精选2019高考数学总复习第一章集合与函数概念1-2-1函数的概念(第二课时)同步练习新人教A版必修1(1)

合集下载

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.

高中数学 第一章 集合与函数的概念 1.2 函数及其表示 1.2.1 第一课时 函数的概念 新人教A

高中数学 第一章 集合与函数的概念 1.2 函数及其表示 1.2.1 第一课时 函数的概念 新人教A

所以这个函数的定义域为{x|1≤x≤3}.………………9 分
(4)y= x 12 - 1 x .
x 1
规范解答:(4)要 使函数有意义,
自变量
x
的取值必须 满足
x 1 1 x
0, 0,
………………10

解得 x≤1 且 x≠-1,……………………………… 11 分
即函数定义域为{x|x≤1 且 x≠-1}.………………12 分
③M={三角形},N={x|x>0},对应关系f:“对M中的三角形求面积与N中元素对
应.”
是集合M到集合N上的函数的有( A )
(A)1个
(B)2个
(C)3个
(D)0个
2.(函数判断)下列表示的是y关于x的函数的是( A) (A)y=x2 (B)y2=x
(C)|y|=x (D)|y|=|x|
3.(定义域)函数y=
方法技巧 判断某一对应关系是否为函数的步骤: (1)A,B为非空数集. (2)A中任一元素在B中有元素与之对应. (3)B中与A中元素对应的元素唯一. (4)满足上述三条,则对应关系是函数关系.
即时训练1-1:已知集合M={-1,1,2,4},N={1,2,4},给出下列四个对应关系:
①y=x2,②y=x+1,③y=x-1,④y=|x|,其中能构成从M到N的函数是( )
1.2 函数及其表示 1.2.1 函数的概念 第一课时 函数的概念
课标要求:1.通过实例理解函数的概念,能用集合语言描述具体的函数.2.体 会对应关系在刻画函数概念中的作用.3.会求一些简单函数的定义域.
自主学习——新知建构·自我整合
【情境导学】 导入一 初中是用运动变化的观点对函数进行定义的,虽然这种定义较为直 观,但并未完全揭示出函数概念的本质.对于y=1(x∈R)是不是函数,如果用运 动变化的观点去看它,就不好解释,显得牵强.但如果用集合与对应的观点来 解释,就十分自然.因此,用集合与对应的思想来理解函数,对函数概念的再认 识,就很有必要.

人教A版(老课标)数学必修1--第一章 集合与函数概念2 第2课时 函数的最大值、最小值

人教A版(老课标)数学必修1--第一章 集合与函数概念2 第2课时 函数的最大值、最小值
逻辑推理, 数学运算
数学建模, 数学运算
第一章 集合与函数概念
问题导学 预习课本 P30-32,思考以下问题: (1)函数最大(小)值的定义是什么? (2)从函数图象可以看出,函数最大(小)值的几何意义是什么?
栏目 导引
第一章 集合与函数概念
最大值和最小值
最大值
最小值
一般地,设函数 y=f(x)的定义域为 I,如果存在实数 M
栏目 导引
第一章 集合与函数概念
(2019·福州高一检测)已知函数 f(x)=x2+x 1 . (1)判断函数 f(x)在[-3,-1]上的单调性,并用定义法证明; (2)求函数 f(x)在[-3,-1]上的最大值.
栏目 导引
第一章 集合与函数概念
解:(1)函数 f(x)在[-3,-1]上为增函数. 理由:设-3≤x1<x2≤-1, f(x1)-f(x2)=x1+x11-x2+x12 =(x1-x2)+x2x-2x1x1 =(x1-x2)x1xx12x-2 1, 由-3≤x1<x2≤-1 可得 x1-x2<0,x1x2>1, 即有 f(x1)-f(x2)<0,即 f(x1)<f(x2), 可得 f(x)在[-3,-1]上为增函数. (2)因为函数 f(x)在[-3,-1]上递增, 所以 f(x)的最大值为 f(-1),即为-2.
以函数 f(x)=4x2-mx+1 的对称轴方程为 x=m8 =-2,即 m= -16. 又[1,2]⊆[-2,+∞),且 f(x)在[-2,+∞)上递增. 所以 f(x)在[1,2]上递增, 所以当 x=1 时,f(x)取得最小值 f(1)=4-m+1=21; 当 x=2 时,f(x)取得最大值 f(2)=16-2m+1=49. 所以 f(x)在[1,2]上的值域为[21,49].

2019高考数学总复习 第一章 集合与函数概念 1.2.1 函数的概念(第二课时)教案 新人教A版必修1

2019高考数学总复习 第一章 集合与函数概念 1.2.1 函数的概念(第二课时)教案 新人教A版必修1

1.2.1 函数的概念(第二课时)本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》,本节课是第1课时。

在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;2.教学难点:函数概念及符号y=f(x)的理解。

一、复习回顾1.函数的概念2.函数三要素:(1)函数的三要素:定义域、值域和对应关系. (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域; 与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等(判断两函数相等的依据) 二、题型探究 例1.有以下判断:①f (x )=x |x|与g (x )=-1,x <0,1,x ≥0,表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数; ④若f (x )=|x -1|-|x |,则f 21=0. 其中正确判断的序号是________.答案:②③例2. 求下列函数的定义域:(1)y =x +1(x +12-;(2)y =|x|-35-x; (3)。

(2)要使函数有意义,自变量x 的取值必须满足|x|-3≠0,5-x ≥0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}.(3)由题意得2x +3≠0,3-2x>0解得-3≤x <23且x ≠-23,所以函数的定义域为23∪23。

高中数学必修一课件 第一章集合与函数概念 1.3.1.2 函数的单调性与最值

高中数学必修一课件 第一章集合与函数概念 1.3.1.2 函数的单调性与最值

f-32;当
x=12时,有最大值
1 f2.
答案 C
2.函数 f(x)=x12在区间12,2上的最大值是
1 A.4
B.-1
C.4
D.-4
( ).
解析 由 t=x2 在12,2上是增函数,易知 f(x)=x12在12,2上 是减函数.
∴f(x)max=f12=4. 答案 C
(2)∵f(x)的最小值为 f(2)=121,
∴f(x)>a
恒成立,只须
f(x)min>a,即
11 a< 2 .
类型三 函数最值的实际应用 【例 3】 某公司生产一种电子仪器的固定成本为 20 000 元, 每生产一台仪器需增加投入 100 元,已知总收益满足函数:
R(x)=400x-12x2,0≤x≤400, 其中 x 是仪器的月产量. 80 000,x>400.
课堂小结 1.函数最值定义中两个条件缺一不可,若只有(1),M不是
最大(小)值,如f(x)=-x2(x∈R), 对任 意x∈R, 都有 f(x)≤1成立,但1不是最大值,否则大于0的任意实数都是 最 大 值 了 . 最 大 ( 小 ) 值 的 核 心 就 是 不 等 式 f(x)≤M( 或 f(x)≥M),故也不能只有(2).
2.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,
则函数f(x)的最值必在
区间端点处取得.
互动探究 探究点1 函数f(x)=x2≥-1总成立,f(x)的最小值是-1吗? 提示 不是.因为对x∈R,找不到使f(x)=-1成立的实数x. 探究点2 函数最大值或最小值的几何意义是什么? 提示 函数的最大值或最小值是函数的整体性质,从图象上 看,函数的最大值或最小值是图象最高点或最低点的纵坐 标.

2019高考数学总复习 第一章 集合与函数概念 1.1.2 集合间的基本关系(第二课时)教案 新人教

2019高考数学总复习 第一章 集合与函数概念 1.1.2 集合间的基本关系(第二课时)教案 新人教

1.1.2 集合间的基本关系(第二课时)本节课是集合的含义与表示的延续,核心是集合与集合间的“包含”、“真包含”、“相等” 关系,通过对集合间关系的探究,感受数学抽象、直观想象、逻辑推理,提高分析与解决数学问题的能力,熟悉数学探究基本特点.通过实例,了解子集、真子集、空集利用一、知识梳理1、2、空集:空集是任何集合的子集,空集是任何非空集合的真子集。

3、集合的性质(1)反身性:任何一个集合是它本身的子集,(2)传递性:对于集合A,B,C,如果。

二、典型例题例1.已知A ={x|x <3},B ={x|x <a}. (1)若B ⊆A ,则a 的取值范围是________; (2)若A ⊆B ,则a 的取值范围是________; (3)若A =B ,则a 的值是________. [答案] (1) a≤3 (2) a≥3 (3) 3例2.若集合A ={x |2≤x ≤3},集合B ={x |ax -2=0,a ∈Z },且B ⊆A ,则实数a =________. 答案 0或1解析 当B =∅时,a =0,满足B ⊆A ;当B ≠∅时,a ≠0,B =a 2,又B ⊆A ,∴2≤a 2≤3,即 32≤a ≤1,又a ∈Z , ∴a =1.综上知a 的值为0或1.例3.已知集合A ={x|x<-1或x>4},B ={x |2a≤x≤a+3},若B ⊆A ,求实数a 的取值范围. [解] 当B =∅时,只需2a >a +3,即a >3;当B ≠∅时,根据题意作出如图所示的数轴,可得a +3<-1a +3≥2a ,或2a>4,a +3≥2a ,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.例4.已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.三、课堂练习1、已知集合A⊆,且集合A中至少含有一个偶数,则这样的集合A的个数为( )A.6 B.5 C.4 D.3答案 A解析方法一集合的子集为∅,,,,,,,,其中含有偶数的集合有6个.方法二共有23=8(个)子集,其中不含偶数的有∅,.故符合题意的A共有8-2=6(个).2、满足{x|x2+1=0} A⊆{x|x2-1=0}的集合A的个数是( )A.1 B.2 C.3 D.4解析:{x|x2+1=0}=∅,{x|x2-1=0}={-1,1},故集合A是集合{-1,1}的非空子集,所以A的个数为22-1=3,故选C.【答案】 C3.已知集合A={-1, 3,m2}且B={3,4},B⊆A,则m=________.【解析】由于B⊆A,则有m2=4,解得m=±2.4.已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的取值是________.【答案】 0,±1。

高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算 第2课时 全集、补集及综合应用课件 新

高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算 第2课时 全集、补集及综合应用课件 新

B.{x|x≤1}
C.{x|0≤x≤1}
D.{x|0<x<1}
(2)设集合 U={1,2,3,4,5},A={2,4},B={3,4,
5},C={3,4},则(A∪B)∩(∁UC)=_{_2_,__5_}__.
解析:(1)因为 A={x|x≤0},B={x|x≥1},所以 A∪B={x|x≤0 或 x≥1},在数轴上表示如图.
(1)数集问题的全集一定是 R.(× )
(2)集合∁BC 与∁AC 相等.( × )
(3)A∩∁UA=∅.( √ )
2.若合集 M={1,2,3,4,5},N={2,4},则∁MN=( B )
A.∅
B.{1,3,5}
C.{2,4}
D.{1,2,3,4,5}
3.已知全集 U=R,集合 P={x|-1≤x≤1},那么∁UP=( D ) A.{x|x<-1} B.{x|x>1} C.{x|-1<x<1} D.{x|x<-1 或 x>1} 解析:因为 P={x|-1≤x≤1},U=R,所以∁UP=∁RP={x|x <-1 或 x>1}.
2.补集 对于一个集合 A,由全集 U 中不属于集合 A
文字 的__所__有__元__素____组成的集合称为集合 A 相对
语言 于全集 U 的补集,记作___∁_U_A__
符号 语言
∁UA=___{_x_|x_∈__U__,__且__x_∉_A_}__
图形 语言
1.判断(正确的打“√”,错误的打“×”)
(2)已知全集 U={x|x≤4},集合 A={x|-2<x<3},B={x|-
3≤x≤2},求 A∩B,(∁UA)∪B,A∩(∁UB).
[解] (1)因为∁UA={2,4,6,7,9},∁UB={0,1,3,7, 9},所以(∁UA)∩(∁UB)={7,9}.

高中数学第一章集合与函数概念1.1.3集合的基本运算第二课时补集及综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1.3集合的基本运算第二课时补集及综合应用课件新人教A版必修1

知识探究
1.全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集.通常记作 U .
2.补集
自然语言 符号语言
不属于集合A
对于一个集合A,由全集U中
的所有
元∁素UA 组{x成|.x的∈集U,合且称x∉为A}集合A相对于全集U的补集,记作
∁UA=
.
图形语言
探究:若集合A是全集U的子集,x∈U,则x与集合A的关系有几种? 答案:若x∈U,则x∈A或x∈∁UA,二者必居其一. 【拓展延伸】 德·摩根定律 设集合U为全集,集合A,B是集合U的子集. (1)如图(1),∁U(A∩B)=(∁UA)∪(∁UB);
误区警示 (1)利用数轴求集合的交、并、补集运算时需注意点的虚实情况 的变化. (2)通过改变原不等式的不等号方向取补集时,要防止漏解.如 A={x| 1 <0},
x
∁RA≠{x| 1 ≥0}={x|x>0}.应先求出 A={x|x<0},再求∁RA={x|x≥0}. x
即时训练2-1:(1)设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)

B={2}时,
a 5
1 a
2, 2,
解得 a=3,综上所述,所求 a 的取值范围为{a|a≥3}.
题型四 易错辨析——概念认识不到位致误
【例4】 设全集U={2,3,a2+2a-3},A={|2a-1|,2},∁UA={5},求实数a的值.
错解:因为∁UA={5}, 所以5∈U,且5∉A, 所以a2+2a-3=5,且|2a-1|≠5, 解得a=2或a=-4. 故实数a的值为2或-4. 纠错:以上求解过程忽略了验证“A⊆U”这一隐含条件.

高中数学 第一章 集合与函数概念 1.2 函数及其表示学

高中数学 第一章 集合与函数概念 1.2 函数及其表示学

1.2 函数及其表示1.2.1 函数的概念预习课本P15~18,思考并完成以下问题(1)在集合的观点下函数是如何定义?函数有哪三要素?(2)如何用区间表示数集?(3)相等函数是指什么样的函数?[新知初探]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.[点睛] 对函数概念的3点说明(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其它区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)[点睛] 关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)区间表示数集,数集一定能用区间表示.( )(2)数集{x|x≥2}可用区间表示为[2,+∞].( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( )(4)函数值域中每一个数在定义域中一定只有一个数与之对应.( )(5)函数的定义域和值域一定是无限集合.( )答案:(1)×(2)×(3)√(4)×(5)×2.函数y=1x+1的定义域是( )A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) 答案:C3.已知f(x)=x2+1,则f ( f (-1))=( ) A.2 B.3 C.4 D.5 答案:D4.用区间表示下列集合:(1){x|10≤x≤100}用区间表示为________.(2){x|x>1}用区间表示为________.答案:(1)[10,100] (2)(1,+∞)[例1] (1)设M={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形:其中,能表示从集合M 到集合N 的函数关系的个数是( ) A .0 B .1 C .2D .3(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ① f :把x 对应到3x +1; ② g :把x 对应到|x |+1; ③ h :把x 对应到1x; ④ r :把x 对应到x .(1)[解析] ①中,因为在集合M 中当1<x ≤2时,在N 中无元素与之对应,所以①不是;②中,对于集合M 中的任意一个数x ,在N 中都有唯一的数与之对应,所以②是;③中,x =2对应元素y =3∉N ,所以③不是;④中,当x =1时,在N 中有两个元素与之对应,所以④不是.因此只有②是,故选B.[答案] B(2)[解] ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任一x ∈R,3x +1都有唯一确定的值与之对应,如x =-1,则3x +1=-2与之对应.同理,②也是实数集R 上的一个函数.③不是实数集R 上的函数.因为当x =0时,1x的值不存在.④不是实数集R 上的函数.因为当x <0时,x 的值不存在.1.判断对应关系是否为函数的2个条件 (1)A ,B 必须是非空数集.(2)A 中任意一元素在B 中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系. 2.根据图形判断对应是否为函数的方法 (1)任取一条垂直于x 轴的直线l . (2)在定义域内平行移动直线l .(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.函数的判断[活学活用]1.下列对应或关系式中是A 到B 的函数的是( ) A .A =R ,B =R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B A 错误,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一.B 正确,符合函数的定义.C 错误,2∈A ,在B 中找不到与之相对应的数.D 错误,-1∈A ,在B 中找不到与之相对应的数.[例2] 下列各组函数中是相等函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1 C .y =2x 与y =2x (x ≥0) D .y =(x +1)2与y =x 2[解析] 对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是相等函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是相等函数;对于选项C ,虽然对应关系相同,但定义域不同,不是相等函数;对于选项D ,虽然定义域相同,但对应关系不同,不是相等函数.[答案] B判断函数相等的方法判断函数是否相等,关键是树立定义域优先的原则. (1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同. [活学活用]2.下列各组式子是否表示同一函数?为什么?相等函数(1)f (x )=|x |,φ(t )=t 2; (2)y =x 2,y =(x )2;(3)y =1+x ·1-x ,y =1-x 2; (4)y =3-x2,y =x -3.解:(1)f (x )与φ(t )的定义域相同,又φ(t )=t 2=|t |,即f (x )与φ(t )的对应关系也相同,∴f (x )与φ(t )是同一函数.(2)y =x 2的定义域为R ,y =(x )2的定义域为{x |x ≥0},两者定义域不同,故y =x 2与y =(x )2不是同一函数.(3)y =1+x ·1-x 的定义域为{x |-1≤x ≤1},y =1-x 2的定义域为{x |-1≤x ≤1},即两者定义域相同.又∵y =1+x ·1-x =1-x 2,∴两函数的对应关系也相同.故y =1+x ·1-x 与y =1-x 2是同一函数.(4)∵y =3-x 2=|x -3|与y =x -3的定义域相同,但对应关系不同,∴y =3-x2与y =x -3不是同一函数.[例3] 求下列函数的定义域:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[解] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}.求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 求函数的定义域[活学活用]3.求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0.解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1,且x ≠1}.[例4] (1)已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R),则f (2)=________,f (g (2))=________.(2)求下列函数的值域: ①y =x +1;②y =x 2-2x +3,x ∈[0,3); ③y =3x -1x +1;④y =2x -x -1.(1)[解析] ∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,求函数值和值域∴g (2)=22+2=6,∴f ( g (2))=f (6)=11+6=17.[答案] 13 17(2)[解] ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y ≠3, ∴y =3x -1x +1的值域为{y |y ∈R 且y ≠3}.④(换元法)设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.1.函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.[活学活用]4.求下列函数的值域:(1)y =2x +1+1;(2)y =1-x21+x2.解:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].层级一 学业水平达标1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2解析:选D A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.4.设f (x )=x 2-1x 2+1,则f 2f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35D .-35解析:选Bf 2 f ⎝ ⎛⎭⎪⎫1 2 =22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1. 5.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选B y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x2+1的值域为[1,+∞).6.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意知3a -1>a ,则a >12.答案:⎝ ⎛⎭⎪⎫12,+∞ 7.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. 解析:∵x =1,2,3,4,5, ∴f (x )=2x -3=-1,1,3,5,7. ∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}8.设f (x )=11-x,则f ( f ( x ))=________.解析:f ( f (x ))=11-11-x =11-x -11-x =x -1x . 答案:x -1x(x ≠0,且x ≠1) 9.已知f (x )=x 2-4x +5. (1)求f (2)的值.(2)若f (a )=10,求a 的值. 解:(1)由f (x )=x 2-4x +5, 所以f (2)=22-4×2+5=1. (2)由f (a )=10,得a 2-4a +5=10, 即a 2-4a -5=0,解得a =5或a =-1. 10.求函数y =x +26-2x -1的定义域,并用区间表示.解:要使函数解析式有意义,需满足:⎩⎪⎨⎪⎧x +2≥0,6-2x ≥0,6-2x ≠1,即⎩⎪⎨⎪⎧x ≥-2,x ≤3,x ≠52,所以-2≤x ≤3且x ≠52.所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤3且x ≠52. 用区间表示为⎣⎢⎡⎭⎪⎫-2,52 ∪⎝ ⎛⎦⎥⎤52,3.层级二 应试能力达标1.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6D .x =y解析:选A 对于A ,由x =y 2+1得y 2=x -1.当x =5时,y =±2,故y 不是x 的函数;对于B ,y =2x 2+1是二次函数;对于C ,x -2y =6⇒y =12x -3是一次函数;对于D ,由x =y 得y =x 2(x ≥0)是二次函数.故选A.2.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B =( ) A .[1,+∞) B .(1,+∞) C .[2,+∞)D .(0,+∞)解析:选C 集合A 表示函数y =x -1的定义域,则A ={x |x ≥1},集合B 表示函数y =x 2+2的值域,则B ={y |y ≥2},故A ∩B ={x |x ≥2}.3.若函数f (x )=ax 2-1,a 为一个正数,且f ( f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1D .2解析:选A ∵f (x )=ax 2-1,∴f (-1)=a -1,f (f (-1))=f (a -1)=a ·(a -1)2-1=-1.∴a (a -1)2=0. 又∵a 为正数,∴a =1.4.已知函数y =f (x )与函数y =x +3+1-x 是相等的函数,则函数y =f (x )的定义域是( )A .[-3,1]B .(-3,1)C .(-3,+∞)D .(-∞,1]解析:选A 由于y =f (x )与y =x +3+1-x 是相等函数,故二者定义域相同,所以y =f (x )的定义域为{x |-3≤x ≤1}.故写成区间形式为[-3,1].5.函数y =1x -2的定义域是A ,函数y =2x +6 的值域是B ,则A ∩B =________(用区间表示).解析:要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =2x +6 ≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2,或x >2}.答案:[0,2)∪(2,+∞)6.函数y =6-x|x |-4的定义域用区间表示为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧6-x ≥0,|x |-4≠0,即⎩⎪⎨⎪⎧x ≤6,x ≠±4,∴定义域为(-∞,-4)∪(-4,4)∪(4,6]. 答案:(-∞,-4)∪(-4,4)∪(4,6] 7.试求下列函数的定义域与值域:(1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4x -1;(4)f (x )=x -x +1.解:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54.8.已知函数f (x )=x 21+x2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值;(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016的值.解:(1)∵f (x )=x 21+x2,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x=1, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=1,f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1,…,f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=2 015.1.2.2 函数的表示法 第一课时 函数的表示法预习课本P19~21,思考并完成以下问题(1)表示两个变量之间函数关系的方法有几种?分别是什么?(2)函数的各种表示法各有什么特点?[新知初探][点睛] 列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何一个函数都可以同上述三种方法表示.( ) (2)函数f (x )=2x +1不能用列表法表示.( )(3)函数的图象一定是定义区间上一条连续不断的曲线.( ) 答案:(1)× (2)√ (3)×2.已知函数f (x )由下表给出,则f (3)等于( )x 1≤x <2 2 2<x ≤4 f (x )1 23A.1C.3 D.不存在答案:C3.函数y=f(x)的图象如图,则f(x)的定义域是( )A.RB.(-∞,1)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-1,0)答案:C4.已知反比例函数f (x)满足f(3)=-6,f (x)的解析式为________.答案:y=-18x[例1] 某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来[解] (1)列表法:x/台1234 5y/元 3 000 6 0009 00012 00015 000x/台678910y/元18 00021 00024 00027 00030 000(2)图象法:(3)解析法:y=3 000x,x∈{1,2,3,…,10}.理解函数的表示法3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满函数的表示法足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义. (3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.[活学活用]1.已知函数f (x ),g (x )分别由下表给出.x 1 2 3 f (x )211则f ( g (1))的值为________; 当g ( f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3,∴f ( g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1.答案:1 1[例2] 作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[解] (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分,观察图象可知,其值域为[1,5].(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.x 1 2 3 g (x )321函数图象的作法及应用由图可得函数的值域是[-1,8].作函数y=f(x)图象的方法(1)若y=f(x)是已学过的基本初等函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y=f(x)不是所学过的基本初等函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y=f(x)的图象.[活学活用]2.作出下列函数的图象:(1)y=1-x(x∈Z);(2)y=x2-4x+3,x∈[1,3].解:(1)因为x∈Z,所以图象为直线y=1-x上的孤立点,其图象如图①所示.(2)y=x2-4x+3=(x-2)2-1,当x=1,3时,y=0;当x=2时,y=-1,其图象如图②所示.[例3] 求下列函数的解析式:(1)已知函数f (x+1)=x+2x,求f (x);(2)已知函数f (x)是二次函数,且f (0)=1,f (x+1)-f (x)=2x,求f (x).[解] (1)[法一换元法]设t=x+1,则x=(t-1)2(t≥1).∴f (t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f (x)=x2-1(x≥1).函数解析式的求法[法二 配凑法]∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1.求函数解析式的4种常用求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[活学活用]3.已知f (x +1)=x 2-3x +2,求f (x ).解:法一(配凑法):∵f (x +1)=x 2-3x +2=(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.法二(换元法):令t =x +1,则x =t -1, ∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6, 即f (x )=x 2-5x +6.4.已知函数f (x )是一次函数,若f ( f (x ))=4x +8,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0),则f ( f (x ))=f ( ax +b )=a (ax +b )+b =a 2x +ab +b .又f ( f (x ))=4x +8, ∴a 2x +ab +b =4x +8,即⎩⎪⎨⎪⎧a 2=4,ab +b =8,解得⎩⎪⎨⎪⎧a =2,b=83或⎩⎪⎨⎪⎧a =-2,b =-8.∴f (x )=2x +83或f (x )=-2x -8.5.已知f (x )+2f (-x )=x 2+2x ,求f (x ). 解:∵f (x )+2 f (-x )=x 2+2x , ① ∴将x 换成-x ,得f (-x )+2 f (x )=x 2-2x . ② ∴由①②得3 f (x )=x 2-6x ,∴f (x )=13x 2-2x .层级一 学业水平达标1.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )A .3B .2C .1D .0解析:选B 由函数g (x )的图象知,g (2)=1,则f (g (2))=f (1)=2.2.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1解析:选B 令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t 1-1t=1t -1,故选B.3.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3解析:选B 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧22a +b -3a +b =5,20·a +b --a +b =1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.4.设f (x )=2x +3,g (x )=f (x -2),则g (x )=( ) A .2x +1 B .2x -1 C .2x -3D .2x +7解析:选B ∵f (x )=2x +3,∴f (x -2)=2(x -2)+3=2x -1,即g (x )=2x -1,故选B.5.若f (1-2x )=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .1B .3C .15D .30解析:选C 令1-2x =t , 则x =1-t2(t ≠1),∴f (t )=4t -12-1(t ≠1), 即f (x )=4x -12-1(x ≠1),∴f ⎝ ⎛⎭⎪⎫12=16-1=15. 6.已知函数f (x )由下表给出,则f ( f (3))=________.x 1 2 3 4 f (x )3241=1. 答案:17.已知函数f (x )=x -m x,且此函数图象过点(5,4),则实数m 的值为________. 解析:将点(5,4)代入f (x )=x -m x,得m =5. 答案:58.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -239.(1)已知函数f (x )=x 2,求f (x -1); (2)已知函数f (x -1)=x 2,求f (x ). 解:(1)f ( x -1)=(x -1)2=x 2-2x +1.(2)法一(配凑法):因为f (x -1)=x 2=(x -1)2+2(x -1)+1,所以f (x )=x 2+2x +1.法二(换元法):令t =x -1,则x =t +1,可得f (t )=(t +1)2=t 2+2t +1,即f (x )=x 2+2x +1.10.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3 f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.层级二 应试能力达标1.已知函数f (x +1)=x 2-x +3,那么f (x -1)的表达式是( ) A .f (x -1)=x 2+5x -9 B .f (x -1)=x 2-x -3 C .f (x -1)=x 2-5x +9D .f (x -1)=x 2-x +1解析:选C f (x +1)=(x +1)2-3(x +1)+5, 所以f (x )=x 2-3x +5,f (x -1)=(x -1)2-3(x -1)+5=x 2-5x +9,故选C.2.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还可能经过的点的坐标为( )A.⎝ ⎛⎭⎪⎫12,5 B.⎝ ⎛⎭⎪⎫14,4 C .(-1,3)D .(-2,1)解析:选A 设一次函数的解析式为y =kx +b (k ≠0),由该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,,所以此函数的解析式为y =2x +4,只有A选项的坐标符合此函数的解析式.故选A.3.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2解析:选B 因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a2+3)=x 2-x +1,求得a =-1.故选B.4.函数y =f (x )(f (x )≠0)的图象与x =1的交点个数是( ) A .1 B .2 C .0或1D .1或2解析:选C 结合函数的定义可知,如果f :A →B 成立,则任意x ∈A ,则有唯一确定的B 与之对应,由于x =1不一定是定义域中的数,故x =1可能与函数y =f (x )没有交点,故函数f (x )的图象与直线x =1至多有一个交点.5.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (x )=________.解析:f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2.答案:x 2+26.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.已知函数f (x )=xax +b(a ,b 为常数,且a ≠0)满足f (2)=1,且f (x )=x 有唯一解,求函数y =f (x )的解析式和f (f (-3))的值.解:因为f (2)=1,所以22a +b=1,即2a +b =2,①又因为f (x )=x 有唯一解,即x ax +b=x 有唯一解,所以ax 2+(b -1)x =0有两个相等的实数根,所以Δ=(b -1)2=0,即b =1.代入①得a =12.所以f (x )=x 12x +1=2xx +2.所以f (f (-3))=f ⎝⎛⎭⎪⎫-6-1=f (6)=2×66+2=32.8.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为:y =ax +bx.且当x =2时,y =100;当x =7时,y =35.且此产品生产件数不超过20件.(1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解:(1)将⎩⎪⎨⎪⎧x =2,y =100,与⎩⎪⎨⎪⎧x =7,y =35,代入y =ax +bx中,得⎩⎪⎨⎪⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196.所以所求函数解析式为y =x +196x(x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 1 2 3 4 5 6 7 8 9 10 y 197 100 68.353 44.2 38.7 35 32.5 30.8 29.6x 11 12 13 14 15 16 17 18 19 20 y28.828.328.12828.128.2528.528.929.329.8依据上表,画出函数y 的图象如图所示,是由20个点构成的点列.第二课时 分段函数与映射预习课本P21~23,思考并完成以下问题(1)什么是分段函数?分段函数是一个还是几个函数?(2)怎样求分段函数的值?如何画分段函数的图象?(3)映射的定义是什么?映射和函数的关系怎样?[新知初探]1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.[点睛] (1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.2.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.[点睛] 映射由三要素组成,集合A,B以及A到B的对应关系,集合A,B可以是非空的数集,也可以是点集或其他集合.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)映射中的两个非空集合并不一定是数集.( )(2)分段函数由几个函数构成.( )(3)函数f(x)=⎩⎪⎨⎪⎧x+1,x≤1,-x+3,x>1是分段函数.( )(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( )答案:(1)√(2)×(3)√(4)×2.已知f(x)=⎩⎪⎨⎪⎧-x,x≤0,x2,x>0.则f(-2)=( )A.2 B.4C.-2 D.2或4答案:A3.已知集合A={a,b},集合B={0,1},下列对应不是A到B的映射的是( )答案:C4.函数f(x)=⎩⎪⎨⎪⎧2,1≤x<2,3,x≥2的定义域为________.答案:[1,+∞)[例1] 下列对应是不是从A到B的映射?(1)A=B=N*,f:x→|x-3|;(2)A=N,B=Q,f:x→1x;(3)A={x|1≤x≤2},B={y|2≤y≤5},f:x→y=2x.[解] (1)当x=3∈A时,|x-3|=0∉B,即A中的元素3在B中没有元素与之对应,所以(1)不是映射.映射的概念(2)当x =0∈A 时,1x无意义,即A 中的元素0在B 中没有元素与之对应,所以(2)不是映射.(3)当1≤x ≤2时,2≤2x ≤4,而且对于A 中每一个x 值,按照对应关系y =2x ,在B 中都有唯一的元素与之对应,所以(3)是映射.判断一个对应是不是映射的2个关键(1)对于A 中的任意一个元素,在B 中是否有元素与之对应. (2)B 中的对应元素是不是唯一的.[点睛] “一对一”或“多对一”的对应才可能是映射. [活学活用]1.已知A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →x2x +1.(1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么?解:(1)A 中元素1,即x =1,代入对应关系得x 2x +1=12×1+1=13,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即x 2x +1=49,解得x =4,因此与B 中元素49相对应的A 中的元素是4.[例2] 已知函数f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x2,|x |>1.(1)求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12的值;(2)若f (x )=13,求x 的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+⎝ ⎛⎭⎪⎫-322=413.(2)f (x )=13,若|x |≤1,则|x -1|-2=13,分段函数求值得x =103或x =-43.因为|x|≤1,所以x 的值不存在;若|x |>1,则11+x 2=13,得x =±2,符合|x |>1.所以若f (x )=13,x 的值为± 2.1.求分段函数的函数值的方法(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.求某条件下自变量的值的方法先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.[活学活用]2.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +2,x ≤0,则f (-5)的值等于________.解析:f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2.答案:23.函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,45x ,x >2.若f (x 0)=8,则x 0=________.解析:当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6, ∴x 0=-6或x 0=6(舍去); 当x 0>2时,f (x 0)=45x 0,∴x 0=10.综上可知,x 0=-6或x 0=10. 答案:-6或10题点一:分段函数的图象的判定 1.函数f (x )=|x -1|的图象是( )分段函数的图象及应用解析:选B 法一:函数的解析式可化为y =⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1.画出此分段函数的图象,故选B.法二:由f (-1)=2,知图象过点(-1,2),排除A 、C 、D ,故选B. 题点二:分段函数图象的作法2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,画出f (x )的图象.解:利用描点法,作出f (x )的图象,如图所示.题点三:由函数的图象确定其解析式3.已知函数f (x )的图象如右图所示,则f (x )的解析式是________. 解析:由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1.当0≤x ≤1时,设f (x )=kx ,将(1,-1)代入,则k =-1.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1题点四:分段函数的图象及应用 4.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b .则函数f (x )=x ⊙(2-x )的值域为________.解析:由题意得f (x )=⎩⎪⎨⎪⎧2-x ,x ≥1,x ,x <1,画出函数f (x )的图象得值域是(-∞,1].答案:(-∞,1]分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.层级一 学业水平达标1.下列对应关系f 中,能构成从集合A 到集合B 的映射的是( ) A .A ={x |x >0},B =R ,f :x →|y |=x 2B .A ={-2,0,2},B ={4},f :x →y =x 2C .A =R ,B ={y |y >0},f :x →y =1x2D .A ={0,2},B ={0,1},f :x →y =x2解析:选D 对于A ,集合A 中元素1在集合B 中有两个元素与之对应;对于B ,集合A 中元素0在集合B 中无元素与之对应;对于C ,集合A 中元素0在集合B 中无元素与之对应.故A 、B 、C 均不能构成映射.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:选A ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,∴f (-7)=10.f (f (-7))=f (10)=10×10=100.3.下列图形是函数y =x |x |的图象的是( )解析:选D 函数y =x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,故选D.4.已知集合M ={x |0≤x ≤4},N ={0|0≤y ≤2},按对应关系f 不能构成从M 到N 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x解析:选C 因为当x =4时,y =23×4=83∉N ,所以C 中的对应关系f 不能构成从M 到N的映射.5.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:选B 先求各段上的图象,再求各段值域的并集,即为该函数的值域.6.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥1,1x,x <1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=________.解析:依题意,得f ⎝ ⎛⎭⎪⎫13=113=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (3)=32-1=8.答案:87.函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,若f (x )=3,则x 的值是________.解析:当x ≤-1时,x +2=3,得x =1舍去, 当-1<x <2时,x 2=3得x =3或x =-3(舍去). 答案: 38.在映射f :A →B 中,A =B ={(x ,y )|x ,y ∈R},且f :(x ,y )→(x -y ,x +y ),则与A 中的元素(-1,2)对应的B 中的元素为________.解析:由题意知,与A 中元素(-1,2)对应的B 中元素为(-1-2,-1+2),即(-3,1). 答案:(-3,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值. 解:(1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4.10.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示函数f (x ); (2)画出函数f (x )的图象; (3)写出函数f (x )的值域. 解:(1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).层级二 应试能力达标1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈0,1],则函数f (x )的图象是( )解析:选A 当x =-1时,y =0,即图象过点(-1,0),D 错;当x =0时,y =1,即图象过点(0,1),C 错;当x =1时,y =2,即图象过点(1,2),B 错.故选A.2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,使函数值为5的x 的值是( ) A .-2 B .2或-52C .2或-2D .2或-2或-52解析:选A 当x ≤0时,令x 2+1=5,解得x =-2;当x >0时,令-2x =5,得x =-52,不合题意,舍去.3.已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素在A 中都能找到元素与之对应,且对任意的a ∈A ,在B 中和它对应的元素是|a |,则集合B 中元素的个数是( )A .4B .5C .6D .7解析:选A 注意到对应法则是f :a →|a |,因此3和-3对应集合B 中的元素3;2和-2对应集合B 中的元素2;1和-1对应集合B 中的元素1;4对应集合B 中的元素4.所以B ={1,2,3,4},有4个元素.4.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米解析:选A 该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧ mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13. 5.函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,2-x ,-2≤x <0,的值域是________.解析:当x ≥0时,f (x )≥1,当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).答案:[1,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧ 12x -1,x ≥0,1x ,x <0,若f (a )>1,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=12a -1>1, 解得a >4,符合a ≥0;当a <0时,f (a )=1a>1,无解. 答案:(4,+∞)7.如图所示,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解:(1)直接由图中观察,可得f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,解得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .得⎩⎪⎨⎪⎧ b =4,k =-2.∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2<x ≤6).∴f (x )=⎩⎪⎨⎪⎧ -2x +4,0≤x ≤2,x -2,2<x ≤6.8.A ,B 两地相距150公里,某汽车以每小时50公里的速度从A 地到B 地,在B 地停留2小时之后,又以每小时60公里的速度返回A 地.写出该车离A 地的距离s (公里)关于时间t (小时)的函数关系,并画出函数图象.解:(1)汽车从A 地到B 地,速度为50公里/小时,则有s =50t ,到达B 地所需时间为15050=3(小时). (2)汽车在B 地停留2小时,则有s =150.(3)汽车从B 地返回A 地,速度为60公里/小时,则有s =150-60(t -5)=450-60t ,从B 地到A 地用时15060=2.5(小时). 综上可得:该汽车离A 地的距离s 关于时间t 的函数关系为s =⎩⎪⎨⎪⎧ 50t ,0≤t ≤3,150,3<t ≤5,450-60t ,5<t ≤7.5.函数图象如图所示.。

高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件

高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件
0, < 0,
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||

2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个

高中数学第一章集合与函数概念1.2.1函数的概念第2课时函数的定义域与值域教案数学教案

高中数学第一章集合与函数概念1.2.1函数的概念第2课时函数的定义域与值域教案数学教案

第2课时函数的定义域与值域[目标] 1.了解构成函数的要素,理解函数相等的概念;2.会求简单函数的定义域与值域;3.会求形如f(g(x))的函数的定义域.[重点] 函数相等的概念,求函数的值域.[难点] 求函数的值域,求形如f(g(x))的函数的定义域.知识点一函数相等[填一填]1.条件:①定义域相同;②对应关系完全一致.2.结论:两个函数相等.[答一答]1.若两个函数的定义域和值域相同,它们是否为同一函数?对应关系和值域相同呢?提示:观察下表:12对于f3(x)和f4(x),对应关系和值域虽相同,但定义域不同,故不是同一函数.知识点二函数的定义域[填一填]函数的定义域是使函数有意义的所有自变量的集合.求函数的定义域时,一般遵循以下原则:1.f(x)是整式时,定义域是全体实数的集合.2.f (x )是分式时,定义域是使分母不为0的一切实数的集合. 3.f (x )是偶次根式时,定义域是使被开方式为非负值的实数的集合. 4.零(负)指数幂的底数不能为零.5.对于含字母参数的函数,求其定义域时,需根据问题的具体情况对字母参数进行讨论.6.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.[答一答]2.函数f (x )=x -1x -2+(x -1)0的定义域为( D ) A .{x |x ≥1} B .{x |x >1}C .{x |1≤x <2或x >2}D .{x |1<x <2或x >2}解析: 要使函数有意义,则只需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,x -1≠0,解得1<x <2或x >2,所以函数的定义域为{x |1<x <2或x >2}.故选D.知识点三 函数的值域[填一填]求函数的值域是一个较复杂的问题,要首先明确两点:一是值域的概念,即对于定义域A 上的函数y =f (x ),其值域就是指其函数值的集合:{f (x )|x ∈A };二是函数的定义域、对应关系是确定函数的依据.另外,在求函数的值域时,要根据所给的函数的形式,采用相应的方法.[答一答]3.已知函数y =x 2,x ∈{0,1,2,-1},函数y =x 2的值域是什么?提示:当x =0时,y =0;当x =±1时,y =1;当x =2时,y =4.所以函数的值域是{0,1,4}.[例1] 下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是____________(填上所有正确的序号). [答案] ③⑤[解析] ①不同,定义域不同,f (x )定义域为{x |x ≠0},g (x )定义域为R .②不同,对应法则不同,f (x )=1x,g (x )=x .③相同,定义域、对应法则都相同.④不同,值域不同,f (x )≥0,g (x )∈R .⑤相同,定义域、对应法则都相同.讨论函数问题时,要保持定义域优先的原则.判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,若解析式相同,则相等,否则不相等.[变式训练1] 下列各组中两个函数是否表示相等函数? (1)f (x )=6x ,g (x )=63x 3;(2)f (x )=x 2-9x -3,g (x )=x +3;(3)f (x )=x 2-2x -1,g (t )=t 2-2t -1.解:(1)g (x )=63x 3=6x ,它与f (x )=6x 定义域相同,对应关系也相同,所以是相等函数.(2)f (x )=x 2-9x -3=x +3(x ≠3),它与g (x )=x +3的定义域不同,故不是相等函数.(3)虽然自变量用不同的字母表示,但两个函数的定义域和对应关系都相同,故是相等函数.命题视角1:求具体函数的定义域[例2] 求下列函数的定义域,结果用区间表示: (1)y =x +2+1x 2-x -6;(2)y =(x +1)|x |-x .[解] (1)要使函数有意义,则有⎩⎪⎨⎪⎧x +2≥0,x 2-x -6≠0⇒⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,故函数的定义域是(-2,3)∪(3,+∞).(2)要使函数有意义,必须满足⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得⎩⎪⎨⎪⎧x ≠-1,x <0,故函数的定义域是(-∞,-1)∪(-1,0).求函数的定义域就是求使函数式有意义的自变量的取值范围.当一个函数式由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.[变式训练2] 求下列函数的定义域: (1)y =1-x +1x +5;(2)y =31-1-x. 解析:(1)由已知得⎩⎪⎨⎪⎧1-x ≥0,x +5≠0,解得x ≤1且x ≠-5.所求定义域为{x |x ≤1且x ≠-5}.(2)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.命题视角2:求抽象函数的定义域[例3] (1)已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. (2)已知函数f (2x +1)的定义域是[-1,4],求函数f (x )的定义域.[分析] 在对应关系相同的情况下,f (x )中x 应与f (g (x ))中g (x )的取值范围相同,据此可解答该题.[解] (1)由已知f (x )的定义域是[-1,4], 即-1≤x ≤4.故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32.∴f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. (2)由已知f (2x +1)的定义域是[-1,4],即f (2x +1)中,应有-1≤x ≤4,∴-1≤2x +1≤9. ∴f (x )的定义域是[-1,9].因为f (g (x ))就是用g (x )代替了f (x )中的x ,所以g (x )的取值范围与f (x )中的x 的取值范围相同.若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域是指满足不等式a ≤g (x )≤b 的x 的取值范围;而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ],要求f (x )的定义域,就是求x ∈[a ,b ]时g (x )的值域.[变式训练3] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( B )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以对于函数g (x )满足0≤2x ≤2,且x ≠1,故x ∈[0,1).类型三 求函数的值域[例4] 求下列函数的值域. (1)f (x )=3x -1,x ∈[-5,2); (2)y =2x +1,x ∈{1,2,3,4,5}; (3)y =x 2-4x +6,x ∈[1,5); (4)y =5x -14x +2.[解] (1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5).(2)∵x ∈{1,2,3,4,5},∴2x +1∈{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}. (3)y =x 2-4x +6=(x -2)2+2. ∵x ∈[1,5),∴其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∴所求函数的值域为[2,11). (4)y =5x -14x +2=54(4x +2)-1-1044x +2=54(4x +2)-1444x +2=54-72(4x +2).∵72(4x +2)≠0,∴y ≠54,∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}.根据函数关系式,选择恰当的方法求函数的值域.(1)对于一次函数,已知自变量的取值范围,依据简单不等式的运算,求得函数的取值范围,即为函数的值域;(2)对于二次函数,可借助图象求函数的值域;(3)通过分离常数,借助反比例函数的特征求值域.无论哪种方法求值域,都应注意定义域的限制.[变式训练4] 求下列函数的值域: (1)y =2x +1,x ∈{0,1,3,4}; (2)y =xx +1;(3)y =x 2-4x ,x ∈[1,4].解:(1)∵y =2x +1,x ∈{0,1,3,4}, ∴y ∈{1,3,7,9}. (2)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0, ∴函数y =xx +1的值域为{y |y ≠1}.(3)配方,得y =(x -2)2-4. ∵x ∈[1,4],∴函数的值域为[-4,0].1.函数f (x )=x +1+12-x 的定义域为( A )A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)解析:由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得x ≥-1且x ≠2.故选A.2.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( D ) A .{x |x ≥1} B .{x |x >1} C .{2,3}D .{2,5}解析:∵0<x ≤2且x ∈N *, ∴x =1或x =2. ∴f (1)=2,f (2)=5, 故函数的值域为{2,5}.3.若函数f (x )与g (x )=32-x -2是相等的函数,则函数f (x )的定义域是[2,6)∪(6,+∞).解析:∵2-x -2≠0,∴x ≠6, 又x -2≥0,∴x ≥2,∴g (x )的定义域为[2,6)∪(6,+∞). 故f (x )的定义域是[2,6)∪(6,+∞).4.已知函数f (x )的定义域为{x |-1<x <1},则函数f (2x +1)的定义域为{x |-1<x <0}. 解析:因为f (x )的定义域为{x |-1<x <1}, 所以-1<2x +1<1,解得-1<x <0.所以f (2x +1)的定义域为{x |-1<x <0}. 5.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1; (2)y =5x +4x -1;(3)y =x -x +1.解:(1)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}.(2)函数的定义域为{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =(t -12)2-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}.——本课须掌握的三大问题1.两个函数当且仅当它们的三要素完全相同时才表示同一函数,根据它们之间的关系,判断两个函数是否为同一函数,主要看它们的定义域和对应法则是否相同.因为只要定义域相同,对应法则相同,则值域就相同.2.研究函数问题必须树立“定义域优先”原则.求函数定义域一般有三种类型:(1)函数来自实际问题的定义域;(2)已知函数解析式求定义域;(3)抽象函数求定义域.3.求值域的方法有:(1)观察法:根据定义域和对应关系求出;(2)数形结合法:作出函数的图象,然后求解;(3)配方法:配方求解;(4)分离常数法:添一项、减一项,分离出常数再求解;(5)换元法:可以将无理函数转换成有理函数再求解.学习至此,请完成课时作业7 学科素养培优精品微课堂 复合函数与抽象函数开讲啦1.复合函数的概念如果函数y =f (t )的定义域为A ,函数t =g (x )的定义域为D ,值域为C ,则当C ⊆A 时,称函数y =f (g (x ))为f (t )与g (x )在D 上的复合函数,其中t 叫做中间变量,t =g (x )叫做内层函数,y =f (t )叫做外层函数.2.抽象函数的概念没有给出具体解析式的函数,称为抽象函数. 3.抽象函数或复合函数的定义域理解抽象函数或复合函数的定义域,要明确以下几点: (1)函数f (x )的定义域是指x 的取值范围.(2)函数f (φ(x ))的定义域是指x 的取值范围,而不是φ(x )的范围.(3)f (t ),f (φ(x )),f (h (x ))三个函数中的t ,φ(x ),h (x )在对应关系f 下的范围相同.[典例] 若函数f (x )的定义域为[0,1],求g (x )=f (x +m )+f (x -m )(m >0)的定义域. [解] ∵f (x )的定义域为[0,1],∴g (x )=f (x +m )+f (x -m )中自变量x 需满足⎩⎪⎨⎪⎧0≤x +m ≤1,0≤x -m ≤1,解得⎩⎪⎨⎪⎧-m ≤x ≤1-m ,m ≤x ≤1+m .当1-m =m ,即m =12时,x =12;当1-m >m ,即0<m <12时,如图1,m ≤x ≤1-m .当1-m <m ,即m >12时,如图2,x ∈∅.综上所述,当0<m <12时,g (x )的定义域为[m,1-m ];当m =12时,g (x )的定义域为⎩⎨⎧⎭⎬⎫12;当m >12时,函数g (x )的定义域为∅.[对应训练] 已知函数f (x +3)的定义域为[-4,5],则函数f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤1,112. 解析:∵函数f (x +3)的定义域为[-4,5],∴-4≤x ≤5,∴-1≤x +3≤8,即函数f (x )的定义域为[-1,8].由-1≤2x -3≤8,解得1≤x ≤112.故函数f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤1,112.。

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

2.已知集合A={x|x<a},B={x|x<-1,或x> 0},若A∩(∁RB)=∅,求实数a的取值范围.
解:∵B={x|x<-1,或x>0},
∴∁RB={x|-1≤x≤0}. 因而要使A∩(∁RB)=∅,结合数轴分析(如下图), 可得a≤-1.
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于 研究问题而言的一个相对概念,它仅含有所研究问题中涉及的 所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是 A是全集U的子集,随着所选全集的不同,得到的补集也是不 同的,因此,它们是互相依存、不可分割的两个概念.
解:∁RB={x|x≤1 或 x≥2}≠∅. ∵A ∁RB,∴分 A=∅和 A≠∅两种情况讨论. (1)若 A=∅,此时有 2a-2≥a,∴a≥2; (2)若 A≠∅,则有2aa≤-1,2<a, 或22aa- -22<≥a2,, ∴a≤1. 综上所述,a≤1 或 a≥2.
解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进行分类 讨论,转化为等价不等式(组)求解,同时要注意区域端点的问 题.
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
25
谢谢欣赏!
求集合补集的基本方法及处理技巧
(1)基本方法:定义法.
(2)两种处理技巧:
①当集合用列举法表示时,直接套用定义或借助 Venn图求解.

高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数的概念课件

高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数的概念课件



2.实数集R及x≥a,x>a,x≤a,x<a如何用区间表示?
提示:
定义 R
{x|x≥a}
符号 (-∞,+∞) [a,+∞)
{x|x>a}
(a,+∞)
3.判断正误:
(1)所有的数集都能用区间表示.(
(2)所有的区间都能用数集表示.(
答案:(1)× (2)√
{x|x≤a}
(-∞,a]
)
)
{x|x<a}
答案:①④


二、区间的概念及表示
1.阅读教材17页上半部分,关于区间的概念,请填写下表:
设a,b∈R,且a<b,规定如下:
定义
名称
符号
{x|a≤x≤b} 闭区间
[a,b]
{x|a<x<b}
开区间
(a,b)
{x|a≤x<b}
半开半闭区间 [a,b)
{x|a<x≤b}
半开半闭区间 (a,b]
数轴表示
故原函数的定义域为(-∞,-2)∪(-2,0).
4- ≥ 0,
≤ 4,
(2)要使函数有意义,自变量 x 的取值必须满足

≠ 1.
-1 ≠ 0,
故原函数的定义域为(-∞,1)∪(1,4].
探究一
探究二
探究三
探究四
探究五
思想方法
当堂检测
反思感悟求函数的定义域时,常有以下几种情况:
(1)如果函数f(x)是整式,那么函数的定义域是实数集R;
(+2)0
(1)y=
||-
2 -1
; (2)f(x)= -1 − 4-.

高中数学 第一章 集合与函数概念 1.1.1 集合的含义与表示 第2课时 集合的表示课件 新人教版必修1

高中数学 第一章 集合与函数概念 1.1.1 集合的含义与表示 第2课时 集合的表示课件 新人教版必修1

举法表示为{(1,2)},也可用描述法表示为{(x,y)|xy= =12, }.
易错警示
解析答案
跟踪训练4 用列举法表示下列集合. (1)A={y|y=-x2+6,x∈N,y∈N}; 解 因为y=-x2+6≤6,且x∈N,y∈N, 所以x=0,1,2时,y=6,5,2,符合题意, 所以A={2,5,6}. (2)B={(x,y)|y=-x2+6,x∈N,y∈N}. 解 (x,y)满足条件y=-x2+6,x∈N,y∈N,
{0,1,2,3,4,5,6,7,8,9}.
(2)方程x2=x的所有实数根组成的集合;
解 设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.
(3)由1~20以内的所有质数组成的集合.
解 设 由 1 ~ 2 0 以 内 的 所 有 质 数 组 成 的 集 合 为 C , 那 么 C=
反思与感悟
第一章 1.1.1 集合的含义与表示
第2课时 集合的表示
学习 目标
1.掌握集合的两种表示方法(列举法、描述法). 2.能够运用集合的两种表示方法表示一些简单集合.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点 集合的表示方法 1.列举法:把集合的元素 一一列举 出来,并用花括号“{ }”括起来表 示集合的方法叫做列举法. 2.描述法:(1)定义:用集合所含元素的 共同特征 表示集合的方法称为描 述法. (2)写法:在花括号内先写上表示这个集合元素的_一__般__符__号__及__取__值__(_或__变__ 化)范围 ,再画一条竖线,在竖线后写出这个集合中元素所具有的_共__同__ 特征 .
则Δ=64-64k=0,即k=1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 函数的概念(第二课时)
一、选择题
1.下列函数f(x)和g(x)中,表示同一函数的是()
A. y=f(x)与y=f(x+1) B. y=f(x),x∈R与y=f(t),t∈R C. f(x)=x2,g(x)= D. f(x)=2x+1与g(x)=
【答案】B
【点睛】
在判断两函数是否为同一函数时,需看两点
1.函数的定义域是否相同;
2.对应关系是否相同;
若都相同即为判断是同一函数,任何一项不同均可判断不是同一函数. 2.函数f(x)=(x∈R)的值域是()
A. [0,1] B. [0,1)
C. (0,1] D. (0,1)
【答案】C
【解析】由,则,故的值域是,故选C. 3.设函数f(x)=3x2-1,则f(a)-f(-a)的值是()
A. 0 B.3a2-1
C.6a2-2 D.6a2
【答案】A
【解析】故选A.
4.函数f(x)=+的定义域()
A. [-1,+∞) B. (-∞,-1]
C. R D. [-1,1)∪(1,+∞)
【答案】D
【解析】由解得,所以定义域为,故选D.
5.观察下表:
则f(g(3)-f(-1))=()
A. 3 B. 4
C.-3 D. 5
【答案】B
【解析】由题表知,g(3)-f(-1)=-4-(-1)=-3,∴f(g(3)-f(-1))=f(-3)=4,故选B.
6.已知集合A={1,2,3,4},B={5,6,7},在下列A到B的四种对应关系中,存在函数关系的个数是()
A. 1 B. 2
C. 3 D. 4
【答案】B
二、填空题
7.设f(x)=,则f(f(x))=________.
【答案】(x≠0,且x≠1)
【解析】由
则.
其中,且
故答案为(,且)
8.已知f(x)=x2+x-1,x∈{0,1,2,3},则f(x)的值域为________.
【答案】
【点睛】
直接法求函数的值域,一般从自变量的范围入手,逐步推出的取值范围,基本初等函数的值域都是由此方法得出的.对于二次函数,常常根据求解问题的要求,采用配方法来求值域.
9.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f(f(3))的值等于________.
【答案】2
【解析】由图可知f(3)=1,∴f(f(3))=f(1)=2.
10.用区间表示函数f(x)=的定义域:____________.
【答案】(1,+∞)
【解析】
【分析】
根据分母不为零以及偶次根式下被开方数非负列式解方程组得结果.。

相关文档
最新文档