时,为了不亏本,降价幅度不得超过%d ,若用表示,则d =___.[答案]1%p d p =+ [解析] 本题主要考查列代数式. 此题中最大降价率即是保证售价和成本价相等,可以把成本价看作单位1,根据题意即可列式.解:设成本价是1,则(1+p%)(1-d%)=1. 1-d%=11%p +,1%p d p =+ 18.如图,OA ⊥OB ,等腰直角△CDE 的腰CD 在OB 上,∠ECD =45°,将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC CD的值为__________[答案]22[解析][分析] 由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC 是30°直角三角形,设DE=a ,将OC ,CD 用a 表示,最后代入即可解答.[详解]解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a ,2a∴OC=12CN=22a ∴2222OC CD a == 故答案为22. [点睛]本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.19.如图,把Rt △ABC 绕顶点C 顺时针旋转90°得到Rt △DFC ,若直线DF 垂直平分AB ,垂足为点E ,连接BF,CE,且BC=2.下面四个结论:①BF=2;②∠CBF=45°;③∠CED=30°;④△ECD的面积为223,其中正确的结论有_____.(填番号)[答案]①②④[解析][分析]利用旋转的性质得CF=CB=2,∠BCF=90°,则可得△CBF为等腰直角三角形,于是可对①②进行判断;由于直线DF垂直平分AB,则F A=FB,BE=AE,于是根据等腰三角形的性质和三角形外角性质可计算出∠ECA =∠A=22.5°,然后根据三角形内角和可计算出∠CEF,从而可对③进行判断;作EH⊥BD于H,如图,根据三角形中位线性质得EH=12AC2+1,利用旋转性质得CD=CA=2,则利用三角形面积公式可计算出△ECD的面积,从而可对④进行判断.[详解]∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC, ∴CF=CB=2,∠BCF=90°,∴△CBF为等腰直角三角形,∴BF2=2,∠CBF=45°,所以①②正确;∵直线DF垂直平分AB,∴F A=FB,BE=AE,∴∠A=∠ABF,而∠BFC=∠A+∠ABF=45°,∴∠A=22.5°,∵CE为斜边AB上的中线,∴EC =EA ,∴∠ECA =∠A =22.5°,∴∠CEF =180°﹣90°﹣2×22.5°=45°,所以③错误;作EH ⊥BD 于H ,如图,∵把Rt △ABC 绕顶点C 顺时针旋转90°得到Rt △DFC ,∴CD =CA =2+22, ∵点E 为AB 的中点,∴EH =12AC =2+1, ∴△ECD 的面积=12•(2+1)•(2+22)=22+3,所以④正确.故答案为:①②④.[点睛]考查了旋转的性质,旋转的性质有:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三.解答题20.(1)解不等式组: 245(2)213x x x x +≤+⎧⎪⎨-<⎪⎩并把它的解集在数轴上表示出来; (2)因式分解:32484x x x -+.[答案](1)23x -≤<,数轴见解析; (2)24(1)x x -[解析][分析](1)根据不等式组的解法即可求出答案.(2)根据因式分解法即可求出答案.[详解](1)245(2)213x x x x +≤+⎧⎪⎨-<⎪⎩①②解不等式①得:2x ≥-;解不等式①得:x<3;在数轴上表示如下:所以不等式组的解集为:23x -≤<;(2)32484x x x -+=4x (x-2x+1)=24(1)x x -[点睛]考查了解不等式组和因式分解,解题关键是熟练运用运算法则.21.先化简23a 2a 1a 2a 2a 2-+⎛⎫-+÷ ⎪++⎝⎭,再从﹣2,0,1中选择一个你喜欢的数代入求值. [答案]11a a +-,-1. [解析][分析]原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=0代入计算即可求出值.[详解]23a 2a 1a 2a 2a 2-+⎛⎫-+÷ ⎪++⎝⎭, ()()112a a a +-=+•22(1)a a +-, 11a a +=-; 当a =0(a 不能为﹣2和1)时,原式=﹣1.[点睛]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.解分式方程:214111x x x +-=--[答案]原方程无解[解析][分析]先去分母,然后解整式方程,最后验根即可得出结果.[详解]解:214111x x x +-=--, ∴(x+1)2-4=x 2-1,∴x 2+2x+1-4=x 2-1,∴x=1,检验:把x=1代入x 2-1=1-1=0,∴x=1不是原方程的根,原方程无解.[点睛]本题考查了解分式方程,注意解分式方程一定要验根.23. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 向上平移4个单位长度后所得到的△A 1B 1C 1;(2)画出△DEF 绕点O 按顺时针方向旋转90°后所得到的△D 1E 1F 1;(3)△A 1B 1C 1和△D 1E 1F 1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.[答案](1)作图见解析;(2)作图见解析;(3)是,y=x .[解析]试题分析:(1)根据平移变换点的坐标的变化规律在网格中确定出点A 1、B 1、C 1位置顺次连接即可;(2)根据旋转的性质在网格中确定出点D 1、E 1、F 1位置顺次连接即可;(3)根据轴对称图形的概念确定对称轴,然后再求对称轴所在直线的解析式.试题解析:(1)见下图;(2)见下图;△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x和直线y=-x-2.考点:平移变换;旋转变换;轴对称图形.24.如图,在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC的延长线于N.(1)求证:BM=CN;(2)若AB=8,AC=4,求BM的长.[答案](1)见解析;(2)2[解析][分析](1)根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明Rt△DMB≌Rt△DNC,即可得出BM=CN;(2)由HL证明Rt△DMA≌Rt△DNA,得出AM=AN,证出2BM=AB-AC=4,即可得出BM=2.[详解](1)证明:连接BD、CD,如图所示:∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,∵DE 垂直平分线BC ,∴DB=DC ,在Rt △DMB 和Rt △DNC 中,DB DC DM DN=⎧⎨=⎩ ∴Rt △DMB ≌Rt △DNC(HL),∴BM=CN ;(2) 由(1)得:BM=CN ,∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,在Rt △DMA 和Rt △DNA 中,DA DA DM DN =⎧⎨=⎩∴Rt △DMA ≌Rt △DNA(HL),∴AM=AN ,∵AM=AB-BM ,AN=AC+CN ,∴AB-BM=AC+CN ,∴2BM=AB-AC=8-4=4,∴BM=2.[点睛]考查了角平分线的性质、线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质,证明三角形全等是解决问题的关键.25.如图,等边△ABC 中, AO 是∠BAC 的角平分线, D 为 AO 上一点,以 CD 为一边且在 CD 下方作等边△CDE ,连接BE .(1)求证:△ACD ≌△BCE .(2)延长BE 至Q, P 为BQ 上一点,连接 CP 、CQ 使 CP=CQ=5,若 BC=6,求PQ 的长.[答案](1)详见解析;(2)PQ=8.[解析][分析](1)根据等边三角形得∠ACD=∠BCE,即可证明△ACD ≌△BCE(SAS),(2)过C 作CH ⊥BQ ,垂足为 H,由角平分线得到∠CAD= 12∠BAC=30°,通过(1)得∠CAD=∠CBH=30°,根据30°角所对直角边等于斜边一半求出CH=3,勾股定理得HQ=4,三线合一性质即可求出PQ=8.[详解](1)证明:∵△ABC, △CDE 均为等边三角形,∴∠ACB=∠DCE=60°,∴∠ACB-∠DCO=∠DCE-∠DCO,即∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE(SAS)(2)解:∵等边△ABC 中,AO 平分∠BAC,∴∠CAD=12∠BAC=30°. 如下图,过C 点作CH ⊥BQ ,垂足为 H,由(1)知△ACD ≌△BCE ,则∠CAD=∠CBH=30°∴CH=12BC=3 , ∴在Rt △CHQ 中,HQ=4(勾股定理) ,又∵CP=CQ,CH ⊥PQ,∴PH=HQ (三线合一)∴ PQ=8.[点睛]本题主要考查三角形的证明,包括特殊直角三角形,等腰三角形的性质,中等难度,熟悉特殊三角形的性质是解题关键.26.已知关于x 、y 的方程组212x y x y m +=⎧⎨-=⎩的解都小于1,若关于a 的不等式组1215231a n a ⎧+≥⎪⎨⎪-≥⎩恰好有三个整数解. (1)分别求出m 与n 的取值范围;(2)化简:2312|28|m m m n +-+++[答案](1)31m -<<,542n ≤<--;(2) 2n+12 [解析][分析](1)解不等式组求得x 、y ,根据方程组的解都小于1可得关于m 的不等式组,解不等式组可得m 的取值范围;解不等式组可得关于a 的范围,根据不等式组恰好有3个整数解可得关于n 不等式组,解不等式组可得n 的范围;(2)由(1)中m 、n 的范围,根据绝对值性质去绝对值符号,再去括号、合并同类项可得.[详解](1)解方程关于x、y的方程组212x yx y m+=⎧⎨-=⎩得:1214mxmy+⎧=⎪⎪⎨-⎪=⎪⎩,∵方程组的解都小于1,∴112114mm+⎧<⎪⎪⎨-⎪<⎪⎩,解得:﹣3<m<1,解不等式组1215231an a⎧+⎪⎨⎪-⎩①②,解不等式①得:a≥﹣5,解不等式②得:a≤213n-,∵不等式组恰好有三个整数解,∴﹣3≤213n-<﹣2,解得:﹣4≤n<﹣52;(2)∵﹣3<m<1,﹣4≤n<﹣5 2,3|28|m n+-+=m+3-|1-m|+2n+8=m+3+1-m+2n+8=2n+12[点睛]考查了解方程组、解不等式组、绝对值的性质,根据方程组的解得情况和不等式组的整数解得出关于m、n的不等式组是解题的关键.27. 为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?[答案](1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润[解析][分析](1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.[详解]解:(1)依题意得,30002400m m20=-,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,()()()()240100x16080(200x)21700{240100x16080(200x)22300 -+--≥-+--≤①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.28.图1,在平面直角坐标系xOy中,直线l1,l2都经过点A(﹣6,0),它们与y轴的正半轴分别相交于点B,C,且∠BAO=∠ACO=30(1)求直线l1,l2的函数表达式;(2)设P是第一象限内直线l1上一点,连接PC,有S△ACP=243.M,N分别是直线l1,l2上的动点,连接CM,MN,MP,求CM+MN+NP的最小值;(3)如图2,在(2)的条件下,将△ACP沿射线P A方向平移,记平移后的三角形为△A′C′P′,在平移过程中,若以A,C',P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点C′的坐标.[答案](1)直线l2的解析式为36y x=+,直线l1的解析式为323y x=+;(2)421;(3) (﹣9﹣313339或(﹣3,3或(3﹣137339) [解析][分析](1)求出B,C两点坐标利用待定系数法即可解决问题.(2)如图1中,设点P(m,33m+23),利用三角形的面积公式求出点P坐标,如图1﹣1中,作点C关于直线AP的对称点C′,点P关于直线AC的对称点P′,连接P′C′交AP于M′,交AC于N′,此时CM′+M′N′+N′P的值最小,最小值是线段P′C′的长.(3)由题意,点C的运动轨迹是直线y=33x+63,设C′(a,33a+63).分三种情形:①当AC′=AP=83时.②当C′A=C′P时.③当P A=PC′=83时,分别求解即可解决问题.[详解]解:(1)如图1中,∵A(﹣6,0),∴OA=6,∵∠AOB=90°,∠ACO=∠BAO=30°,∴OC3=3OB=33OA=3∴C(0,3B(O,3),∴直线l2的解析式为y33,直线l1的解析式为y=33x3(2)设点P(m 3m3∵S△APC=S△ABC+S△BCP,∴12•BC•(x P﹣x A)=3∴12×3(m+6)=3解得m=6,∴P(6,3如图1﹣1中,作点C关于直线AP的对称点C′,点P关于直线AC的对称点P′,连接P′C′交AP于M′,交AC 于N ′,此时CM ′+M ′N ′+N ′P 的值最小,最小值是线段P ′C ′的长.∵∠CAP =∠P AO =30°,∴点C ′在x 轴上,AC ′=AC =12,∵∠CAP ′=∠P AC =∠P AO =30°,∴∠P ′AC ′=90°,P A =P ′A =83, ∴P ′C ′=22P A C A ''+=22(83)12+=421,∴CM +MN +NP 的最小值为421.(3)如图2中,由题意,点C 的运动轨迹是直线y =33x 3,设C ′(a ,33a 3). ①当AC ′=AP =3,(a +6)2+332=(32, 解得a =﹣9﹣1313舍弃),∴C ′(﹣9﹣131339).②当C ′A =C ′P 时,(a +6)2+(33a 3)2=(a ﹣6)2+(33a 3﹣32, 解得a =﹣3,∴C′(﹣3,.③当P A=PC′=时,(a﹣6)2+2=()2,解得a=3﹣舍弃)∴C′(3﹣)综上所述,满足条件的点C′的坐标为(﹣9﹣)或(﹣3,或(3﹣﹣.[点晴]一次函数综合题,考查了待定系数法、轴对称变换、等腰三角形的判定和性质等知识,解题关键是学会利用转化的思想思考问题,学会用分类讨论的思想解决问题,学会构建方程解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级下册期中考试试卷一、单选题1.下列计算正确的是( ).A .29=B 2÷=C 6=D 2=- 2.下列四组数分别表示三角形的三条边长,其中能构成直角三角形的是( )A .2、3、4B .2、3CD .1、1、2 3.下列命题中,真命题是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D .两条对角线互相平分的四边形是平行四边形4.如图,在Rt △ABC 中,∠ACB=90∘,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D .若AC=3,BC=4.则BD 的长是( )A .2B .3C .4D .5 5.如图,在▱ABCD 中,AD=2AB,F 是AD 的中点,作CE ⊥AB,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)2∠DCF=∠BCD ,(2)EF=CF ;(3)S △BEC =2S △CEF ;(4)∠DFE=3∠AEF , 其中正确结论的个数是( )A .1个B .2个C .3个D .4个 6.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为6cm ,点B ,D 之间的距离为8cm ,则线段AB 的长为( )A.5 cm B.4.8 cm C.4.6 cm D.4 cm7.如图:将边长为6的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.2 B.94C.3 D.958.计算)A.B.C.D.9.实数a化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定10.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24二、填空题11.如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD的斜边DE上,若AE AC则DE=____.12.把二次根式√23化成最简二次根式,则√23=____. 13.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AC =AD ,∠CAE =56°,则∠D =_____.14.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为____.15.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是 _____________16.如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积为______。
三、解答题17.计算:()014-+-;18.. )﹣3)2.19.如图,在ABCD Y 中,6AB =,8BC =,10AC =.()1求证:四边形ABCD 是矩形;()2求BD 的长.20.如图,□ABCD 中,AB=5,对角线AC=6,BD=8,求□ABCD 的面积.21.如图,在4×4正方形的网格中,线段AB ,CD 如图位置,每个小正方形的边长都是1. (1)求出线段AB 、CD 的长度;(2)在图中画出线段EF ,使得AB ,CD ,EF 三条线段组成的三角形的形状,请说明理由;(3)我们把(2)中三条线段按照点E 与点C 重合,点F 与点B 重合,点D 与点A 重合,这样可以得△ABC,则点C 到直线AB 的距离为______(直接写结果).22.若最简二次根式3x .(1)求x 、y 的值;(2.23.如图所示,等边△ABC的边长为12cm,动点P以每秒2cm的速度从A向B匀速运动,动点Q以每秒1cm的速度从B向C匀速运动,两动点同时出发,当点P到达点B时,所有运动停止.设运动的时间为x秒.(1)当运动时间为1秒时,PB=,BQ=;(2)运动多少秒后,△PBQ恰好为等边三角形?(3)运动多少秒后,△PBQ恰好为直角三角形?24.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.(不证明)25.由课本62页练习可知,三角形三条中线交于一点,并且该交点把每条中线分成1:2两部分.如图1:△ABC三边中线AD,BE,CF交于O点,OA=2OD,OB=2OE,OC=2OF. 阅读:我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图2、图3、图4中,AD,BE是△ABC的中线,AD⊥BE垂足为O,像△ABC 这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索:(1)如图2,当∠ABE=45°,时,a=_____,b=_____;如图3,当∠ABE=30°,c=4时,a=_____,b=____;归纳证明:(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图4证明你发现的关系式.拓展应用:如图5,□ABCD中,点E,F,G分别是AD ,BC,CD的中点,BE⊥EG,AB=3,求AF的长.参考答案1.B【解析】分析:根据二次根式的计算法则即可得出正确答案.详解:A、原式=3,故计算错误;B、原式2=,故计算正确;C、原式,故计算-=,故计算错误;则本题选B.错误;D、原式=22点睛:本题主要考查的就是二次根式的计算法则,属于基础题====解这个题目的关键就是要明确二次a a根式的计算法则.2.C【解析】【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】解:A、22+32≠42,不能构成直角三角形,故错误;B、22+2≠32,不能构成直角三角形,故错误;C、)2+22,能构成直角三角形,故正确;D、12+12≠22,不能构成直角三角形,故错误.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D【解析】A、对角线相等且互相平分的平行四边形是矩形,故错误;B、两条对角线互相垂直的平行四边形是菱形,故错误;C、两条对角线互相垂直平分且相等的四边形是正方形,故错误;D、两条对角线互相平分的四边形是平行四边形,故正确,故选D.4.A【解析】【分析】先根据勾股定理求出AB,再根据线段的和差即可求出BD.【详解】∵Rt△ABC中,∠ACB=90∘, AC=3,BC=4.∴5=依题意知AD=AC=3,∴BD=2,故选A.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的使用. 5.C【解析】试题解析:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∠=∠,故此选项正确;∴2DCF BCD②延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDMAF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴90AEC ∠=o ,∴90,AEC ECD ∠=∠=o∵FM =EF ,∴FC =FM ,故②正确;③∵EF =FM ,∴EFC CFM S S =V V ,∵MC >BE ,∴2,BEC EFC S S <V V故2BEC CEF S S =V V 错误;④设∠FEC =x ,则∠FCE =x ,∴90DCF DFC x ∠=∠=-o ,∴1802EFC x ∠=-o ,∴9018022703EFD x x x ∠=-+-=-o o o ,∵90AEF x ∠=-o ,∴∠DFE =3∠AEF ,故此选项正确.故选C.6.A【解析】【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS 得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【详解】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3,OB=4,∴AB=√32+42=5,故选:A.【点睛】本题考查菱形的判定、勾股定理,解题的关键是掌握一组邻边相等的平行四边形是菱形.7.B【解析】【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【详解】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF=6-x,在RT△AEF中,∵AE2+AF2=EF2,∴32+(6-x)2=x2,∴x=154,∴AF=6-154=94,故选B.【点睛】本题考查翻折变换、正方形的性质、勾股定理,解题的关键是设未知数利用勾股定理列出方程解决问题.8.C【解析】【分析】根据二次根式的混合运算和根式的性质即可解题.【详解】解:==,故选C.【点睛】本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.9.A【解析】根据二次根式的性质可得:310a a =-+-,因为48a <<,所以原式=3107a a -+-=,故选A.10.D【解析】【分析】 根据三角形的中位线平行于第三边并且等于第三边的一半求出AD ,再根据菱形的周长公式列式计算即可得解.【详解】Q E 、F 分别是AC 、DC 的中点,∴EF 是ADC V 的中位线,∴2236AD EF ==⨯=,∴菱形ABCD 的周长44624AD ==⨯=.故选:D .【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.11.【解析】【分析】连结BD ,由等腰直角三角形的性质得出∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC ,AC=BC ,由SAS 证明△AEC ≌△BDC ,得出AE=BD ,证出∠BDA=∠BDC+∠ADC=90°,在Rt △ADB 中.由勾股定理求得AD ,即可得出结论.【详解】解:连结BD ,如图,∵△ACB 与△ECD 都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC ,AC=BC ,∵∠ECD-∠ACD=∠ACB-∠ACD ,∴∠ACE=∠BCD ,在△AEC 和△BDC 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△BDC (SAS ).∴,∠E=∠BDC=45°,∴∠BDA=∠BDC+∠ADC=90°,在Rt △ACB 中.,由勾股定理得:AD=,∴.. 【点睛】本题考查全等三角形的判定与性质、勾股定理、等腰直角三角形的性质,证明三角形全等是解题的关键.12.√63. 【解析】 【分析】被开方数的分母分子同时乘以3即可. 【详解】解:原式=√23=√2×33×3=√63. 故答案为:√63. 【点睛】本题考查化简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进行化简.【解析】试题解析:,AE BC ⊥Q90,AEC o ∴∠=56,CAE ∠=o Q34,ACE ∴∠=o在平行四边形ABCD 中,AD ∥,BC34,CAD ACE ∴∠=∠=o,AC AD Q =()11803473.2D ACD ∴∠=∠=-=o o o 故答案为73.o14.【解析】【分析】由题意可知阴影部分的面积=大正方形的面积−4个小直角三角形的面积,代入数值计算即可.【详解】Q 直角三角形斜边长为2,最短的直角边长为1,∴∴2124142S =-⨯⨯=-阴影故答案为:4-.【点睛】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.【解析】试题分析:根据题意分析可知:当OD⊥BC时,DE线段取最小值.在Rt△ABC中,∠B=90°,AB=3,BC=4,所以,因为四边形ADCE是平行四边形,所以OD=OE,OA=OC,此时OD是△ABC的中位线,所以,所以ED=2OD=3.考点:1.勾股定理;2.平行四边形的性质;3.三角形的中位线定理.16.36【解析】【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD 的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:=5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=12AB⋅BC+12AC⋅CD=12×3×4+12×5×12=36,故四边形ABCD的面积是36【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线17.5-【解析】+-=-.解:原式=145针对零指数幂,绝对值,二次根式化简3个考点分别进行计算,然后根据实数的运算法则求得计算结果.18.;1.【解析】【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据平方差公式和完全平方公式计算.【详解】(1)原式==;(2)原式=20﹣7﹣(5﹣=13﹣=1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1)详见解析;(2)10.【解析】【分析】(1)由在▱ABCD中,AB=6,BC=8,AC=10,利用勾股定理的逆定理,即可证得∠ABC=90°,即可判定▱ABCD 是矩形;(2)由四边形ABCD 是矩形,根据矩形的对角线相等,即可求得BD 的长.【详解】()1证明:∵6AB =,8BC =,10AC =,∴222AB BC AC +=,∴90ABC ∠=o ,∵四边形ABCD 是平行四边形,∴ABCD 是矩形;()2∵四边形ABCD 是矩形,∴10BD AC ==.【点睛】本题考查了矩形的判定与性质以及勾股定理的逆定理.注意利用勾股定理的逆定理证得∠ABC=90°是关键.20.24.【解析】【分析】利用平行四边形的性质结合勾股定理的逆定理得出△AOB 是直角三角形,进而得出四边形ABCD 是菱形;利用菱形的面积求法得出答案.【详解】解:∵在▱ABCD 中,对角线AC ,BD 相交于点O ,AB=5,AC=6,BD=8,∴AO=12AC=3,BO=12BD=4, ∵AB=5,且32+42=52,∴AO 2+BO 2=AB 2,∴△AOB 是直角三角形,且∠AOB=90°,∴AC ⊥BD ,∴四边形ABCD 是菱形;∴S 菱形ABCD =12AC•BD=12×6×8=24. 故答案为24.【点睛】本题考查菱形的判定与性质,正确掌握菱形的判定方法是解题的关键.21.(1) ,CD= ;(2)线段EF 见解析,以AB ,CD ,EF 三条线段组成的三角形是直角三角形,理由见解析;(3 . 【解析】【分析】(1)根据勾股定理计算即可解决问题;(2)利用数形结合的思想解决问题,根据勾股定理的逆定理判断即可;(3)利用面积法即可解决问题.【详解】解:(1)=,=;(2)EF=5 ,如图所示:∵CD 2+EF 2=AB 2∴以AB ,CD ,EF 三条线段组成的三角形是直角三角形;(3)设C 到直线AB 的距离为h .则有1122h = ,∴ ,∴C 到直线AB 的距离为13 .故答案为(1) ,CD= ;(2)线段EF 见解析,以AB ,CD ,EF 三条线段组成的三角形是直角三角形,理由见解析;(3)13. 【点睛】本题考查作图-应用与设计,勾股定理以及逆定理,解题的关键是灵活运用所学知识解决问题.22.(1)4x =,3y =;(2)5【解析】【分析】(1)、根据同类二次根式得出x 和y 的二元一次方程组,从而得出x 和y 的值;(2)、将x 和y 的值代入代数式得出答案.【详解】(1)由题意得:3x-10=2 , 2x+y-5=x-3y+11,解得x=4,y=3.(2)当x=4,y=323.(1)10cm ,1cm ;(2)运动4s 时,△PBQ 是等边三角形;(3)当t =3s 或245s 时,△PBQ 是直角三角形.【解析】【分析】(1)根据路程=速度×时间计算即可;(2)根据BP =BQ 构建方程即可解决问题;(3)分两种情形分别求解即可解决问题;【详解】(1)由题意t =1时,PA =2cm ,BQ =1cm ,∵AB =12cm ,∴PB =10cm ,故答案为10cm ,1cm .(2)当BP =BQ 时,∵∠B =60°,∴△PBQ 是等边三角形,∴12﹣2t =t ,解得t =4s ,答:运动4s 时,△PBQ 是等边三角形.(3)①当∠PQB =90°时,∵∠B =60°,∴∠BPQ=30°,∴PB=2BQ,∴12﹣2t=2t,解得t=3,②当∠BPQ=90°时,∵∠BQP=30°,∴BQ=2PB,∴t=2(12﹣2t),解得t=245,综上所述,当t=3s或245s时,△PBQ是直角三角形.【点睛】本题考查三角形综合题、等边三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.24.(1)平行四边形;(2)互相垂直;(3)菱形.【解析】分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出矩形;(3)、根据菱形的性质和三角形中位线的性质得出平行四边形,然后根据对角线垂直得出矩形.详解:(1)证明:连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=12 BD,同理FG∥BD,FG=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=12BD,FG=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.点睛:本题主要考查的就是三角形中位线的性质以及特殊平行四边形的判定,属于中等难度题型.三角形的中位线平行且等于第三边的一半.解决这个问题的关键就是要明确特殊平行四边形的判定定理.25.(1)如图2,如图3,;(2)关系为:a2+b2=5c2,证明见解析;(3)AF=4.【解析】【分析】(1)在图2中,根据勾股定理可得OB=OA=2,即可求解;同理在图3中,可得:;(2)在图4中,设OA=m,OB =n,根据题意分别用m、n表示出2a,2b,2c,即可得出a2,b2,c2三者之间的关系;(3)连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,根据E,F分别是AD,BC的中点,得到AE=BF=CF=12AD,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由(2)的结论得即可得到结果.【详解】解:(1)在图2中,∵AD ⊥BE 垂足为O ,∠ABE=45°,,∴在Rt △AOB 中,OB=OA=2,∵AD ,BE 是△ABC 的中线,∴OD=OE=1,∴=;在图3中,在Rt △ABO 中,AB =4,∠ABO =30°,∴AO =2,OB ,∴OD =1,OE在Rt △AOE 和Rt △BOD 中,AE ==,==∴ ;(2)关系为:a 2+b 2=5c 2,证明:如图4,设:OA=m ,OB =n ,由题意得,222c m n =+ ,22222b n m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 即2224b m n =+ ,同理可得2224a n m =+ ,∴()2222222224455a b m n n m m n c +=+++=+= ;(3)如图4,连接AC ,EF 交于H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P ,∵点E. G 分别是AD ,CD 的中点,∴EG ∥AC ,∵BE ⊥EG ,∴BE ⊥AC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC,∴∠EAH =∠FCH ,∵E ,F 分别是AD ,BC 的中点,∴AE =12AD ,BF =12BC ,∴AE =BF =CF =12AD∵AE ∥BF ,∴四边形ABFE 是平行四边形,∴EF =AB =3,AP =PF ,在△AEH 和△CFH 中,{ EAH FCHAHE FHCAE CF∠=∠∠=∠= ,∴△AEH ≌△CFH (AAS ),∴EH =FH ,∴EP ,AH 分别是△AFE 的中线,由(2)的结论得:2225AF EF AE +=,∴2225316AF =-=,∴AF =4.故答案为(1)如图2,如图3, ;(2)关系为:a 2+b 2=5c 2,证明见解析;(3)AF =4.【点睛】本题考查全等三角形的判定和性质,勾股定理,平行四边形的判定和性质,注意类比思想在本题中的应用.。