《圆内接四边形》公开课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆内接四边形》公开课教案
一、教学目标:
A 识记圆的内接四边形的概念
B 掌握圆内接四边形的性质
C 运用圆内接四边形的性质解决有关问题
二、前提测评:
1. 如图(1),△ABC叫⊙O的_________三角形,⊙O叫△ABC 的____圆。
2. 如上图(1),若的度数为
1000,则BOC=___,A=___
3. 如图(2)四边形ABCD中, B与1互补,
AD的延长线与DC所夹2=600 ,
则1=___,B=___.
4. 判断:
圆上任意两点之间分圆周为两条弧,这两条弧的度数和为3600( )
三、达标教学(导读提纲)
1. 如图(3),四边形ABCD的各顶点都在⊙O上,所以四边形ABCD是⊙O的____四边形, ⊙O叫四边形ABCD的____圆.
2. 什么叫圆内接多边形?多边形的外接圆呢?
3. 你能解决下列问题吗?如上图:
(1) ∵ 所对圆心角为1
所对圆心角为2,
2= 的度数+ 的度数=______度.
BAD+BCD= 2+ 1=_______
(2)为什么DCE=A?
4. 如何概述归纳第3题的结论?
学生先讨论,教师然后归纳为:
定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
例1:如图4,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1相交于点C,与⊙O2相交于点D,经过点B 的直线EF与⊙O1 相交于点E,与⊙O2相交于点F。求证:CE∥DF
分析:要证CE∥DF,可用下列三种方法:
(1) 证内错角相等,两直线平行
(2) 证同位角相等,两直线平行
(3) 同旁内角互补,两直线平行
以上三种方法都行,但用方法(3)较好。
证明:连结AB
∵ABEC是⊙O1的内接四边形
BAD=E
又∵ADFB是⊙O2的内接四边形
BAD+F=1800
F=1800
CE∥DF
四、达标练习:
1、填空
(1)四边形ABCD内接于⊙O,则C=____,ADC=_____;若B=800,则ADC=______ CDE=______(图5)
(2)四边形ABCD内接于⊙O,BOD=1000
则BAD=______BCD=______(图6)
(3)四边形ABCD内接于⊙O, C=1:3,则A=_____,
(4)梯形ABCD内接于⊙O,AD∥BC, B=750,则C=_____(图7) 2、选择题
(5)圆内接平行四边形必为( )
A.菱形
B.矩形
C.正方形
D.等腰梯形
五、课堂小结
1、圆内接四边形的性质定理,是在圆中探求角相等或互补关系时,常用的定理,运用这个定理时要注意观察图形,分清四边形的外角和它的内对角的位置。
2、直线形和圆之间的联系密切,证题时,需要引辅助线,同学们要注意引辅助线的方法。
六、课外作业
教科书习题7.2 A组1 (4)、15、16题。