2014考研数学接力题典1800校正表

合集下载

2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc

2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc
小学数学
96
福清市元载小学
小学数学
97
福清市龙山中心小学
小学数学
98
福清市宏路中心小学
小学数学
99
福清市海口中心小学
小学数学
100
福清市海口中心小学
小学数学
101
福清市海口中心小学
小学数学
102
福清市岑兜中心小学
小学数学
103
福清市城头中心小学
小学数学
104
福清市南岭中心小学
小学数学
105
福清市龙田中心小学
小学英语
182
福清市镜洋中心小学
小学英语
183
福清市镜洋中心小学
小学英语
184
福清市石门小学
小学体育
185
福清市龙田中心小学
小学体育
186
福清市江镜中心小学
小学体育
187
福清市港头中心小学
小学体育
188
福清市高山中心小学
小学体育
189
福清市实验小学
小学音乐
190
福清市海口中心小学
小学音乐
191
福清市东瀚中心小学
小学语文
76
福清市东瀚中心小学
小学语文
77
福清市渔溪中心小学
小学语文
78
福清市渔溪中心小学
小学语文
79
福清市渔溪中心小学
小学语文
80
福清市渔溪中心小学
小学语文
81
福清市上迳中心小学
小学语文
82
福清市上迳中心小学
小学语文
83
福清市占泽中心小学
小学语文
84
福清市占泽中心小学

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准

2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。

2014考研数学一真题及答案

2014考研数学一真题及答案

(23) 【答案】 (1) EX
ˆ (2)
(3)存在
1 n X i2 n i 1
6( y )2 y 3 y 2 y 2 yy 2 yy x 2( y )2 x 2 yy 2 y 2 xy 2 xy x 2 y 0 12 y( 1 ) 4 y( 1 ) 4 y( 1 ) 0 9 y( 1 ) 4 y( 1 ) 9 0 4
y 2x 1 x
(12) (13)[-2,2] (14)
2 5n
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、 ... 证明过程或演算步骤. (15) 【答案】
2014 年全国硕士研究生入学统一考试数学一
x
lim

x
1
[ t ( e 1 ) t ] dt x 2 ln( 1
2E 2E f ( e x cos y )e 2 x ( 4 E e x cos y )e 2 x x 2 y 2 f ( e x cos y ) 4 f ( e x cos y ) e x cos y
令 e x cos y u , 则 f ( u ) 4 f ( u ) u , 故 f ( u ) C1e 2 u C 2 e 2u 由 f ( 0 ) 0 , f ( 0 ) 0 , 得
(21) 【答案】利用相似对角化的充要条件证明。
0, y 0, 3 y, 0 y 1, 4 (22) 【答案】 (1) FY y 1 1 1 y ,1 y 2, 2 2 1, y 2.
(2)
3 4 1 , EX 2 2
1 x x

考研2014共创数二3套卷完整版

考研2014共创数二3套卷完整版

Tel: 0551-62905018
即 x0 ( a, b) 使得 f ( x0 ) max{ f ( x )} ,此时必有 f ( x0 ) 0
1 1 k ,当 k 0 时方程显然有根 x 1 ; k 0 时 f ( ) 0 , x k 1 1 1 lim f ( x) , lim f ( x) 当, f ( x ) 在 (0, ] 上单增, 在 [ , ) 上单减, 当 f ( ) ln k 1 0 x x 0 k k k 1 即 k 时原方程无实根,答案A. e (5) 【解】答案A为正确. f ( x, y ) (6) 【解】由 lim 2 1 得, lim f ( x, y ) 0 f (0, 0) ,知 f ( x, y ) 在点 (0, 0) 处连续 x 0 x y 2 x 0 y 0 y 0 (4) 【解】 :令 f ( x) ln x kx, f ( x)
I sin x sin y max{x, y} d ,
第 3 页 共 9 页

2014 数学模拟试卷
共创(合肥工业大学)考研辅导中心
Tel: 0551-62905018
(18) (本小题满分 10 分)已知函数 y f ( x) 在 [0, ) 上单增,曲线 y f ( x) 过点 (0, ) ,且对
(20) (本小题满分 11 分)设 xn 满足条件 x1 2, xn 1 求它的值. (21) (本小题满分 11 分)
2 xn ( xn 3) (n 1, 2,) ,证明 lim xn 存在并 2 n 3xn 1
证明:当 x 0 时,有 ( x 1) ln x ( x 1) .
是齐次方程组 Bx 0 的 3 个解向量,且方程组 Ax = 3 有解. (Ⅰ) 求常数 a, b 的值; (Ⅱ)求 Bx 0 通解 ( 23 ) (本小题满分 11 分)已知三元二次型 f ( x1 , x2 , x3 ) x Ax 经过正交变换 x Py 化为标准形

陈文登考研数学辅导书(附带详细答案,word版本

陈文登考研数学辅导书(附带详细答案,word版本

函数 极限 连续一. 填空题1.设 , 则a = ________.解. 可得 = , 所以 a = 2. 2. =________.解.< <所以 < <, (n ), (n )所以 =3. 已知函数, 则f[f(x)] _______.解. f[f(x)] = 1. 4. =_______.解.=5. =______.解.6. 已知( 0 ), 则A = ______, k = _______.解.所以 k-1=1990, k = 1991;二. 单项选择题1. 设f(x)和 (x)在(- , + )内有定义, f(x)为连续函数, 且f(x) 0, (x)有间断点, 则(a) [f(x)]必有间断点 (b) [ (x)]2必有间断点 (c) f [ (x)]必有间断点 (d) 必有间断点解. (a) 反例, f(x) = 1, 则 [f(x)]=1(b) 反例, [ (x)]2 = 1(c) 反例, f(x) = 1, 则f [ (x)]=1(d) 反设 g(x) = 在(- , + )内连续, 则 (x) = g(x)f(x) 在(- , + )内连续, 矛盾. 所以(d)是答案.2. 设函数, 则f(x)是(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数解. (b)是答案.3. 极限的值是(a) 0 (b) 1 (c) 2 (d) 不存在解.=, 所以(b)为答案.4. 设, 则a的值为(a) 1 (b) 2 (c) (d) 均不对解. 8 = ==, , 所以(c)为答案.5. 设, 则 , 的数值为(a) = 1, = (b) = 5, = (c) = 5, = (d) 均不对解. (c)为答案.6. 设, 则当x 0时(a) f(x)是x的等价无穷小 (b) f(x)是x的同阶但非等价无穷小(c) f(x)比x较低价无穷小 (d) f(x)比x较高价无穷小解. =, 所以(b)为答案.7. 设, 则a的值为(a) -1 (b) 1 (c) 2 (d) 3解. , 1 + a = 0, a = -1, 所以(a)为答案.8. 设, 则必有(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c解. 2 ==, 所以a =-4c, 所以(d)为答案.1. 求下列极限(1)解.(2)解. 令=(3)解.===.2. 求下列极限(1)解. 当x 1时, , . 按照等价无穷小代换(2)解. 方法1:========方法2:=======3. 求下列极限(1)解.(2)解.(3) , 其中a > 0, b > 0解.=4. 求下列函数的间断点并判别类型(1)解. ,所以x = 0为第一类间断点.(2)解.显然, 所以x = 1为第一类间断点;, 所以x = -1为第一类间断点.(3)解. f(+0) =-sin1, f(-0) = 0. 所以x = 0为第一类跳跃间断点;不存在. 所以x = 1为第二类间断点;不存在, 而,所以x = 0为第一类可去间断点;, (k = 1, 2, …) 所以x =为第二类无穷间断点.5. 设, 且x = 0 是f(x)的可去间断点. 求 , .解. x = 0 是f(x)的可去间断点, 要求存在. 所以. 所以0 ==所以 = 1.=上式极限存在, 必须.6. 设, b 0, 求a, b的值.解. 上式极限存在, 必须a =(否则极限一定为无穷). 所以=. 所以.7. 讨论函数在x = 0处的连续性.解. 当时不存在, 所以x = 0为第二类间断点;当时, 所以时,在 x = 0连续, 时, x = 0为第一类跳跃间断点.8. 设f(x)在[a, b]上连续, 且a < x1 < x2 < … < x n < b, c i (i = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个 , 使.证明: 令M =, m =. 不妨假定所以 m M所以存在 ( a < x1 x n < b), 使得9. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个 , 使f( ) = .证明: 假设F(x) = f(x)-x, 则F(a) = f(a)-a < 0, F(b) = f(b)-b > 0于是由介值定理在(a, b)内至少存在一个 , 使f( ) = .10. 设f(x)在[0, 1]上连续, 且0 f(x) 1, 试证在[0, 1]内至少存在一个 , 使f( ) = .证明: (反证法) 反设. 所以恒大于0或恒小于0. 不妨设. 令, 则.因此. 于是, 矛盾. 所以在[0, 1]内至少存在一个 , 使f( ) = .11. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个 , 使f( ) = g( ).证明: 假设F(x) = f(x)-g(x), 则F(a) = f(a)-g(a) < 0, F(b) = f(b)-g(b) > 0于是由介值定理在(a, b)内至少存在一个 , 使f( ) = .12. 证明方程x5-3x-2 = 0在(1, 2)内至少有一个实根.证明: 令F(x) = x5-3x-2, 则F(1) =-4 < 0, F(2) = 24 > 0所以在(1, 2)内至少有一个 , 满足F( ) = 0.13. 设f(x)在x = 0的某领域内二阶可导, 且, 求及.解. . 所以. f(x)在x = 0的某领域内二阶可导, 所以在x = 0连续. 所以f(0) = -3. 因为, 所以, 所以=由, 将f(x)泰勒展开, 得, 所以, 于是.(本题为2005年教材中的习题, 2006年教材中没有选入. 笔者认为该题很好, 故在题解中加入此题)倒数与微分一. 填空题(理工类)1. , 则= _______.解. , 假设, 则, 所以2. 设, 则______.解. ,3. 设函数y = y(x)由方程确定, 则______. 解. , 所以4. 已知f(-x) =-f(x), 且, 则______.解. 由f(-x) =-f(x)得, 所以所以5. 设f(x)可导, 则_______.解.=+=6. 设, 则k = ________.解. , 所以所以7. 已知, 则_______.解. , 所以. 令x2 = 2, 所以8. 设f为可导函数, , 则_______.解.9. 设y = f(x)由方程所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______.解. 上式二边求导. 所以切线斜率. 法线斜率为, 法线方程为, 即 x-2y + 2 = 0.二. 单项选择题(理工类)1. 设f(x)可导, F(x) = f(x)(1+|sin x|), 则f(0) = 0是F(x)在x = 0处可导的(a) 充分必要条件 (b) 充分但非必要条件 (c) 必要但非充分条件(d) 既非充分又非必要条件解. 必要性:存在, 所以=, 于是======所以, 2f(0) = 0, f(0) = 0充分性:已知f(0) = 0, 所以========所以存在. (a)是答案.2. 已知函数f(x)具有任意阶导数, 且, 则当n为大于2的正整数时, f(x)的n阶导数是(a) (b) (c) (d)解. , 假设=, 所以=, 按数学归纳法=对一切正整数成立. (a)是答案.3. 设函数对任意x均满足f(1 + x) = af(x), 且b, 其中a, b为非零常数, 则(a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且 a(c) f(x)在x = 1处可导, 且 b (d) f(x)在x = 1处可导, 且ab解. 在f(1 + x) = af(x)中代入=, 所以. (d)是答案注: 因为没有假设可导, 不能对于二边求导.4. 设, 则使存在的最高阶导数n为(a) 0 (b) 1 (c) 2 (d) 3解. .所以n = 2, (c)是答案.5. 设函数y = f(x)在点x0处可导, 当自变量x由x0增加到x0 + x时, 记 y为f(x)的增量, dy为f(x)的微分, 等于(a) -1 (b) 0 (c) 1 (d)解. 由微分定义 y = dy + o( x), 所以. (b)是答案.6. 设在x = 0处可导, 则(a) a = 1, b = 0 (b) a = 0, b为任意常数 (c) a = 0, b = 0 (d) a = 1, b为任意常数解. 在x = 0处可导一定在x = 0处连续, 所以, 所以b = 0., , 所以 0 = a. (c)是答案.7. 设f(0) = 0, 则f(x)在x = 0处可导的充要条件为(a) h)存在. (b) 存在.(c) h)存在. (d) 存在.解. 由存在可推出(a)中的极限值为, (b)中的极限值为 , (d)中的极限值为, 而(c)中的极限为:;反之(a) 及(c)中的极限值存在, 不一定存在, 举反例如下: y = |x|, 不存在, (a)、(c)二表达式的极限都存在排除(a)及(c). (d)中的极限存在, 不一定存在, 举反例如下:, 排除(d). 所以(b)是答案.由(b)推出存在证明如下:==所以存在.8. 设函数f(x)在(- , + )上可导, 则(a) 当时, 必有(b) 当时, 必有(c) 当时, 必有(d) 当时, 必有解. (a)不正确. 反例如下: y = x; (b)不正确. 反例如下: ; (c)不正确. 反例如下: ; (d)是答案. 证明如下: 因为, 所以对于充分大的x, 单增. 如果, 则证明结束, 否则单增有上界, 则存在(k为有限数). 任取x, 在区间[x, x + 1]上用拉格朗日定理(x < < x + 1)令x + , 于是0 = + , 矛盾. 所以.9. 设函数f(x)在x = a处可导, 则函数|f(x)|在x = a处不可导的充分条件是(a) f(a) = 0且. (b) f(a) = 0且.(c) f(a) > 0且. (d) f(a) < 0且.解. (a) 反例f(x) = 0, 取a = 0. 排除(a); (c) 反例: , 取a = 0. f(0) = 1 > 0,, |f(x)| = f(x), 在x = 0可导. 排除(c); (d) 反例: , 取a = 0. 排除(d); 所以(b)是答案. 对于(b)证明如下: 在(b)的条件下证明不存在.不妨假设. . 所以存在 , 当x (a- , a + )时. 所以当x > a时, f(x) > 0. 于是. 当x < a时f(x)< 0. 于是. 所以不存在.三. 计算题(理工类)1.解.2. 已知f(u)可导,解.=3. 设y为x的函数是由方程确定的, 求.解., 所以4. 已知, 求.解. ,5. 设, 求解. ,6. 设函数f(x)二阶可导, , 且, 求, .解. , 所以=3.所以7. 设曲线x = x(t), y = y(t)由方程组确定. 求该曲线在t = 1处的曲率.解. . 所以所以.所以. 在t = 1的曲率为四. 已知, 其中g(x)有二阶连续导数, 且g(0) = 1(1) 确定a 的值, 使f(x)在x = 0点连续; (2) 求.解. (1) f(x)在x = 0点连续, 所以,所以, 所以g(0) = cos 0 = 1(这说明条件g(0) = 1是多余的). 所以=(2) 方法1:=== (0 < < x)=所以方法2:====五. 已知当x 0时, f(x)有定义且二阶可导, 问a, b, c为何值时二阶可导.解. F(x)连续, 所以, 所以c = f(-0) = f(0);因为F(x)二阶可导, 所以连续, 所以b = , 且存在, 所以, 所以, 所以六. 已知.解., k = 0, 1, 2, …, k = 0, 1, 2, …七. 设, 求.解. 使用莱布尼兹高阶导数公式=所以一元函数积分学一. 求下列不定积分:1.解.2.解.3.解. 方法一: 令,=方法二:==二. 求下列不定积分:1.解.=2.解. 令x = tan t,=3.解. 令=4. (a > 0)解. 令= 5.解. 令====6.解. 令=三. 求下列不定积分:1.解.2.解. 令,=四. 求下列不定积分:1.解.==2.解.五. 求下列不定积分:1.解.2.解.=3.解.4.解.六. 求下列不定积分:1.解.=====2.解.=3.解.七. 设, 求. 解.考虑连续性, 所以c =-1+ c1, c1 = 1 + c八. 设, (a, b为不同时为零的常数), 求f(x).解. 令, , 所以=九. 设当x 0时, 连续, 求.解.==+-=+c.十. 设, 求f(x).解.令, 所以所以十一. 求下列不定积分:1.解. 令=2.解. 令=3.解. +=-= 4. (a > 0)解.======十二. 求下列不定积分:1.解.=2.解.===一.若f(x)在[a,b]上连续, 证明: 对于任意选定的连续函数 (x), 均有, 则f(x) 0.证明: 假设f( ) 0, a < < b, 不妨假设f( ) > 0. 因为f(x)在[a,b]上连续, 所以存在 > 0, 使得在[ - , + ]上f(x) > 0. 令m = . 按以下方法定义[a,b]上 (x): 在[ - ,+ ]上 (x) =, 其它地方 (x) = 0. 所以.和矛盾. 所以f(x) 0.二. 设 为任意实数, 证明: =.证明: 先证: =令 t =, 所以=于是=所以=.所以同理.三.已知f(x)在[0,1]上连续, 对任意x, y都有|f(x)-f(y)| < M|x-y|, 证明证明: ,四. 设, n为大于1的正整数, 证明: .证明: 令t =, 则因为> 0, (0 < t < 1). 所以于是立即得到五. 设f(x)在[0, 1]连续, 且单调减少, f(x) > 0, 证明: 对于满足0 < < < 1的任何 , , 有证明: 令(x ), ., (这是因为t , x , 且f(x)单减).所以, 立即得到六. 设f(x)在[a, b]上二阶可导, 且< 0, 证明:证明: x, t [a, b],令, 所以二边积分=. 七. 设f(x)在[0, 1]上连续, 且单调不增, 证明: 任给 (0, 1), 有证明: 方法一: 令(或令), 所以F(x)单增;又因为F(0) = 0, 所以F(1) F(0) = 0. 即, 即方法二: 由积分中值定理, 存在 [0, ], 使;由积分中值定理, 存在 [ , 1], 使因为.所以八. 设f(x)在[a, b]上具有二阶连续导数, 且, 证明: 在(a, b)内存在一点 ,使证明: 对于函数,用泰勒公式展开:t, x [a, b]=(1)(1)中令x = a, t = b, 得到(2)(1)中令x = b, t = a, 得到(3)(3)-(2)得到于是=注: 因为需要证明的等式中包含, 其中二阶导数相应于(b-a)的三次幂, 所以将泰勒展开; 若导数的阶数和幂指数相同, 一般直接将f(x)泰勒展开.九. 设f连续, 证明:证明:=所以 2即十. 设f(x)在[a, b]上连续, 在[a, b]内存在而且可积, f(a) = f(b) = 0, 试证:, (a < x < b)证明: , 所以,即;即所以即, (a < x < b)十一. 设f(x)在[0, 1]上具有二阶连续导数, 且, 试证:证明: 因为(0,1)上f(x) 0, 可设 f(x) > 0因为f(0) = f(1) = 0x0 (0,1)使 f(x0) =(f(x))所以>(1)在(0,x0)上用拉格朗日定理在(x0, 1)上用拉格朗日定理所以(因为)所以由(1)得十二.设f(x)在[a, b]上连续, 且f(x) > 0,则证明: 将lnx在x0用台劳公式展开(1)令 x = f(t)代入(1)将上式两边取,最后一项为0,得十三. 设f(x)在[0, 1]上有一阶连续导数, 且f(1)-f(0) = 1, 试证:证明:十四. 设函数f(x)在[0, 2]上连续, 且= 0, = a > 0. 证明: [0, 2], 使|f( )| a.解. 因为f(x)在[0, 2]上连续, 所以|f(x)|在[0, 2]上连续, 所以 [0, 2], 取 使|f( )| = max |f(x)| (0 x 2)使|f( )| |f(x)|. 所以一. 计算下列广义积分:(1) (2) (3)(4) (5) (6)解.(1)(2)(3)因为, 所以积分收敛.所以=2(4)(5)(6)微分中值定理与泰勒公式一. 设函数f(x)在闭区间[0, 1]上可微, 对于[0, 1]上每一个x, 函数f(x)的值都在开区间(0, 1)内, 且, 证明: 在(0, 1)内有且仅有一个x, 使f(x) = x.证明: 由条件知0 < f(x) < 1. 令F(x) = f (x)-x, 于是F(0) > 0, F(1) < 0,所以存在 (0, 1), 使F( ) = 0. 假设存在 1, 2 (0, 1), 不妨假设 2 < 1, 满足f( 1) = 1,f( 2) = 2. 于是 1- 2= f( 1)-f( 2) = . ( 2< < 1). 所以, 矛盾.二. 设函数f(x)在[0, 1]上连续, (0, 1)内可导, 且. 证明: 在(0, 1)内存在一个 , 使.证明: , 其中 1满足.由罗尔定理, 存在 , 满足0 < < 1, 且.三.设函数f(x)在[1, 2]上有二阶导数, 且f(1) = f(2) = 0, 又F(x) =(x-1)2f(x), 证明: 在(1, 2)内至少存在一个 , 使.证明: 由于F(1) = F(2) = 0, 所以存在 1, 1 < 1 < 2, 满足. 所以.所以存在 , 满足1 < < 1, 且.四. 设f(x)在[0, x](x > 0)上连续, 在(0, x)内可导, 且f(0) = 0, 试证: 在(0, x)内存在一个 ,使.证明: 令F(t) = f(t), G(t) = ln(1+t), 在[0, x]上使用柯西定理, (0, x)所以, 即五. 设f(x)在[a, b]上可导, 且ab > 0, 试证: 存在一个 (a, b), 使证明: 不妨假设a > 0, b > 0. 令. 在[a, b]上使用拉格朗日定理六. 设函数f(x), g(x), h(x)在[a, b]上连续, 在(a, b)内可导, 证明:存在一个 (a, b), 使证明: 令, 则F(a) = F(b) = 0, 所以存在一个 (a, b), 使七. 设函数f(x)在[0, 1]上二阶可导, 且f(0) = f(1) = 0, 试证: 至少存在一个 (0, 1), 使证明: (, 二边积分可得, 所以)令. 由f(0) = f(1) = 0知存在 (0, 1), . 所以F( ) = F(1) = 0, 所以存在 ( , 1), . 立即可得八. 设f(x)在[x1, x2]上二阶可导, 且0 < x1 < x2, 证明:在(x1, x2)内至少存在一个 , 使证明: 令, 在[x1, x2]上使用柯西定理. 在(x1, x2)内至少存在一个 , 满足九. 若x1x2 > 0, 证明: 存在一个 (x1, x2)或(x2, x1), 使证明: 不妨假设0 < x1 < x2. 令, 在[x1, x2]上使用柯西定理. 在(x1, x2)内至少存在一个 , 满足立即可得.十. 设f(x), g(x)在[a, b]上连续, 在(a, b)内可导, 且f(a) = f(b) = 0, g(x) 0, 试证: 至少存在一个 (a, b), 使证明: 令, 所以F(a) = F(b) = 0. 由罗尔定理至少存在一个 (a, b), 使,于是.十一. 设f(x)在[a, b]上连续, 在(a, b)内有二阶连续导数, 试证: 至少存在一个 (a, b), 使证明: x, t [a, b], 有取t =, 分别取x = b, x = a, 得到二式相加, 得所以存在 (a, b), 使得十二. 设f(x)在[a, b]上连续, 在(a, b)内可导, 且f(a) = f(b) = 1, 证明: 存在 、 (a, b), 使得证明: 对于在[a, b]上使用拉格朗日定理, 在(a, b)内存在 , 使得所以在(a, b)内存在 , 使得即是常微分方程一. 求解下列微分方程:1. 解. .令.(将y看成自变量), 所以, ,, , .2.解. 令., 所以, . 由所以c = 0. , 得到, , 即.二. 求解下列微分方程:1.解. 令. 得到, 为一阶线性方程解得. 即.2.解. 原方程可化为.即, 为一阶线性方程(y为自变量, x为因变量).解得: .3.解. 令, 则. 原方程化为, 为贝奴利方程..令, 则. 方程化为, 为一阶线性方程.解得. 即, .三. 求解下列微分方程:1.解. .于是. 所以方程解为.2.解.设函数满足= .所以,所以. 于是所以原方程的解为3.解. 由原方程可得得到.于是原方程解为.四. 求解下列微分方程:1.解.令, 得到为一阶线性方程. 解得.即2.解. 该方程为贝奴利方程..令,. 解得于是五. 设在实轴上连续, 存在, 且具有性质, 试求出.解. , , , .i) . 对于任何x有所以.所以.ii)上式令, 得到解得.六. 求解下列方程:1.解. 可得. 这是以y为自变量的一阶线性方程.解得., . 所以得解.2.解. 令. 可得, , ., , .解为.七. 求解下列方程:1.解. 令.所以,所以, ,于是解为.2.解. 令, ,令于是得到, 为u对于x的一阶线性方程解得, , 得c = 0., , ,所以3.解. 令得到令, 得到为关于y的一阶线性方程. 且解得所以, .于是,, ,, 得到, 得解八. 求解下列微分方程:1.解. 特征方程于是得解2.解. 特征方程,, ,得通解为由得到, , ,得特解九. 求解下列微分方程:1.解. 特征方程,齐次方程通解非齐次方程特解:考察==所以所以通解为2.解. 特征方程,齐次方程特解非齐次方程通解=(计算方法同上题, 取的虚部)所以由可得得解3.解. 特征方程,i)ii)所以一元微积分的应用一. 选择题1. 设f(x)在(- , + )内可导, 且对任意x1, x2, x1 > x2时, 都有f(x1) > f(x2), 则(a) 对任意x, (b) 对任意x,(c) 函数f(-x)单调增加 (d) 函数-f(-x)单调增加解. (a) 反例:, 有; (b) 显然错误. 因为, 函数单减;(c) 反例:,单调减少; 排除(a), (b), (c)后, (d)为答案. 具体证明如下:令F(x) = -f(-x), x1 > x2, -x1 < -x2. 所以F(x1) =-f(-x1) > -f(-x2) = F(x2).2. 设f(x)在[- , + ]上连续, 当a为何值时, 的值为极小值.(a) (b)(c) (d)解.为a的二次式.。

2014年初中毕业升学考试(四川资阳卷)数学(带解析)

2014年初中毕业升学考试(四川资阳卷)数学(带解析)

2014-2015学年度???学校1月月考卷第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)1.的相反数是()A. B.﹣2 C. D.22.下列立体图形中,俯视图是正方形的是()A.B.C.D.3.下列运算正确的是()A.a3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a44.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克 B.50×109千克 C.5×109千克 D.0.5×1011千克5.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形7.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55° B.60° C.65° D.80°下列说法不正确的是()A.甲得分的极差小于乙得分的极差B.甲得分的中位数大于乙得分的中位数C.甲得分的平均数大于乙得分的平均数D.乙的成绩比甲的成绩稳定9.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2 B.﹣2 C.﹣ D.﹣10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)11.计算:38+(﹣1)0= .12.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.13.函数y=1+中自变量x的取值范围是.14.已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是.三、计算题(题型注释)四、解答题(题型注释)17.先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.18.阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,试估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.19.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.20.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?21.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.22.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.23.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.24.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B (0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.五、判断题(题型注释)参考答案1.C 【解析】 试题分析:﹣21的相反数是﹣(﹣21)=21 考点:相反数2.A 【解析】试题分析:A 的俯视图是正方形,故A 正确; B 、D 的俯视图是圆,故B 、D 错误; C 的俯视图是三角形,故C 错误; 故选:A . 考点:三视图 3.B 【解析】试题分析:A 、a 3和a 4不能合并,故A 错误;B 、2a 3•a 4=2a 7,故B 正确;C 、(2a 4)3=8a 12,故C 错误;D 、a 8÷a 2=a 6,故D 错误; 故选B .考点:整式的运算 4.A 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.500亿=50000 000 000=5×1010考点:科学记数法 5.C 【解析】试题分析:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0, ∴图象过一、二、四象限, ∴图象不经过第三象限. 故选C .考点:一次函数图象与系数的关系 6.D 【解析】试题分析:A 可能是等腰梯形,也可能是平行四边形,故错误; B 、对角线互相垂直的平行四边形是菱形,故错误;C 、对角线垂直的梯形可以是任意的梯形,对角线相等的梯形是等腰梯形,故错误;D 、正确, 故选D .考点:命题与定理 7.B 【解析】试题分析:∵在Rt △ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处, ∴AB 1=21BC ,BB 1=B 1C ,AB=AB 1, ∴BB 1=AB=AB 1,∴△ABB 1是等边三角形, ∴∠BAB 1=60°,∴旋转的角度等于60°. 故选:B .考点:旋转的性质 8.D 【解析】试题分析:A 、甲的极差是20﹣10=10,乙的极差是:22﹣9=13,则甲得分的极差小于乙得分的极差,正确;B 、甲得分的中位数是(14+16)÷2=15,乙得分的中位数是:(12+14)÷2=13,则甲得分的中位数大于乙得分的中位数,正确;C 、甲得分的平均数是:(10+14+12+18+16+20)÷6=15,乙得分的平均数是:(12+11+9+14+22+16)÷6=14,则甲得分的平均数大于乙得分的平均数,正确;D 、甲的方差是:61[(10﹣15)2+(14﹣15)2+(12﹣15)2+(18﹣15)2+(16﹣15)2+(20﹣15)2]=335, 乙的方差是:61[(12﹣14)2+(11﹣14)2+(9﹣14)2+(14﹣14)2+(22﹣14)2+(16﹣14)2]=353,∵甲的方差<乙的方差, ∴甲的成绩比乙的成绩稳定; 故本选项错误; 故选D .考点:1、极差;2、中位数;3、平均数;4、方差 9.A 【解析】试题分析:连接OC ,∵∠AOB=120°,C 为弧AB 中点, ∴∠AOC=∠BOC=60°, ∵OA=OC=OB=2,∴△AOC 、△BOC 是等边三角形,∴AC=BC=OA=2,∴△AOC 的边AC 上的高是31222=-, △BOC 边BC 上的高为3,∴阴影部分的面积是32343221236021202-=⨯⨯⨯-⨯⋅ππ, 故选A .考点:1、扇形面积;2、等边三角形面积;3、圆周角定理 10.B 【解析】试题分析:∵抛物线和x 轴有两个交点, ∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间, ∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间, ∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0, ∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0, ∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1, ∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确; 即正确的有3个, 故选B .考点:二次函数图象与系数的关系 11.3 【解析】试题分析:原式=2+1=3 故答案为:3.考点:1、立方根;2、零指数幂;3、实数的运算 12.120 【解析】试题分析:1500×(1﹣48%﹣44%) =1500×8% =120.故答案为:120. 考点:扇形统计图 13.x ≥﹣3【解析】试题分析:由被开方数为非负数可知x+3≥0,所以x ≥﹣3 考点:函数自变量的取值范围 14.相离 【解析】试题分析:∵两圆的半径分别是方程x 2﹣5x+5=0的两个根, ∴两半径之和为5,∵⊙O 1与⊙O 2的圆心距为6, ∴6>5,∴⊙O 1与⊙O 2的位置关系是相离. 故答案为:相离.考点:1、根与系数的关系;2、圆与圆的位置关系 15.6 【解析】试题分析:连接BD ,DE ,∵四边形ABCD 是正方形,∴点B 与点D 关于直线AC 对称, ∴DE 的长即为BQ+QE 的最小值, ∵DE=BQ+QE=5342222=+=+AE AD ,∴△BEQ 周长的最小值=DE+BE=5+1=6. 故答案为:6.考点:1、正方形的性质;2、轴对称的应用 16.(3263,32321) 【解析】试题分析:由题意可得,每一个正三角形的边长都是上个三角形的边长的21,第六个正三角形的边长是161, 故顶点P 6的横坐标是3263,P 5纵坐标是83583433=--, P 6的纵坐标为32321323835=+,故答案为:(3263,32321). 考点:1、等边三角形性质的应用;2、规律题17.;3【解析】试题分析:先将每一个括号中的两项通分并利用同分母分式的加法法则计算,然后按照分式除法法则进行变形,约分即可得到最简结果,将a 的值代入计算即可求出值.试题解析:原式=÷=• =, 当a ﹣2=0,即a=2时,原式=3.考点:分式的化简求值18.(1)对消防知识“特别熟悉”的居民人数为225(2)恰好选中一男一女的概率为32. 【解析】试题分析:(1)先求出样本中对消防知识“特别熟悉”的居民所占的百分比,然后再乘以总数即可;(2)用A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出表格或树状图,再根据概率公式求解.试题解析:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;(2)用A 1、A 2表示两个男性管理人员,B 1,B 2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.考点:1、条形统计图;2、列表法或树状图法求概率19.这个标志性建筑物底部A 到岸边BC 的最短距离为(6﹣2)公里【解析】试题分析:要求这个标志性建筑物底部A 到岸边BC 的最短距离也就是要求出点A 到直线BC 的最短距离,过点A 作AD ⊥BC 于D ,然后利用所给条件求出AD 的长即可试题解析:过A 作AD ⊥BC 于D ,则AD 的长度就是A 到岸边BC 的最短距离.在Rt △ACD 中,∠ACD=45°,设AD=x ,则CD=AD=x ,在Rt △ABD 中,∠ABD=60°,由tan ∠ABD=,即tan60°=, 所以BD==x ,又BC=4,即BD+CD=4,所以x+x=4, 解得x=6﹣2.答:这个标志性建筑物底部A 到岸边BC 的最短距离为(6﹣2)公里.考点:1、垂线的性质;2、解直角三角形的应用 20.(1)一次函数的解析式为y=﹣2x ﹣3,反比例函数的解析式为y=﹣;(2)当﹣2<x <0或x >时,一次函数的函数值小于反比例函数的函数值.【解析】试题分析:(1)将A 、P 的坐标分别代入y=kx+b 即可得,将A 的坐标代入y=x∏中即可得 (2)求出交点B 的坐标,由A 的坐标,然后根据一次函数图象位于反比例函数图象的下方,可得答案.试题解析:(1)一次函数y=kx+b (k≠0)的图象过点P (﹣,0)和A (﹣2,1), ∴,解得,∴一次函数的解析式为y=﹣2x ﹣3,反比例函数y=x ∏(m≠0)的图象过点A (﹣2,1), ∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.考点:1、一次函数;2、反比例函数;3、函数与不等式21.(1)证明见解析(2)2【解析】试题分析:(1)由AB是⊙O的直径得到∠ADB=90°,则有∠B+∠BAD=90°,由AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,则可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1,AC=2,由勾股定理可得OC=3,则CD=OC﹣OD=2,由△CDE∽△CAD,根据相似比可计算出CE的长,从而可得AE的长试题解析:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.∴AE=AC-CE=考点:1、圆周角定理;2、切线的性质;3、相似三角形的判定与性质;4勾股定理22.(1)5 (2)采购空调15台时,获得总利润最大,最大利润值为10650元.【解析】试题分析:(1)由题意可设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,根据题中的不等量关系可列出关于x的不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)按常规可设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式,整理成顶点式形式,然后根据二次函数的性质求出最大值即可.试题解析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,则W=(1760﹣y1)x1+(1700﹣y2)x2,=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30(x﹣9)2+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.考点:1、一元一次不等式组的应用;2、二次函数的应用23.(1)证明见解析①证明见解析②n+1【解析】试题分析:(1)由BC垂直于l1可得∠ABP=∠CBE,由SAS即可证明;(2)①延长AP交CE于点H,由(1)及已知条件可得AP⊥CE,△CPD∽△BPE,从而有DP=PE,得出四边形BDCE是平行四边形,从而可得到CE//BD,问题得证;②由已知条件分别用S表示出△PAD和△PCE的面积,代入即可.试题解析:(1)∵BC⊥直线l1,∴∠ABP=∠CBE,在△ABP和△CBE中∴△ABP≌△CBE(SAS);(2)①延长AP交CE于点H,∵△ABP≌△CBE,∴∠PAB=∠ECB,∴∠PAB+∠AEE=∠ECB+∠AEH=90°,∴AP⊥CE,∵=2,即P为BC的中点,直线l1//直线l2,∴△CPD∽△BPE,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE//BD,∵AP⊥CE,∴AP⊥BD;②∵=N∴BC=n•BP,∴CP=(n﹣1)•BP,∵CD//BE,∴△CPD∽△BPE,∴==n﹣1,即S2=(n﹣1)S,∵S △PAB =S △BCE =n•S,∴S △PAE =(n+1)•S, ∵==n ﹣1,∴S 1=(n+1)(n ﹣1)•S, ∴==n+1.考点:1、全等三角形的性质与判定;2、相似三角形的性质与判定;3、平行四边形的性质与判定24.(1)y=﹣x 2+2x+3(2)(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3)(3)当0<m≤时,S=﹣m 2+3m ;当<m <3时,S=m 2﹣3m+.【解析】试题分析:(1)根据对称轴x=1、与x 轴的一个交点为A (3,0)、与y 轴的交点为B (0,3)可得关于a 、b 、c 的方程组,解出即可(2)分①MA=M ;②AB=AM ;③AB=BM 三种情况讨论可得点M 的坐标.(3)记平移后的三角形为△PEF .由待定系数法可得直线AB 的解析式为y=﹣x+3.易得直线EF 的解析式为y=﹣x+3+m .根据待定系数法可得直线AC 的解析式.连结BE ,直线BE 交AC 于G ,则G (,3).在△AOB 沿x 轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m <3时;讨论可得用m 的代数式表示S . 试题解析:(1,解得⎪⎩⎪⎨⎧==-=321c b a ,经检验均为方程组的解,故抛物线的解析式为y=﹣x 2+2x+3.(2)①当MA=MB 时,M (0,0);②当AB=AM 时,M (0,﹣3);③当AB=BM 时,M (0,3+3)或M (0,3﹣3).所以点M 的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF .设直线AB 的解析式为y=kx+b ,则,解得. 则直线AB 的解析式为y=﹣x+3.△AOB 沿x 轴向右平移m 个单位长度(0<m <3)得到△PEF ,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.考点:1、抛物线的对称轴;2、待定系数法求函数解析式;3、分类思想、方程思想的应用。

2014考研数学(一)真题

2014考研数学(一)真题

2014年全国硕士研究生招生考试数学(一)真题一、选择题(1—8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求)1.下列曲线有渐近线的是( )。

(A)(B)sin y x x =+2sin y x x =+ (C)1siny x x =+(D)21siny x x =+2.设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0上( )。

,1](A)当时,()0f x '≥()()f x g x ≥ (B)当()0f x '≥时,()()f x g x ≤ (C)当时,()0f x ''≥()()f x g x ≥(D)当()0f x ''≥时,()()f x g x ≤3.设是连续函数,则110(,)ydy f x y dx -=⎰⎰( )。

(A)110010(,)(,)x dx f x y dy dx f x y dy--+⎰⎰⎰(B)11001(,)(,)xdx f x y dy dx f x y dy--+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r ++⎰⎰⎰⎰ππθθπθθθθθdrθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r ++⎰⎰⎰⎰ππθθπθθθθθrdrθ4.若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=( )。

(A)2sin x(B)2cos x(C)2sin x π(D)2cos x π5.行列式0000000aba bc d c d =( )。

(A)(B)(C)(D)2(ad bc -))2(ad bc --2222a dbc -2222b c a d -6.设123,,ααα均为三维向量,则对任意常数,向量组l k ,132,k 3l αααα++线性无关是向量组123,,ααα线性无关的( )。

2014年数学一真题与答案解析

2014年数学一真题与答案解析

2014年全国硕士研究生入学统一考试数学一2014年全国硕士研究生入学统一考试数学一试题答案一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 下列曲线有渐近线的是 ( )(A)sin y x x =+ (B)2sin y x x =+ (C)1sin y x x =+ (D)21sin y x x=+ 【答案】(C)【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=,又 11lim[sin ]lim sin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选(C).(2) 设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥ (D) 当()0f x ''≥时,()()f x g x ≤ 【答案】(D)【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选(D).2014年全国硕士研究生入学统一考试数学一(3) 设()f x 是连续函数,则110(,)ydy f x y dx -=⎰⎰( )(A) 1100010(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰ (B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ++⎰⎰⎰⎰ππθθπθθθθθθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ++⎰⎰⎰⎰ππθθπθθθθθθ【答案】(D) 【解析】1101101(,)(,)(,)yxdy f x y dx dx f x y dy dx f x y dy ---=+⎰⎰⎰⎰⎰112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr +=+⎰⎰⎰⎰ππθθπθθθθθθ.故选(D). (4) 若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=32260y xy x y +++= ( )(A) 2sin x (B) 2cos x (C) 2sin x π (D) 2cos x π 【答案】(A) 【解析】2222(cos sin )(sin )2cos (sin )cos x a x b x dx x b x a x x b x a x x dx --⎡⎤--=---+⎣⎦⎰⎰ππππ22222(2sin sin cos )x bx x b x a x dx -=-++⎰ππ2222202(sin cos 2sin )x dx b x a x bx x dx -=++-⎰⎰πππ223124()422223a b b =+⋅-⋅+πππ 2232(4)3a b b =+-+ππ2014年全国硕士研究生入学统一考试数学一2232(2)43a b ⎡⎤=+--+⎣⎦ππ当0,2a b ==时,积分最小. 故选(A).(5) 行列式0000000a b abc d c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a dbc - (D)2222b c a d - 【答案】(B)【解析】由行列式的展开定理展开第一列0000000000000000a b a b a b a ba c d cbcd d c d c d=-- ()()ad ad bc bc ad bc =--+- 2()ad bc =--.故选(B).(6) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组()123=B ααα线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】(A) 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,A . 若123,,ααα线性无关,则2014年全国硕士研究生入学统一考试数学一()()()2r A r BC r C ===,故()0.3P A B -=线性无关.()P B A -= 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数402Q p =-,向量p 线性无关是向量D 线性无关的必要非充分条件. 故选(A).(7) 设随机事件A 与B 相互独立,且()0.5P B =,()0.3P A B -=,则()P B A -= ( ) (A)0.1 (B)0.2 (C)0.3 (D)0.4 【答案】(B)【解析】 已知a =,A 与()2123121323,,24f x x x x x ax x x x =-++独立,a ,()()()()()()P A B P A P AB P A P A P B -=-=-()0.5()0.5()0.3P A P A P A =-==,则 ()0.6P A =,则()()()()()()0.50.50.60.50.30.2P B A P B P AB P B P A P B -=-=-=-⨯=-=.故选(B).(8) 设连续性随机变量1X 与2X 相互独立,且方差均存在,1X 与2X 的概率密度分别为1()f x 与2()f x ,随机变量1Y 的概率密度为1121()[()()]2Y f y f y f y =+,随机变量2121()2Y X X =+,则( )(A) 12EY EY >,12DY DY > (B) 12EY EY =,12DY DY =(C) 12EY EY =,12DY DY < (D) 12EY EY =,12DY DY > 【答案】(D)【解析】 用特殊值法. 不妨设12,(0,1)X X N ,相互独立. 22212221())2y y y Y f y ---==,1(0,1)Y N .2014年全国硕士研究生入学统一考试数学一2121()2Y X X =+,212212111()(()())0,()(()())242E Y E X E X D Y D X D X =+==+=. 12121()()0,()1()2E Y E Y D Y D Y ===>=.故选(D).二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 曲面22(1sin )(1sin )z x y y x =-+-在点(1,0,1)处的切平面方程为__________. 【答案】21x y z --=【解析】由于22(1sin )(1sin )z x y y x =-+-,所以22(1sin )cos x z x y x y '=--⋅,(1,0)2x z '=;2cos 2(1sin )yz x y y x '=-+-,(1,0)1y z '=-. 所以,曲面在点(1,0,1)处的法向量为{2,1,1}n =--. 故切平面方程为2(1)(1)(0)(1)0x y z -+----=,即21x y z --=.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.【答案】1【解析】由于()f x '2(1)x =-,[0,2]x ∈,所以2()(1)f x x C =-+,[0,2]x ∈.又()f x 为奇函数,(0)0f =,代入表达式得1C =-,故2()(1)1f x x =--,[0,2]x ∈.()f x 是以4为周期的奇函数,故2(7)(18)(1)(1)[(11)1]1f f f f =-+=-=-=---=.(11) 微分方程(ln ln )0xy y x y '+-=满足条件3(1)y e =的解为y =__________.2014年全国硕士研究生入学统一考试数学一【答案】21(0)x y xe x +=>【解析】(ln ln )0xy y x y '+-=ln()y y y x x'⇒=. 令yu x=,则y x u =⋅,y xu u ''=+,代入原方程得 ln xu u u u '+=(ln 1)u u u x-'⇒=分离变量得,(ln 1)du dxu u x=-,两边积分可得 ln |ln 1|ln u x C -=+,即ln 1u Cx -=.故ln1y Cx x -=. 代入初值条件3(1)y e =,可得2C =,即ln 21yx x=+. 由上,方程的解为21,(0)x y xe x +=>.(12) 设L 是柱面221x y +=与平面0y z +=的交线,从A 0x =轴正向往z 轴负向看去为逆时针方向,则曲线积分Lzdx ydz +=⎰ __________.【答案】π【解析】由斯托克斯公式,得0Ldydz dzdx dxdyzdx ydz dydz dzdx x y z z y∑∑∂∂∂+==+∂∂∂⎰⎰⎰⎰⎰xyD dydz dzdx =+=⎰⎰π,其中22{(,)|1}xy D x y x y =+≤.(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-2014年全国硕士研究生入学统一考试数学一【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.(14) 设总体X 的概率密度为()22,2,;30,xx f x ⎧<<⎪=⎨⎪⎩θθθθ其他,其中θ是未知参数,12,,,n X X X 为来自总体X 的简单样本,若221()nii E cX==∑θ,则c =_________.【答案】25n【解析】 222222()(;)3x E X x f x dx x dx +∞-∞==⋅⎰⎰θθθθ 2422215342x =⋅=θθθθ,222215[]()2ni i n E cX ncE X c ===⋅=∑θθ, 25c n∴=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xtx t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)lim lim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim [(e 1)]xx x x →+∞=--2014年全国硕士研究生入学统一考试数学一12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)设函数()y f x =由方程32260y xy x y +++=确定,求()f x 的极值. 【解析】对方程两边直接求导:2223220y y y xyy x y xy '''++++= ①令1x 为极值点,则由极值必要性知:1()0y x '=,代入①式得:2111()2()0y x x y x +=.即1()0y x =或11()2y x x =-. 将其代入原方程知:1()0y x =(舍去),即11()2y x x =-. 代入,有 33311184260x x x -+-+=,∴11x =. 即(1)2y =-,(1)0y '=.对①式两边再求导:22226()322()222220y y y y yy x y xyy yy xy x y y xy ''''''''''''+++++++++=.将(1)2y =-,(1)0y '=代入得:4(1)09y ''=>. ∴()y f x =在1x =处取极小值,(1)2y f ==-.(17)(本题满分10分)设函数()f u 具有二阶连续导数,()cos xz f e y =满足()222224cos .x xz z z e y e x y∂∂+=+∂∂若()()00,00f f '==,求()f u 的表达式.【解析】由()cos ,xz f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂,2014年全国硕士研究生入学统一考试数学一()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x x z zz e y e x y∂∂=+∂∂,代入得,()()22cos 4[cos cos ]x x x x x f e y e f e y e y e ''⋅=+,即()()cos 4cos 4cos x x x f e y f e y e y ''-=,令cos =,x e y t 得()()44f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+ 设特解*y at b =+,代入方程得1,0a b =-=,特解*y t =- 则原方程通解为()2212=tty f t c e c et -=+-由()()'00,00f f==,得1211,44c c ==-, 则()2211=44u uy f u e e u -=-- (18)(本题满分10分)设∑为曲面22z x y =+(z 1)≤的上侧,计算曲面积分33(1)(1)(1)I x dydz y dzdx z dxdy ∑=-+-+-⎰⎰.【解析】∑非闭,补1∑:平面1z =,被22z x y =+所截有限部分下侧,由Gauss 公式,有 133+(1)(1)(1)x dydz y dzdx z dxdy ∑∑--+-+-⎰⎰223(1)3(1)1x y dV Ω⎡⎤=-+-+⎣⎦⎰⎰⎰ 223()667x y dV xdV ydV dV ΩΩΩΩ=+--+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2014年全国硕士研究生入学统一考试数学一∑和1∑所围立体为Ω,Ω关于yoz 面和zox 面对称,则0xdV ydV ΩΩ==⎰⎰⎰⎰⎰⎰22221221()x y x y x y dV dxdy dz +Ω+≤+=⎰⎰⎰⎰⎰⎰=21220(1)d r r rdr -⎰⎰πθ461011112()2()46466r r =-=-=πππ22112x y zdV dzdxdy zdz Ω+≤===⎰⎰⎰⎰⎰⎰⎰ππ173746222∑+∑∴-=⋅+⋅=+=⎰⎰πππππ 14∑+∑∴-=⎰⎰π又22111(1)(11)0x y z dxdy dxdy ∑∑+≤=-=--=⎰⎰⎰⎰⎰⎰1114I ∑+∑∑∴=-=-⎰⎰⎰⎰π(19)(本题满分10分)设数列{}{},n n a b 满足02n a <<π,02n b <<π,cos cosb n n n a a -=,且级数1nn b∞=∑收敛.(I) 证明:lim 0n n a →∞=.(II) 证明:级数1nn na b ∞=∑收敛. 【解析】(I )1nn b∞=∑收敛 lim 0n n b →∞∴=cos cos 2sinsin 022sin 02n n n n n n n n n a b a ba ab a b+-=-=->-∴<又424nn a b --<< ππ,042n n a b-∴-<<π2014年全国硕士研究生入学统一考试数学一即:n n a b <又0,n n a b << lim 0n n b →∞= lim 0n n a →∞∴=(II )证明:由(I )2sinsin 22n n n n n a b a ba +-=- 2sin sin 22n n n nn n na b a b a b b +--∴= 222222222n n n nn n n n n n n a b b a b a b b b b b +--≤=<= 又 1n n b ∞=∑收敛 ∴12nn b ∞=∑收敛,1n n na b ∞=∑收敛(20)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTTe e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ2014年全国硕士研究生入学统一考试数学一123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(21)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪⎪⎝⎭相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,()12001B n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=, 则A 的特征值为n ,0(1n -重).A 属于n =λ的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0=λ有1n -个线性无关的特征向量,故A 相似于对角阵0=0n ⎛⎫ ⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0=λ有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B . (22)(本题满分11分)设随机变量X 的概率分布为{}{}112,2P X P X ====在给定X i =的条件下,随机变量Y 服从均匀分布()0,,(1,2)U i i =.(I )求Y 的分布函数()Y F y ; (II )求EY .【解析】(I )设Y 的分布函数为(y)Y F ,则2014年全国硕士研究生入学统一考试数学一{}{}{}{}{}()1|12|2Y F y P Y y P X P Y y X P X P Y y X =≤==≤=+=≤={}{}11|1|222P Y y X P Y y X =≤=+≤= 当0y <时,()0Y F y =;当01y ≤<时,13()(y )224Y y yF y =+=; 当12y ≤<时,1()(1)22Y yF y =+;当2y ≥时,()1Y F y =. 所以Y 的分布函数为0,03,014()1(1),12221,2Y y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II) Y 的概率密度为3,01,41(y),12,40,Y y f y ⎧<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其他.120131()=()d 44Y E Y f y y y dy y dy +∞-∞=+⎰⎰⎰ =31113(41)42424⨯+⨯-=(23)(本题满分11 分)设总体X 的分布函数为21(;)0,0,0,x x x e F x -≥<⎧⎪-=⎨⎪⎩θθ其中θ是未知参数且大于2014年全国硕士研究生入学统一考试数学一零.12,,,n X X X 为来自总体X 的简单随机样本.(I )求()E X ,2()E X ;(II )求θ的最大似然估计量nθ;(III )是否存在实数a ,使得对任何0>ε,都有{}lim 0n n P a →∞-≥=θε?【解析】X 的概率密度为22,0(;)(;)0,xx e x f x F x -⎧⎪>'==⎨⎪⎩θθθθ其它 (I )22()(;)x xE X xf x dx xedx -+∞+∞-∞==⎰⎰θθθ222[]x x x xdexeedx ---+∞+∞+∞=-=--⎰⎰θθθ2x edx -+∞=⎰θ12==22222()(;)x xE X x f x dx x edx -+∞+∞-∞==⎰⎰θθθ222220[2]x x x x dex eexdx ---+∞+∞+∞=-=--⋅⎰⎰θθθ22x xedx -+∞=⎰θθθ=θ2014年全国硕士研究生入学统一考试数学一(II )似然函数2112,0()(;)0,ix n i ni i i x e x L f x -==⎧⎪∏>=∏==⎨⎪⎩θθθθ其它当0(1,,)i x i n >=⋅⋅⋅时,212()i x nii x L e-==∏θθθ,21ln ()[ln 2ln ]ni i i x L x ==--∑θθθ222211ln ()11[][]0n ni i i i x d L x n d ===-+=-=∑∑θθθθθθ 解得 211n i i x n ==∑θ所以,θ的最大似然估计量为211ˆnni i X n ==∑θ (III )依题意,问ˆnθ是否为θ的一致估计量. 2211ˆ()()()nni i E E X E X n ====∑θθ 242211ˆ()()[()()]nD D XE X E X n n==-θ 24442()(;)x xE X x f x dx x edx -+∞+∞-∞==⎰⎰θθθ2224430[4]x x x x dex eex dx ---+∞+∞+∞=-=--⋅⎰⎰θθθ2304x x edx -+∞=⎰θ22222022[2]x x x x dex eexdx ---+∞+∞+∞=-=--⋅⎰⎰θθθθθ2014年全国硕士研究生入学统一考试数学一24x xedx -+∞=⎰θ2222()x x ed -+∞=--⎰θθθ22=θ2221ˆ()[2]nD n n∴=-=θθθθ ˆlim ()0n n D →∞=θˆn∴θ为θ的一致估计量 a ∴=θ。

2014年全国硕士研究生入学统一考试农学门类联考数学试题

2014年全国硕士研究生入学统一考试农学门类联考数学试题

2
2014 年全国硕士研究生入学统一考试数学一
1 X 发生的次数,则 P Y 2 ________. 2
三、解答题:15~23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、证 ... 明过程或演算步骤. (15)(本题满分 10 分) 设曲线 y x3 2 x x C 在其拐点处的切线通过坐标原点,求常数 C. (16)(本题满分 10 分) 求极限 lim
2014 年全国硕士研究生入学统一考试数学一
0 2 1 设矩阵 A 0 1 0 相似于对角矩阵. 1 a 0
(I)求 a 的值; (II)求可逆矩阵 P 和对角矩阵 ,使得 P AP . (22)(本题满分 11 分)
1
1 2 1, X 0 x , 1 x 2 设随机变量 X 的概率密度 f ( x) 3 .令随机变量 Y . 1, X 0 0, 其他
4
(I)求 Y 的概率分布; (II)求 Cov( X , Y ) . (23)(本题满分 11 分) 设二维随机变量 ( X , Y ) 服从 D 上的均匀分布,其中 D 是由直线 y x 和曲线 y x 2 围成的平面 区域. (I)求 X 和 Y 的边缘概率密度 f X ( x) 和 fY ( y ) ; (II)求 E ( XY ) .
2014 年全国硕士研究生入学统一考试数学一
2014 年全国硕士研究生入学统一考试农学门类联考 数学试题
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题 目要求的,请将所选项前的字母填在答题纸 指定位置上. ... (1)设 f ( x) 可导, f ( x) e (A) (1)

黑龙江省龙东地区2014年初中毕业学业统一考试数学试题及评分标准(农垦、森工)

黑龙江省龙东地区2014年初中毕业学业统一考试数学试题及评分标准(农垦、森工)

黑龙江省龙东地区2014年初中毕业学业统一考试数学试题(农垦、森工)一、填空题(每题3分,满分30分)1.财政部长楼继伟在向全国人大常委会作的报告中指出,“全国财政科技支出从2006年的1688.5亿元提高到2012年的约5600.1亿元,7年累计2.42万亿元,占全国同期财政支出的4.37%”。

1688.5亿元用科学记数法表示为 亿元。

2.函数y =2x -1中,自变量x 的取值范围是 。

3.如图,平行四边形ABCD 中,对角线AC 、BD 交于O ,不添加任何辅助线,平行四边形满足 条件时,平行四边形ABCD 是矩形。

(填一个即可) 4.某学校三年二班有52名学生,从该班中选取2名学生做值周生,该班李明同学被选中的概率为 。

5.不等式4x -13<3的解集为 。

6.如果等腰三角形的两边长是12cm 和6cm ,那么它的周长是 cm 。

7.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第7次射击不能少于 环。

8.⊙O 的直径为10,两条弦AB ∥CD ,OE ⊥AB 于点E ,OF ⊥CD 于点F ,AB =6,CD =8,则EF = 。

9.在边长为4的等边三角形的一边上有任意点P ,点P 到时另两边的距离和为 。

10.如图,直径为1个单位长度的圆上一点A 在数轴上的坐标为-1,该圆沿数轴向右滚动2014周,A 点到达位置A ’处,则A ’的坐标为 。

二、选择题(每题3分,满分30分) 11.下列运算正确的是( )A .18-8=10B .(-3xy )2=6x 2y 2C .(-21)0=1D .a 6÷a 2=a 3 12.下列交通标志中,成轴对称图形的是( )A .B .C .D .13.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,这个几何体的主视图是( )A .B .C .D .14.在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆半径,BC 为高的圆锥的侧面积是S 1,若以BC 为底面圆半径,AC 为高的圆锥的侧面积是S 2,则( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .S 1,S 2的大小关系不确定 15.若a <1,则化简1-a +|a -1|等于( ) A .2-2a B .2a C .2 D .016.某中学数学兴趣小组12名成员的年龄情况统计如下表,这个小组成员年龄的平均数和中位数分别是17.如图,等边三角形ABC 中,在AC 边上有一动点P ,过P 点作PD ⊥BC 于点D ,动点P 从C 点开始第3题图第10题图向A 点运动,运动到A 点停止,设PD 为y ,PC 为x ,则y 与x 之间的函数关系用图象表示大致是( )A B C D18.在平面直角坐标系中,同P 为直线y =-x +4上的一个动点,O 为坐标原点,则OP 的最小值为( ) A .2 B .2 2 C . 6 D .1019.某班级为筹备运动会,准备用320元购买两种运动服(两种都要买),其中甲种运动服20元/套,乙种运动服35/套,在钱都用尽的条件下,购买的方案共有( )种 A .1 B .2 C .3 D .4 20.如图,在菱形ABCD 中,∠A =60°,E 、F 分别是AB 、AD 的中点DE 、BF 相交天点G ,连接BD 、CG 。

1987年-2014年考研数学一历年真题完整版(Word版)

1987年-2014年考研数学一历年真题完整版(Word版)

1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+及121111x y z +++==都平行且过原点的平面方程为_____________.2z t =+(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰Ñ= _____________.(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x∂∂∂∂ (2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设2()()lim1,()x af x f a x a →-=--则在x a =处(A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值(D)()f x 的导数不存在(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值 (A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s (D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)nn k nn∞=+-∑ (A)发散 (B)绝对收敛 (C)条件收敛 (D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于(A)a (B)1a(C)1n a -(D)n a六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑g 的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分)问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),x x f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x= 10 01x ≤≤其它,()Y f y = e 0y - 00y y >≤,求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域. (3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰Ò二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),tx x f t t x →∞=+则()f t '= _____________.(2)设()f x 连续且310(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x = 22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是(A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小 (C)比x ∆低阶的无穷小 (D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处(A)取得极大值 (B)取得极小值 (C)某邻域内单调增加 (D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则(A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处(A)条件收敛(B)绝对收敛 (C)发散 (D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B)12,,,s αααL 中任意两个向量均线性无关(C)12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D)12,,,s αααL 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x y u yf xg y x =+其中函数f 、g 具有二阶连续导数,求222.u ux y x x y∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,x y y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M沿直线y =(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--= _____________.(2)设()f x 是连续函数,且10()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lx y ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当0x >时,曲线1sin y x x=(A)有且仅有水平渐近线 (B)有且仅有铅直渐近线 (C)既有水平渐近线,又有铅直渐近线 (D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是(A)(1,1,2)-(B)(1,1,2)-(C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,,n b f x n xdx n π==⎰L 则1()2S -等于(A)12- (B)14-(C)14 (D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中(A)必有一列元素全为0 (B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y ∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分)将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分)设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln e x x π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本题满分6分)问λ为何值时,线性方程组13x x λ+=123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值. (2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B U 的概率()P A B U =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+ (1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim()xx x a x a →∞+-=_____________.(3)设函数()f x =1011x x ≤>,则[()]f f x =_____________.(4)积分222ey xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα 则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),x xF x f t dt -=⎰则()F x '等于(A)e (e )()x x f f x ---- (B)e (e )()x x f f x ---+ (C)e (e )()x x f f x ---(D)e (e )()x x f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x + (B)1[()]n n f x + (C)2[()]n f x(D)2![()]n n f x(3)设a 为常数,则级数21sin()[n na n ∞=-∑ (A)绝对收敛(B)条件收敛 (C)发散 (D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠ (C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα (B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ (D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y ∂∂∂(3)求微分方程244e x y y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数0(21)n n n x ∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F r 作用(见图).F r的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F r 对质点P所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===L 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设 21cos x t y t=+=,则22d y dx =_____________.(2)由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=-(A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x (B)2e ln 2x (C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20).x π+→(2)设n r是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n r的方向导数. (3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线220y z x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n ∞=∑的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x =由方程e cos()0x y xy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu =_____________.(3)设()f x =211x-+ 00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a ba b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L其中0,0,(1,2,,).i i a b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限 (A)等于2 (B)等于0 (C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(n n an ∞=--∑常数0)a >(A)发散(B)条件收敛(C)绝对收敛 (D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为(A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求0x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y∂∂∂(3)设()f x =21e xx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e x y y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++r r r r的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c ++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F r 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫ ⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)xF x dt x =>⎰的单调减少区间为_____________.(2)由曲线 223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________. (5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),x f x t dt g x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π(B)4π(C)3π(D)2π (4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1 (B)6t =时P 的秩必为2(C)6t ≠时P 的秩必为1 (D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sin cos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.b a a b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2x f x x -=-∞<<+∞(1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011limcot ()sin x x x π→-= _____________. (2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xx u y -=则2u x y∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M << (B)M P N << (C)N M P << (D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件 (C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关(B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关(D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设 2221cos()cos()t x t y t t udu==-⎰,求dydx 、22d y dx 在t =.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x+⎰四、(本题满分6分)计算曲面积分2222,S xdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim0,x f x x→=证明级数11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X YZ =+(1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ(3)问X与Y是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________.(3)设()2,⨯=a b c g 则[()()]()+⨯++a b b c c a g =_____________. (4)幂级数2112(3)n n nn n x ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件 (B)充分条件但非必要条件 (C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设(1)ln(1n n u =-+则级数 (A)1n n u ∞=∑与21n n u ∞=∑都收敛(B)1n n u ∞=∑与21n n u ∞=∑都发散(C)1n n u ∞=∑收敛,而21n n u ∞=∑发散(D)1n n u ∞=∑收敛,而21n n u ∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设10(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4, 则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分) 设随机变量X 的概率密度为()X f x = e 0x - 00x x ≥<,求随机变量e X Y =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a →∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e x y y y '''-+=的通解为_____________.(4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim 1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值 (C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >=L 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑ (A)绝对收敛(B)条件收敛(C)发散 (D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),x f f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于 (A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +===L 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z zx x y y∂∂∂+-=∂∂∂∂简化为20,z u v ∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x ⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,T ξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T =ξξ (2)当1T =ξξ时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2, (1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ===又设max(,),min(,).X Y ξηξη==。

1987年~2014年数学三全国考研真题(详解和评分标准).doc

1987年~2014年数学三全国考研真题(详解和评分标准).doc

2016年考研政治新大纲《毛中特》变动考点2016考研政治大纲终于揭开了面纱,经与去年大纲比对,毛中特说法调整多一些,以下为变动的内容(红色是重点考点;蓝色是删除考点;绿色是转变考点):1 / 72 / 73 / 74 / 7赠送以下资料考研英语作文模板(英语一)大作文5 / 7考研英语大作文一般是看图写作,从一幅图分析含义及意义,所以只需要几个好的模板,根据题目套上去就行了。

题目反映的意义无非三种:积极,消极和中性。

所以我准备了三个不同类型的模板,到时候大家根据题目自己分析一个写作方向,再结合模板,把内容填进模板就好了。

模板只是保证文章结构不过于混乱,具体的写作还希望大家多背历年写作真题和资料书上的作文,总结出自己喜欢的句子背下来,背熟之后根据原文的中文意义用自己的语言再把文章写出来,这样才能得到更好的效果。

切记:模板只能起到应急和保证结构的作用,真正写好作文拿高分还需要自己不断地背诵和练习,祝大家考试顺利!模板一:积极(图画反映了什么积极现象,我们应提倡…)………(开头:为了避免跟大部分模板有重复之嫌,我们可以在第一句写一句跟作文话题有关的句子,俗语和谚语皆可,也可以是一句关于话题的感悟。

如果实在写不出可以不写)……….,The picture above symbolically/subtly illustrate/demonstrate that ……(描述图画)……。

Below the drawing,there is a caption which indicates……(图片下的标题)………..。

或者:【on the drawing,there are huge Chinese characters reads :……(图片上的中文字)…….】Undoubtedly,we can deduce from the cartoon that the painter is trying to show us that ......(主旨)...........。

初中七年级下数学竞赛试卷习题含答案

初中七年级下数学竞赛试卷习题含答案

⋯⋯⋯⋯ 第二学期校际联考⋯ _ ⋯⋯_七年级数学试卷_ ⋯__ ⋯_ ⋯题_1617 18192021 222324 25总分_ ⋯一二_ 次__ 得__ ⋯⋯分名校⋯说明:本卷共 8页,25题,总分120分,考试时间共120分钟。

⋯_ 答 温馨提示:亲爱的同学们,请相信自己,认真审题,沉稳作答,就必定能考出好成⋯ __ ⋯绩,祝你成功!__ ⋯ __ ⋯ 一、精心选一选:(每题给出四个供选答案,此中只有一个是正确的,把正确的答__ 准 _ 案代号填放下表相应题号下的空格内。

每题3分,共30分。

)_ ⋯ 别⋯ 题班1 2 3 4 5 67 8 9 10 ⋯号 ⋯不答⋯案 _ ⋯⋯ .以下计算正确的选项是( ) __ ⋯1_ 内 4 4 16 2 3 5 _ ?x x )x_A .xB .x ?(x_ ⋯__ ⋯ _ 2 ?a 2 2a 2 D .a 2 a 3 a 5_ ⋯ C .a号 ⋯2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( )考⋯A .相等B .互补C .互余D .不可以确立 ⋯ 3.用科学计数法表示近似数的正确的选项是()⋯⋯A . 10 1B .10 2C . 10 1D . 10 -2封_4.以下说法正确的选项是() ⋯__ ⋯ b_ A .0不是单项式 B . 是单项式_ ⋯_ a_ ⋯_ 1_ 密3 2 3_ C . 1多项式 D .单项式 xy 的次数是3,系数是_ ⋯x名5.以以下图所示,已知AB∥CD∥EF,且CG∥AF,则图中与∠BAF 相等的角的个数姓⋯ ⋯是( ) A B⋯C .4个D .9个 ⋯A .7个B .3个CD ⋯⋯ EG F⋯⋯⋯七年数学卷第1共86.用长分别为10cm,30cm,40cm,50cm的四段线段,任取此中三段线段能够构成不一样的三角形有()个A.0B.1C.2D.37.已知等腰三角形的一个外角为1100,则它的一个底角等于()A.550B.700C.550或700D.不可以确立8.已知以下条件,不可以独一画出一个三角形的是()A.AB=5cm,∠A=700,∠B=500B.AB=5cm,∠A=700,∠C=500C.AB=5cm,AC=4cm,∠C=500D.AB=5cm,AC=4cm,∠A=500 9.已知a255,b344,c533,d622,那么a,b,c,d从小到大的次序是()A.a<b<c<dC.b<a<c<dB.a<b<d<cD.a<d<b<c10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)(232+1)+1结果的个位数是()A.2B.4C.6D.7二、耐心填一填:(把答案填放下表相应的空格里。

2024二年级部编版下册数学暑假快乐闯关卷突破版

2024二年级部编版下册数学暑假快乐闯关卷突破版

2024二年级部编版下册数学暑假快乐闯关卷突破版一、选择题 (共10题)第(1)题甲、乙、丙、丁四位同学在校运动会百米赛跑中分别获得了第一、第二、第三、第四名。

陈雪说:“甲是第二名,乙是第三名。

”张枫说:“丙是第四名,乙是第二名。

”李欢说:“丁是第二名,丙是第三名。

”顾晶说:“丁是第一名,乙是第三名。

”又知道陈雪、张枫、李欢、顾晶每人都只说对了一半,那么丙是第()名。

A.一B.三C.四第(2)题“六一”儿童节,新华书店抽奖结果揭晓啦,大奖号码是由6、8、9组成的三位数,这个三位数十位上的数字不是最大的,个位上的数字是最小的。

大奖号码是()。

A.689B.896C.986第(3)题下面的运动方式属于旋转的是( )。

A.推拉抽屉B.荡秋千C.乘电梯从一楼到三楼第(4)题小明家买电冰箱花了1800元,小红家在商场打折时买了同一款式的冰箱花了1500元,那么小红家比小明家少花()元。

A.200B.300C.500第(5)题()只青蛙12条腿。

A.2B.3C.6第(6)题下面各数中,一个零也不读的是()。

A.4038B.9600C.2007第(7)题……按这样的规律排下去,第30个图形是()。

A.B.C.第(8)题把6枝花插在3个花瓶里,平均每个花瓶插几枝?列式为()。

A.(枝)B.(枝)C.(枝)第(9)题把15-9=6,6×8=48这两个算式合并成综合算式是()。

A.15—9×8B.8×5—9C.(15—9)×8第(10)题14÷5=2……()。

A.1B.2C.3D.4二、填空题 (共8题)第(1)题分一分,填一填。

(1)20块糖,每______块一份,可以分成______份。

列式:______。

(2)18个球,平均放在3个筐里,每个筐里放______个。

列式:______。

第(2)题一个数由8个千和8个一组成,这个数是( ),它后面第三个数是( )。

山东省日照市(新版)2024高考数学部编版测试(冲刺卷)完整试卷

山东省日照市(新版)2024高考数学部编版测试(冲刺卷)完整试卷

山东省日照市(新版)2024高考数学部编版测试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题某导航通讯的信号可以用函数近似模拟,若函数在上有3个零点,则实数的取值范围为()A.B.C.D.第(2)题已知递增正整数数列满足,则下列结论中正确的有()(1)、、可能成等差数列;(2)、、可能成等比数列;(3)中任意三项不可能成等比数列;(4)当时,恒成立.A.0个B.1个C.2个D.3个第(3)题若,,则()A.2B.-2C.D.第(4)题关于函数有如下四个命题,其中正确的个数是()①是偶函数;②图象关于对称;③的最小值为-2;④在上单调递增;A.①②B.①④C.①②④D.①③④第(5)题设、分别为双曲线的左右焦点,O为坐标原点,过左焦点作直线与圆切于点E,与双曲线右支交于点P,且为等腰三角形,则双曲线的离心率为()A.B.2C.D.第(6)题已知某学校有1800名学生,现在采用系统抽样的方法抽取40人,调查他们对学校食堂的满意程度,将1800人按1,2,3,,1800随机编号,则在抽取的40人中,编号落在,内的人数为()A.6B.5C.4D.3第(7)题设样本数据的均值和方差分别为1和4,若为非零常数,,则的均值和方差分别为A.B.C.D.第(8)题18世纪数学家欧拉研究调和级数得到了以下的结果:当很大时,(常数).利用以上公式,可以估计的值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题对任意,记,并称为集合的对称差.例如:若,则.下列命题中,为真命题的是()A.若且,则B.若且,则C.若且,则D.存在,使得第(2)题已知,且,则下列说法正确的是()A.有最小值4B.有最小值C .有最小值D.的最小值为第(3)题已知抛物线为上位于焦点右侧的一个动点,为坐标原点,则()A.若,则B.若满足,则C.若交于点,则D.直线交于两点,且,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题杭州第19届亚运会于2023年9月23日至10月8日举办,杭州亚运会竞赛项目设置为40个大项,61个分项,481个小项,并增设电子竞技、霹雳舞两个竞赛项目.现有甲、乙、丙、丁、戊5名志愿者到乒乓球、电子竞技、霹雳舞三个项目志愿服务,其中每个项目至少一名志愿者,甲必须在霹雳舞项目,则不同的志愿服务方案共有______种(用数字作答).第(2)题已知正四面体的棱长为1,若棱长为的正方体能整体放入正四面体中,则实数的最大值为__________.第(3)题i是虚数单位,复数___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设等差数列的前项和为,已知,.(1)求数列的通项公式及;(2)若___________,求数列的前项和.在①;②;③这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分.第(2)题随着科技的发展,电子书越来越受到人们的欢迎.某高校为了解该校师生对电子书和纸质书的态度,随机抽取了100名师生进行了调查,并得到如下列联表:喜欢看电子书喜欢看纸质书合计教师5学生48合计已知这100名师生中随机抽取一人抽到喜欢看电子书的概率是.(1)请将上述列联表补充完整;(2)是否有的把握认为对电子书和纸质书的态度与教师和学生的身份有关?附:…0.100.050.0250.0100.001… 2.706 3.841 5.024 6.63510.828第(3)题为了了解患有某种疾病A与有某种生活习惯B是否相关,某校学生社团在所在地区随机调查了500位居民,结果如下:有生活习惯B无生活习惯B有疾病A病历4030无疾病A病历160270(1)估计该地区居民中,有疾病A病历人的比例;(2)试判断能否有99%的把握认为患有疾病A与有生活习惯B相关?附:0.0500.0100.001k 3.841 6.63510.828第(4)题已知函数的最小正周期为,且,(1)求;(2)将图象往右平移个单位后得函数,求的最大值及这时值的集合.第(5)题关于扑克牌的由来,一种说法是由唐代天文学家张遂发明,最初称作“叶子戏”,因为纸牌只有树叶那么大.后来由马可波罗把它传播到了欧洲,欧洲人根据自己的文化和传统,对纸牌游戏进行了改进,最终出现了“扑克牌”.某同学聚会上,玩一种扑克牌游戏:第一个人手中有黑桃,梅花、红桃各一张,其余每人手中有四种花色各一张,主持人从第一个人手中随机抽取一张扑克牌给第二个人,然后从第二个人的手中随机抽取一张扑克牌给第三个人,以此类推,记为从第i个人手中抽取的扑克牌为黑色(黑桃或梅花)的概率.(1)求,;(2)求.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档