最新河南省中招数学试题解析

合集下载

2024河南中考数学试题评析

2024河南中考数学试题评析

2024河南中考数学试题评析中考是每个学生人生中的一次重要考试,决定着他们的高中学业发展。

其中数学科目一直被认为是学生们最为困难的科目之一,曾有人说过:“ 胜数学者胜中考”。

2024年中考拉下帷幕,当我们仔细分析今年的数学命题,我相信有经验的数学老师都会有一种意料之中的快意,下面我谈几点不成熟的看法。

一、稳中求变。

我从2002-2022河南中考数学试题做过对比分析,这里面有五次大的转折,基本呈现五年有调整,前二次转折无论从题量还是题型甚至知识点考查调整比较大,更倾向于 变”;后三次转折可以说是微调,更注重 稳”。

1.我们先来说说稳。

发展到现在主要有三不变:①结构不变:闭卷120分,考试时间为100分钟,题目共计23题,填空选择15题45分,解答8题75分。

②题型不变:选择题、填空题、解答题,解答题主要涵盖——计算求解、推理证明题、应用性问题、阅读分析题、类比探究性问题、开放性问题等。

③考查知识点不变:以数与代数、图形与几何为主,统计与概率、综合与实践为辅。

2.我们再来说说变。

三变”。

①选择题由原来的6题升为8题,再升为10题,填空题由原来的9题降为7题再将为5题。

②题目难度下调,2024难度系数0.65-0.70,满分120,基本平均分78-84;③阅读量增大。

二、变中求新。

1.体现教-学-评一致性。

可以说原来我们的数学中考是考什么,学什么,所以每一年都会有 惊喜”,正如有人说平时学了一粒沙,考试考了撒哈拉;现在依据新课程标准转变为学什么,考什么。

以前我们每年可以扒拉出上百套全国各地中考试题,以后这种情况将不复存在了。

新课标明确规定学业水平考试由省级教育行政部门组织实施,依据学业质量标准,对学生学完本课程后课程目标达成度进行终结性评价。

考试成绩是学生毕业和高一级学校招生录取的重要依据,为评价区域和学校教学质量、改进教学提供重要参考。

值得注意的是2025与2026届仍延续的是2011版课标,今年暑假后七年级新生将正式使用新教材,2022版新课标也正式落地。

河南省中考数学真题试题(含解析)

河南省中考数学真题试题(含解析)

河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。

河南省中考数学试题解析版

河南省中考数学试题解析版

2017 年河南省中考数学试卷一、选择题(每小题3分,共30 分)1.(3 分)下列各数中比1 大的数是()A. 2B. 0C. - 1 D32.(3分)20 1 6年,我国国内生产总值达到万亿元,数据“万亿”用科学记数法表示()A Q A Q A Q A CA.x 10B.X 10C.x 10D.X 103 .(3 分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3 分)解分式方程- 2=,去分母得()A. 1 - 2 (x - 1)=-3B. 1 - 2 (x - 1)=3C. 1 - 2x - 2=- 3D. 1 - 2x+2=3 5.(3分)八年级某同学6 次数学小测验的成绩分别为:80分,85 分,95 分,95分,95分,1 00分,则该同学这6次成绩的众数和中位数分别是()A . 95 分,95 分B. 95 分,90 分C. 90 分,95 分D. 95 分,85 分6 (3 分)一元二次方程2x2- 5x- 2=0 的根的情况是()A 有两个相等的实数根B 有两个不相等的实数根C 只有一个实数根D 没有实数根7. (3分)如图,在?ABC冲,对角线AC BD相交于点0,添加下列条件不能判定?ABCD!菱形的只有()A. AC丄BDB. AB=BCC. AC=BDD.Z 仁/28.(3 分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字- 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为(A.B.C.D.9. (3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD勺边AB在x轴上,AB的中点是坐标原点0,固定点A, B, 把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C 的坐标为()A. (, 1)B. (2, 1)C. (1,)D. (2,)10. (3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O, B的对应点分别为O , B',连接BB ,则图中阴影部分的面积是()A. B. 2 - C . 2 - D . 4 -二、填空题(每小题3分,共15分)11. (3 分)计算:23- = _____ .12. (3分)不等式组的解集是______ .13. (3分)已知点A (1, m) , B(2, n)在反比例函数y=-的图象上,贝U m与n的大小关系为______ .14. (3分)如图1,点P从厶ABC的顶点B出发,沿B-C^A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ ABC的面积是___________ .15. (3 分)如图,在Rt△ ABC中,/ A=90 , AB=AC BC=+1 点M N分别是边BC, AB上的动点,沿MN所在的直线折叠/ B,使点B的对应点B'始终落在边AC 上,若△ MB C为直角三角形,则BM的长为__________ .三、解答题(本题共8个小题,满分75分)16. (8 分)先化简,再求值:(2x+y)2+ (X- y)(x+y)- 5x (x - y),其中x=+1, y= - 1.17. (9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元) 人数A 0< x V 30 4B 30W X V 60 16C 60< X V 90 aD 90< X V120 bE X>120 2请根据以上图表,解答下列问题:(1) ________________________________ 填空:这次被调查的同学共有人,a+b ________________________________ , m _________ ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额X在60<X V 120范围的人数.18. (9分)如图,在△ ABC中,AB=AC以AB为直径的。

2024年河南中考数学试卷分析报告

2024年河南中考数学试卷分析报告

2024年河南中考数学试卷分析报告前言本文旨在对2024年河南中考数学试卷进行全面分析和评述,以探究试卷设置的难易程度、题型分布和考查知识点的情况,为教育工作者和考生提供参考。

一、试卷概述本次数学中考试卷共分为两部分:选择题和解答题。

选择题占试卷总分的60%,解答题占试卷总分的40%。

二、选择题分析1. 难易程度选择题部分的题目难度适中,大部分题目采用多项选择题形式,考查了学生的基础知识和思维能力。

2. 题型分布选择题部分主要分为单选题和多项选择题。

其中,单选题占选择题总数的60%,多项选择题占选择题总数的40%。

3. 考查知识点选择题涵盖了数学的多个知识点,包括代数、几何、概率与统计等。

在代数方面,试题主要考察了代数式计算、方程与不等式等内容;在几何方面,试题聚焦于图形的性质与变换、空间几何等;在概率与统计方面,试题涉及了概率计算和数据分析等。

三、解答题分析1. 难易程度解答题部分的题目整体难度适中偏易,考查了学生的解题思路和推理能力。

2. 题型分布解答题部分主要分为计算题和证明题。

其中,计算题占解答题总数的70%,证明题占解答题总数的30%。

3. 考查知识点解答题更注重学生运用知识解决实际问题和能力培养。

其中,计算题主要涵盖了多个知识点,包括代数、几何、数列等。

在证明题方面,主要考察了几何证明的思维能力和逻辑推理能力。

四、试卷整体特点1. 综合性强2024年河南中考数学试卷整体而言,试题偏重综合性能力的考查。

试题设计注重运用数学知识解决实际问题和培养学生的创新思维能力。

2. 关注基础知识试题中对基础知识的考查较为全面,注重学生对数学基本概念的掌握和运用。

同时,试题涵盖了各个学习层次的知识点,旨在全面评价学生的数学水平。

3. 强调数学思维试题设计中重视培养学生的数学思维能力,注重学生的逻辑推理和问题解决能力的培养。

结语本次数学中考试卷整体难度适中,注重基础知识和综合能力的考查。

试题设置合理,符合教育改革的方向和要求。

2023年河南省中考数学真题(原卷与解析)

2023年河南省中考数学真题(原卷与解析)

2023年河南省普通高中招生考试试卷数学一、选择题1.下列各数中,最小的数是()A.-lB.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.74.5910⨯ B.845.910⨯ C.84.5910⨯ D.90.45910⨯4.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为()A.30︒B.50︒C.60︒D.80︒5.化简11a a a-+的结果是()A.0B.1C.aD.2a -6.如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A.95︒B.100︒C.105︒D.110︒7.关于x 的一元二次方程280x mx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBy PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.3D.23二、填空题11.某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12.方程组35,37x y x y +=⎧⎨+=⎩的解为______.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14.如图,PA 与O 相切于点A ,PO 交O 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.三、解答题16.(1)计算:135--+;(2)化简:()()224x y x x y ---.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m 72s 甲乙8872s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)3,1A和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG的高度(结果精确到0.1m ).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,AD =15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.2023年河南省普通高中招生考试试卷数学一、选择题1.【答案】A【解析】解:∵101-<<<,∴最小的数是-1.故选:A 2.【答案】A【解析】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .3.【答案】C【解析】解:4.59亿8459000000 4.9510==⨯.故选:C .4.【答案】B【解析】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B 5.【答案】B 【解析】解:11111a a aa a a a--++===,故选:B .6.【答案】D【解析】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .7.【答案】A【解析】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .8.【答案】B【解析】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .9.【答案】D【解析】解:由图象开口向下可知a<0,由对称轴bx 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .10.【答案】A【解析】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PBPC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B时的路程为∴OB =,即AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .二、填空题11.【答案】3n【解析】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .12.【答案】12x y =⎧⎨=⎩【解析】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.13.【答案】280【解析】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.14.【答案】103【解析】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.15.【答案】21+【解析】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BMMD =,∴1AN BM ND MD==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.三、解答题16.【答案】(1)15;24y 【解析】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.17.【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)18.【答案】(1)见解析(2)见解析【解析】(1)解:如图所示,即为所求,(2)证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.19.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【解析】(1)解:将)3,1A 代入k y x=中,得13=,解得:3k =(2)解: 过点A 作OD 的垂线,垂足为G ,如下图:)3,1A ,1,3AG OG ∴==,22(3)12OA ∴=+=,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;(3)解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,322FBO S ∴=⨯= ,2233FBO AOCD AOC S S S S ππ∴=+-=+= 阴影部分面积菱形扇形.20.【答案】树EG 的高度为9.1m【解析】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .21.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【解析】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.22.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】(1)解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;(2)∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.23.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【解析】(1)(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.(2)①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ⊥⊥⊥,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG α∠=,AD m =∵sin DG DAG DA∠=,∴sin sin DG AD DAG m α=⋅∠=,∴3222sin PP EF DG m α===(3)解:设AP x =,则12AP AP x ==,依题意,12PP AD ⊥,当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60α=︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则122PP x =,在1APP 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴1321222PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,2232AQ AP PQ x =-=,在1Rt PQP 中,1132PQ AP AQ x x =-=-,222211316223222PP PQ PQ x x x x ⎛⎫⎛⎫=+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴3113626322222PP PP PP x x x +=+=+=由(2)②可得32sin PP AD α=,∵23AD =∴332362PP =⨯=∴63262x +=,解得:326x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则13121222PP PP x ==,∵1622PP x =,36226222PP x x x =+=,∵36PP =,∴662x =,解得:x =,综上所述,AP 的长为或.。

河南省中考数学试卷及答案(解析版)

河南省中考数学试卷及答案(解析版)

河南省中考数学试卷及答案(解析版)河南省中考数学试卷及答案(解析版)一、选择题1. 一辆汽车以每小时60公里的速度行驶,如果行驶6小时,它将行驶多远?答案:60公里/小时 × 6小时 = 360公里2. 下列哪个数是正数?A) -5 B) 0 C) 3 D) -2答案:C) 33. 一个直角三角形的两个直角边分别是3cm和4cm,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(3^2 + 4^2) = 5cm。

4. 某数的四分之一是20,这个数是多少?答案:某数的四分之一是20,所以这个数是20 × 4 = 80。

5. 常规体育课有篮球、足球和排球三个班级,篮球班级人数是足球班级人数的2倍,而排球班级人数是足球班级人数的3倍,如果总共有100人参加体育课,那么每个班级的人数分别是多少?答案:设足球班级的人数为x,则篮球班级的人数为2x,排球班级的人数为3x。

根据题意,x + 2x + 3x = 100,解得x = 10。

所以篮球班级人数为2 × 10 = 20,排球班级人数为3 × 10 = 30。

二、填空题1. 若10x + 5 = 25,则x的值为多少?答案:将等式两边同时减去5,得到10x = 20,再除以10,得到x= 2。

2. 一辆汽车以每小时50公里的速度行驶,若行驶的时间为6小时,则它行驶的距离为多少?答案:50公里/小时 × 6小时 = 300公里。

3. 已知一个三角形的两边长度分别为5cm和8cm,其面积为10平方厘米,求这个三角形的底边长。

答案:三角形的面积等于底边长乘以高的一半,所以10 = 8 ×高/2,解得高 = 5/2。

根据三角形的性质,底边长乘以高等于两倍的面积,所以底边长 × 5/2 = 2 × 10,解得底边长 = 8。

三、解答题1. 有一个长方形的周长是32cm,宽是4cm,请问这个长方形的长度是多少?答案:设长方形的长度为x,则周长等于2(x + 4),根据题意,2(x+ 4) = 32,解得x + 4 = 16,再解得x = 12。

2023年河南省中考数学真题(解析版)

2023年河南省中考数学真题(解析版)

2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( )A. -lB. 0C. 1D. 【答案】A【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 74.5910´B. 845.910´C. 84.5910´D. 90.45910´【答案】C【解析】【分析】将一个数表示为10n a ´的形式,其中110a £<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==´.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ´,其中110a £<,确定a与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B. 50︒C. 60︒D. 80︒【答案】B【解析】【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简11a a a -+的结果是( )A 0 B. 1 C. a D. 2a -【答案】B【解析】的.【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a a a a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A ,B ,C 在O e 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒【答案】D【解析】【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x 的一元二次方程280x mx +-=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于20(0)ax bx c a ++=¹,当0D >, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m D =-´-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12 B. 13 C. 16 D. 19【答案】B【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C.D. 【答案】A【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ^,解直角三角形可得cos303AD AO =×︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC V 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ^,∴AD BD =,则cos303AD AO =×︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【解析】【分析】根据总共配发的数量=年级数量´每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组35,37x y x y +=ìí+=î的解为______.【答案】12x y =ìí=î【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=ìí+=î①②由3´-①②得,88x =,解得1x =,把1x =代入①中得315y ´+=,解得2y =,故原方程组的解是12x y =ìí=î,故答案为:12x y =ìí=î.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280´=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O e 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =ìï=íï=î,∴OAC OBC V V ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC V V ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【解析】分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD==,即:1ND AN ==,【∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135---+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲78m 72s 甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<.(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】【分析】(1)根据中位数和方差概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s éù=´´-+´-+´-+-=ëû甲()()()()()()()222222221478721072679725777 4.210s éù=´-+-+´-+´-+-+´-+-=ëû乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用角平分线的作图步骤作图即可;的(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x =图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60︒(3)23p -【解析】【分析】(1)将)A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V 【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)A Q ,1,AG OG \==,2OA \==,\半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==,30AOG \∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC \∠=︒,\扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD \=´=´=菱形221122663AOC S r p p p =´=´´=Q 扇形,如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q2FBO S \==V ,2233FBO AOCD AOC S S S S p p \=+-=+=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+»,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a £<或600800a £<时,活动二更合算【解析】【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a £<时,所需付款为()80a -元,当600900a £<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360´=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a £<时,所需付款为:()80a -元,当600900a £<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a £<时,800.8a a -<,解得300400a £<,即:当300400a £<时,活动二更合算,③当600900a £<时,1600.8a a -<,解得600800a £<,即:当600800a £<时,活动二更合算,综上:当300400a £<或600800a £<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD a a ∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP b ∠=,请判断b 与a 的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60a =︒,AD =,15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2b a =,理由见解析;②2sin m a(3)或【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD a =,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=´=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2b a =,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2b a =,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ^^^,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG a ∠=,AD m=∵sin DG DAG DA∠=,∴sin sin DG AD DAG m a =×∠=,∴3222sin PP EF DG m a===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ^,当23P P AD ∥时,如图所示,过点P 作1PQ AP ^于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60a =︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP =,在1APP V 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==,在1Rt PQP V 中,11PQ AP AQ x x =-=,1PP x ====,∴3113PP PP PP x x =+=+=由(2)②可得32sin PP AD a =,∵AD =∴326PP =´=6x =,解得:x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则131212PP PP x ==,∵1PP x =,3PP x x x =+=,∵36PP =,6=,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

2023年河南省中考数学试卷及答案解析

2023年河南省中考数学试卷及答案解析

2023年河南省中考数学试卷一、选择题。

(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.(3分)下列各数中最小的数是()A.﹣1B.0C.1D.2.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.(3分)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×109 4.(3分)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°5.(3分)化简的结果是()A.0B.1C.a D.a﹣26.(3分)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°7.(3分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.(3分)二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y 随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题。

2023年河南省中考数学试卷及答案解析

2023年河南省中考数学试卷及答案解析

2023年河南省中考数学试卷一、选择题。

(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.(3分)下列各数中最小的数是()A.﹣1B.0C.1D.2.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.(3分)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×109 4.(3分)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°5.(3分)化简的结果是()A.0B.1C.a D.a﹣26.(3分)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°7.(3分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.(3分)二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y 随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题。

河南省中招数学试题涉及的分式题目分析

河南省中招数学试题涉及的分式题目分析

河南省中招数学试题中涉及分式的题目分析整理人:鲁山县鲁阳中心校苗国利分式是初中阶段数学的重要内容,自1986年河南省中招考试统一命题以来,每年必出,试题类型主要是化简或计算,解分式方程,分式分母不为零等,1991年至 1997年肯出利用分式方程解应用题。

(很早时与二次根式混合出题,现在不在出现。

)教材重点知识类型若能做好应对练习,考试成绩肯定会有所提高。

(教材中现在删去的内容不要练习,做为收藏可以仅做参考) 一、化简计算解分式方程等题目 1、(1986年)当x=__时,分式23xx- 无意义。

2(1986年)、解分式方程的基本思路是通过__把分式方程化为整式方程。

3、(1986年)一项工程,甲队做完需要m 天,乙队做完需要n 天。

若甲、乙两队合作,完成这项工程需要的天数为( ) (A )m+n (B )2m n + (C )m n mn + (D )mnm n+ 4(1987年)化简21-211a aa aa +-+- 5、(1988年)当x=_ 时,分式221x x x --+值为零。

6、(1989年)解方程:2221x xx x++=+7、(1990年)计算()226263344x x xx x xx+-+÷+=+-+ 8、(1991年)化简 :aa b ÷-9、(1992年)化简:22211112111a a a a a a a ⎡⎤--⎢⎥-÷⎢⎥--+⎢⎥⎣⎦⎛⎫- ⎪-⎝⎭ 10、(1993年)当x=____时,分式22xx +没有意义。

11、(1993年)先化简下式,再求它的值22222222242ab a b a b b a a b a b b a a b⎛⎫+-++÷ ⎪ ⎪--+⎝⎭ 其中12、(1994年)当x __时,分式的值为零.13、(1994年)计算:211a a a ⎡⎡⎤-⎢⎥-⎢⎥⎦⎦( 0<a <1)14、(1995年)化简 22223311x x x y x y y y x x y x ⎧⎫⎡⎤⎛⎫-+⎛⎫⎪⎪⎢⎥ ⎪-÷-÷-⎨⎬ ⎪⎢⎥⎪⎝⎭+⎪⎪⎢⎥⎝⎭⎣⎦⎩⎭15、(1996年)计算:16、(1997年)化简求值:2x⎛⎛÷=其中 17、(1997年)解方程52=18. (199819. (1998年)解方程:256011x x x x ⎛⎫++= ⎪+⎝⎭⎛⎫ ⎪+⎝⎭20、(1999年)解方程:25611x x x x ⎛⎫-+= ⎪-⎝⎭⎛⎫ ⎪-⎝⎭21、(2000年)已知x =,y =求22xy x y yx +++的值22、(2000103= 23.(2001年)已知x 、 y是方程组⎩⎨⎧-=-=+5,42y x y x 的解,求代数式222y xy x x +-·2233yxy x y x ++-+y 1-2的值. 24. (2002年)如果分式1872+--x x x 的值为0,则x= 。

河南省中考数学试卷(含解析答案)

河南省中考数学试卷(含解析答案)

河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FB C的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DB F为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DB F=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。

2023河南中考数学试卷分析

2023河南中考数学试卷分析

2023河南中考数学试卷分析本文对2023年河南中考数学试卷进行分析,旨在总结试卷的特点和解题思路。

一、试题类型分布1. 选择题本次考试选择题占总分的50%,共30道题。

其中,单项选择题25道,多项选择题5道。

选择题主要测试考生对知识点的理解和应用能力。

2. 计算题计算题占总分的30%,共18道题。

计算题主要考察考生的计算能力和分析问题的能力。

3. 应用题应用题占总分的20%,共12道题。

应用题主要考察考生将所学知识应用于实际情境的能力。

二、试卷难度分析本次试卷整体难度适中,共有一定难度的题目和一些较简单的题目。

其中选择题的难度主要体现在对知识点的深层次理解和推理能力上,计算题的难度主要体现在较复杂的计算和应用题的难度主要体现在将所学知识应用到实际情景上。

三、解题思路1. 选择题解题思路对于选择题,考生需要仔细阅读题目,理解题意,并对选项进行比较。

针对单项选择题,可以通过排除法和分析选项中的关键词来确定正确答案。

对于多项选择题,需要综合考虑每个选项的内容,选择符合题意的选项。

2. 计算题解题思路计算题的关键是要理清思路,将题目中的问题转化为数学符号,然后进行逐步计算。

在计算过程中,要注意细节,避免粗心导致错误。

此外,可以使用图表或表格来辅助计算,提高解题的准确性和效率。

3. 应用题解题思路应用题通常与实际情境相结合,考生需要先理解题目给出的情境和要求,然后运用所学知识进行分析和解决问题。

在解答过程中,要注重整体合理性和解题思路的清晰性,同时要注意概念的正确运用和计算的准确性。

四、复建议1. 夯实基础知识考生应该加强对各个知识点的理解,注重基础知识的夯实,巩固重点、难点知识。

2. 多做练题通过做大量的练题,加深对知识点的理解,提高解题能力和应用能力。

3. 学会总结归纳每次做题后,要学会总结归纳,提取解题思路和方法,为以后的复和考试提供参考。

总结通过对2023年河南中考数学试卷的分析,我们可以得出以下结论:该试卷的题型分布合理,难度适中,解题思路方向明确。

2023年河南省中考数学真题(解析)

2023年河南省中考数学真题(解析)

2023年河南省普通高中招生考试试卷数学一、选择题1.【答案】A【解析】解:∵101-<<<,∴最小的数是-1.故选:A2.【答案】A【解析】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .3.【答案】C【解析】解:4.59亿8459000000 4.9510==⨯.故选:C .4.【答案】B【解析】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B5.【答案】B 【解析】解:11111a a a a a a a--++===,故选:B .6.【答案】D【解析】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .7.【答案】A【解析】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .8.【答案】B【解析】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .9.【答案】D 【解析】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .10.【答案】A【解析】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B时的路程为∴OB =,即AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .二、填空题11.【答案】3n【解析】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .12.【答案】12x y =⎧⎨=⎩【解析】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.13.【答案】280【解析】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.14.【答案】103【解析】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.15.【答案】21+【解析】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BMMD =,∴1AN BM ND MD==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.三、解答题16.【答案】(1)15;24y 【解析】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.17.【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)18.【答案】(1)见解析(2)见解析【解析】(1)解:如图所示,即为所求,(2)证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.19.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【解析】(1)解:将)3,1A 代入k y x=中,得13=,解得:3k =(2)解: 过点A 作OD 的垂线,垂足为G ,如下图:)3,1A ,1,3AG OG ∴==,22(3)12OA ∴=+=,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;(3)解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,322FBO S ∴=⨯= ,2233FBO AOCD AOC S S S S ππ∴=+-=+= 阴影部分面积菱形扇形.20.【答案】树EG 的高度为9.1m【解析】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .21.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【解析】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.22.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】(1)解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;(2)∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.23.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【解析】(1)(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.(2)①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ⊥⊥⊥,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG α∠=,AD m =∵sin DG DAG DA∠=,∴sin sin DG AD DAG m α=⋅∠=,∴3222sin PP EF DG m α===(3)解:设AP x =,则12AP AP x ==,依题意,12PP AD ⊥,当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60α=︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则122PP x =,在1APP 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴1321222PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,2232AQ AP PQ x =-=,在1Rt PQP 中,1132PQ AP AQ x x =-=-,222211316223222PP PQ PQ x x x x ⎛⎫⎛⎫=+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴3113626322222PP PP PP x x x +=+=+=由(2)②可得32sin PP AD α=,∵23AD =∴332362PP =⨯=∴63262x +=,解得:326x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则13121222PP PP x ==,∵1622PP x =,36226222PP x x x =+=,∵36PP =,∴662x =,解得:x =,综上所述,AP 的长为或.。

2023年河南省中考数学试卷含答案解析

2023年河南省中考数学试卷含答案解析

绝密★启用前2023年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各数中最小的数是( )A. −1B. 0C. 1D. √ 32.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 4.59×107B. 45.9×108C. 4.59×108D. 0.459×1094.如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为( )A. 30°B. 50°C. 60°D. 80°5. 化简a−1a +1a的结果是( )A. 0B. 1C. aD. a−26.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A. 95°B. 100°C. 105°D. 110°7. 关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12B. 13C. 16D. 199.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A. 6B. 3C. 4√ 3D. 2√ 3二、填空题(本大题共5小题,共15.0分)11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______ 套劳动工具. 12. 方程组{3x +y =5x +3y =7的解为______ .13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______ 棵.14. 如图,PA 与⊙O 相切于点A ,PO 交⊙O 于点B ,点C 在PA 上,且CB =CA.若OA =5,PA =12,则CA 的长为______ .15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______ .三、解答题(本大题共8小题,共75.0分。

2023年河南省(初三学业水平考试)数学中考真题试卷含详解

2023年河南省(初三学业水平考试)数学中考真题试卷含详解

2023年河南省普通高中招生考试试卷数学一、选择题1.下列各数中,最小的数是()A.-lB.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A .主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.74.5910⨯ B.845.910⨯ C.84.5910⨯ D.90.45910⨯4.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为()A.30︒B.50︒C.60︒D.80︒5.化简11a a a-+的结果是()A.0B.1C.aD.2a -6.如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A.95︒B.100︒C.105︒D.110︒7.关于x 的一元二次方程280x mx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBy PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.3D.23二、填空题11.某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12.方程组35,37x y x y +=⎧⎨+=⎩的解为______.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14.如图,PA 与O 相切于点A ,PO 交O 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.三、解答题16.(1)计算:1395--+;(2)化简:()()224x y x x y ---.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m 72s 甲乙8872s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)A和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,3AD =15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.2023年河南省普通高中招生考试试卷数学一、选择题1.下列各数中,最小的数是()A.-lB.0C.1D.【答案】A【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【答案】A【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.74.5910⨯B.845.910⨯ C.84.5910⨯ D.90.45910⨯【答案】C【分析】将一个数表示为10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==⨯.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.4.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为()A.30︒B.50︒C.60︒D.80︒【答案】B【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角的和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5.化简11a a a-+的结果是()A.0B.1C.aD.2a -【答案】B【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a aa a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6.如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A.95︒B.100︒C.105︒D.110︒【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7.关于x 的一元二次方程280x mx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】对于20(0)ax bx c a ++=≠,当0∆>,方程有两个不相等的实根,当Δ0=,方程有两个相等的实根,Δ0<,方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.19【答案】B【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴bx 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC =,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.D.【答案】A 【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ⊥,解直角三角形可得cos303AD AO =⋅︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11.某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12.方程组35,37x y x y +=⎧⎨+=⎩的解为______.【答案】12x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14.如图,PA 与O 相切于点A ,PO 交O 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【分析】连接OC ,证明OAC OBC ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x =-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD=,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD ==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND =∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16.(1)计算:135--+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m 72s 甲乙8872s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【分析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18.如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【分析】(1)利用角平分线的作图步骤作图即可;(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x=图象上的点)3,1A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【分析】(1)将)3,1A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出23AOCD S =菱形k 的几何意义可求出3FBO S = ,从而问题即可解答.【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解: 过点A 作OD 的垂线,垂足为G ,如下图:)A ,1,AG OG ∴==,2OA ∴==,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形,221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,3232FBO S ∴=⨯= ,22323333FBO AOCD AOC S S S S ππ∴=+-=-=- 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a ≤<时,所需付款为()80a -元,当600900a ≤<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m ,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,AD =15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【分析】(1)观察图形可得222A B C △与ABC 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1622PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD α=,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,。

2022年河南省数学中招试题评析

2022年河南省数学中招试题评析

2022年河南省中招数学试卷评析河南省第二实验中学胡亚丽试卷依照《新课程标准》,以《中考说明》规定的考试范围为依据,突出了对数学基础知识和基本能力的考查,涵盖数与代数,空间与几何,概率与统计等知识点,与课标要求比例分基本上一致。

有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于引导改善学生的数学学习方式,提高学生数学学习的效率。

试题注重通性通法、淡化特殊技巧,解答题设置了多个问题,形成入口宽、层次分明、梯度递进的特点,有较好的区分度。

有利于高中阶段学校综合、有效地评价学生的数学学习状况;所有试题的考查内容及试题编排由易及难,坡度平缓,一部分试题情景来源于教材,对考生具有相当的亲和度,有利于考生获得较为理想的成绩。

试卷体现了“稳中求变、稳中求新”。

今年试题与去年相比难度稍有下降,重视基础知识、基本技能、基本思想方法和基本活动经验等“四基”的考查,第三大题解答题中删掉了一个概率题,增加了一个几何证明题。

难、中、易的比例基本在6:3:1。

试卷所呈现的信息不仅是数学符号和文字,还包括图形、图像及表格等。

如第5题求月牙①旋转到月牙②时点A的坐标、第18题通过表格和扇形统计图获取信息进而解决问题,第22题通过表格获取信息,利用不等式组及其它知识解决实际问题、让学生在各种赏心悦目的考查形式下,愉悦地进行答卷。

试卷呈现丰富多彩的生活情境,贴近生活,体现时代性。

如第13题摸球游戏,如第14题通过折纸求点A的移动距离,折纸是学生喜欢做的手工,看似似曾相识,但本题有一定难度,重在考查数学能力;家庭换灯泡是再常见不过的事情了,第20题就以换灯泡为背景,考查学生构建数学模型解决问题的能力;又如第18题以奥运为背景设计的统计问题;第22题背景取材于同学们所熟悉的“社会主义新农村建设”,以家电下乡设计的方案设计问题等。

使学生感悟到生活中处处有数学。

试卷积极创设探索思考空间,如第17题.试判断OE和AB的位置关系;第21随着旋转角α的变化探索四边形EDBC的形状,对各种形状图形求AD的长,激发了考生的探究欲望;第19题判断他们能否在汽车报警前回到家? 请说明理由.很好地考查了学生“观察——发现——自主探索”的思维过程、用数学知识和数学思想方法解决综合问题的能力,以及学生的创新意识和能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年河南省中考数学试题解析一、选择题(每小题3分,共24分) 1.下列各数中最大的数是( ) A. 5 B.5 C.π D.-8【答案】:A【解析】:根据有理数的定义,很容易得到最大的数是5,选A 。

2.如图所示的几何体的俯视图是( )【答案】:B【解析】:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,找到从上面看所得到的图形即可,选B 。

3.据统计,2014年我国高新产品出口总额达40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×1012【答案】:D【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。

确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。

当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。

将40570亿用科学记数法表示4.0570×1012元,选D 。

4.如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=1250,则∠4的度数为( )A.550B.600C .700D.750【答案】:A【解析】:本题考查了三线八角,因为∠1=∠2,所以a ∥b,又∠3=1250,∠3与∠4互补,则∠4的度数为550。

选A 。

4321a bcd5.不等式组x503x1+≥⎧⎨-⎩>的解集在数轴上表示为()GURUILIND CB A【答案】:C【解析】:本题考查了不等式组的解集,有①得x≥-5,有②得x<2,这里注意空心和实心;所以选C。

6.小王参加某企业招聘测试,他的笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【答案】:D【解析】:本题主要考察加权平均数的计算方法,(85×2+80×3+90×5)÷(2+3+5)=86分,所以选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【答案】:C【解析】:本题主要考察平行四边形和等腰三角形三线合一定理。

设BF与AG相交于O;有∠BAD的平分线AG和AB=AE,得AG垂直平分BF于O,可得BO=3,可证△ABE是等腰三角形,得AB=BE=5,也得AE=2AO,在Rt△AOB中,得AO=4,所以AE=8.故选C.8.在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则2015秒时,点P的坐标是()第7题谷A.(2014,0)B.(2015,-1)C.(2015,1)D.(2015,0)【答案】:B【解析】:一个半圆的周长是πr=π,速度×时间=2π×2015, 设点P 走了n 个半圆,则有2π×2015=n π,所以n=20152个2,即100712个2,1007个2时正好是上半圆弧,还有12半圆弧,正好在下半圆弧的中点,因此的P 在(2015,-1)处。

二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1= 。

11.如图,直线y=kx 与双曲线y=2x(x >0)交于点A (1,a ),则k= 【答案】:2【解析】:本题考查了直线y=kx 与双曲线y=2x 交点问题,点A 在双曲线y=2x上,1×a=2,则a=2,所以点A (1,2),又点A (1,2)在y=kx 上,所以k=2。

填2。

12.已知点A(4,y 1,y 2),C(-2,y 3)都在二次函数y=(x-2)2-1的图像上,则y 1,y 2,y 3的大小关系是【答案】:y 3 >y 1>y 2 。

【解析】:本题考查了点在函数的图像上,代入求函数值比较大小的方法,y 1=(4-2)2-1=3;y 2=-2)2-1=(4-2)2;y 3=(-2-2)2-1=15; 所以y 3 >y 1>y 2 。

填:y 3 >y 1>y 2 。

13.现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是【答案】:58【解析】:本题考查了概率问题,1 2 2 3 1 1,1 1,2 1,2 1,3 2 2,1 2,2 2,22,322,12,22,22,333,13,23,23,3共有16种,两次抽出的卡片所标数字不同的有10种,P(两次抽出的卡片所标数字不同)=10 16=58填58。

14.如图,在扇形AOB中,∠AOB=900,点C为OA的中点,CE⊥OA,交»AB于E,以点O为圆心,以OC为半径作»CD交OB于点D,若OA=2,则阴影部分的面积是【答案】:12π【解析】:本题考查了扇形的面积及直角三角形的性质,连接OE, 因为CE⊥OA,点C为OA的中点,OA=2,所以OC=1,在Rt△OCE中,可证∠EOC=600,S扇形AOE=16π×4=23π;S△OCE=12×12;;SAOE=23π-2;S扇形AOB=14π×4=π; S扇形COD=14πBA O第14题第15题BAE×1=14π;所以S 阴影= S 扇形AOB -S 扇形COD -SAOE=π-14π-23π+2=+122π。

填+122π。

15.如图,正方形ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是BC 上不与点B,C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B /处,若△CDB /恰为等腰三角形,则DB /的长为 .【答案】:16或【解析】:本题分两种情况:(1)若DB /=DC,是等腰三角形,则DB /=16;(2)若DB /= CB /,过B /作M N ⊥CD 于M,交AB 于N ,则CM=DM=8=BN,又AE=3,则BE=13,所以EN=5,由翻折可知EB /=13,在Rt △EB 、N 中,可求NB /=12,所以B 、M=4,在Rt △EB 、N 中,填三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值22a 2ab b 112a-2b b a -+⎛⎫÷- ⎪⎝⎭,其中+1,-1解:原式=()()2a-b a-b2a-b ab÷ …………………………………………4分 =a-b ab 2a-b ⨯ =ab2…………………………………………………………6分NM CBA EFF当,时,原式=)5-1=22=2…………………8分17.(8分)如图,AB ,是半圆O 的直径,点P 是半圆上不与点A,B 重合的一个动点,延长BP 到点C ,使PC=PB,D 是AC 的中点,连接PC,PO 。

(1)求证:△CDP ≌△POB.证明:(1)∵D 是AC 的中点,且PC=PB, ∴DP ∥AB,DP=12AB, ∴∠CPD=∠PBO, ∵OB=12AB, ∴DP=OB,在△CDP 与△POB 中.PC PD CPD PBO DP OB =⎧⎪∠=∠⎨⎪=⎩∴△CDP ≌△POB. …………………………………………5分 (2)填空:①若AB=4,则四边形AOPD 的最大面积为 .②连接OD ,当∠PBA 的度数为 时,四边形BPDO 是菱形.解:①4;………………………………………………………………7分 当四边形AOBD 是正方形时,即OP ⊥OB 时,面积最大=2×2=4. ②600. …………………………………………………………………9分 由(1)DP ∥AB,DP=12AB, ∴四边形DPBO 是平行四边形, 又△CDP ≌△POB,且∠PBA=600. ∴△CDP 和△POB 都是等边三角形, ∴PB=PD,∴四边形BPDO 是菱形.18. (9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。

调查结果扇形统计图其它报纸电视手机上网电脑上网选项根据以上信息解答下列问题(1)这次接受调查的市民总数是(2)扇形统计图中,“电视”所对应的圆心角的度数是(3)请补全条形统计图.(4)若该市民约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.解:(l)1000: …………………………………………………………………………2分提示:400÷40%=1000(2)3600×15%=540. ………………………………………………………………4分(3)(1000×10%=100.正确补全条形统计图):…………………………………6分补全条形统计图如图所示。

(4)80×(26%+40%)=52.8(万人):所以估计该市将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数约为52.8万人。

……………………………………………………………………………9分19.(9分)已知关于x的一元二次方程(x-3)(x-2)=m.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值和方程的另一根.(1)证明:原方程可化为x2-5x+6-m=0………………………………1分∴△=(-5)2-4×(6-m)25-24+4m=1+4m………………………3分∵m≥0, ∴1+4m>0,∴对于任意实数m,方程总有两个不相等的实数根…………………4分(2)把x=1代入原方程,得m =2,∴m=±2, ………………6分 把m =2代入原方程得x 2-5x+4=0,解得x=1或x=4∴m=±2,方程的另一根是4. ………………………………9分20.(9分)如图所示,某学校活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 处的仰角是300,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 处的仰角是480,若坡角∠FAE=300,求大树的高。

(结果保留整数,参考数据:sin480≈0.74,con480≈0.67,tan480≈1.11,≈1.73)解:延长BD 交AE 于点G,过点D 作DH ⊥AE 于H , 由题意得,∠DAE=∠BGH=300,DA=6,∴GD=DA=6, ∴GH=AH=DA ·cos300=6…………………………2分 设BC=x 米,在Rt △GBC 中,GC=xtan tan 30BC BGC ==∠……………4分 在Rt △ABC 中,AC=0xtan tan 48BC BAC =∠………………………………………6分 ∵GC-AC=GA,x-0xtan 48…………………………………………8分 ∴x ≈13.即大树的高约为13米。

相关文档
最新文档