2N6547;中文规格书,Datasheet资料
2N6519RLRA中文资料
2N6515, 2N6517
2N6519, 2N6520
100 70 50 TJ = 25°C VCE = – 20 V f = 20 MHz
30 20
30 20
10 1.0
2.0
3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA)
50 70
100
10 –1.0
ON CHARACTERISTICS(1)
DC Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc) hFE 2N6515 2N6519 2N6517, 2N6520 2N6515 2N6519 2N6517, 2N6520 2N6515 2N6519 2N6517, 2N6520 2N6515 2N6519 2N6517, 2N6520 2N6515 2N6519 2N6517, 2N6520 VCE(sat) — — — — VBE(sat) — — — VBE(on) — 0.75 0.85 0.90 2.0 Vdc 0.30 0.35 0.50 1.0 Vdc 35 30 20 50 45 30 50 45 30 45 40 20 25 20 15 — — — — — — 300 270 200 220 200 200 — — — Vdc —
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
பைடு நூலகம்
元器件交易网
NPN 2N6515
200 VCE = 10 V TJ = 125°C hFE, DC CURRENT GAIN
NPN 2N6515 2N6517 PNP 2N6519 2N6520
SLF12565T-470M2R4资料
LM2727/LM2737N-Channel FET Synchronous Buck Regulator Controller for Low Output VoltagesGeneral DescriptionThe LM2727and LM2737are high-speed,synchronous,switching regulator controllers.They are intended to control currents of 0.7A to 20A with up to 95%conversion efficien-cies.The LM2727employs output over-voltage and under-voltage latch-off.For applications where latch-off is not de-sired,the LM2737can be used.Power up and down sequencing is achieved with the power-good flag,adjustable soft-start and output enable features.The LM2737and LM2737operate from a low-current 5V bias and can convert from a 2.2V to 16V power rail.Both parts utilize a fixed-frequency,voltage-mode,PWM control architecture and the switching frequency is adjustable from 50kHz to 2MHz by adjusting the value of an external resistor.Current limit is achieved by monitoring the voltage drop across the on-resistance of the low-side MOSFET,which enhances low duty-cycle operation.The wide range of operating frequen-cies gives the power supply designer the flexibility to fine-tune component size,cost,noise and efficiency.The adap-tive,non-overlapping MOSFET gate-drivers and high-side bootstrap structure helps to further maximize efficiency.The high-side power FET drain voltage can be from 2.2V to 16V and the output voltage is adjustable down to 0.6V.Featuresn Input power from 2.2V to 16Vn Output voltage adjustable down to 0.6Vn Power Good flag,adjustable soft-start and output enable for easy power sequencingn Output over-voltage and under-voltage latch-off (LM2727)n Output over-voltage and under-voltage flag (LM2737)n Reference Accuracy:1.5%(0˚C -125˚C)n Current limit without sense resistor n Soft startn Switching frequency from 50kHz to 2MHz n TSSOP-14packageApplicationsn Cable Modemsn Set-Top Boxes/Home Gateways n DDR Core Powern High-Efficiency Distributed Power nLocal Regulation of Core PowerTypical Application20049410June 2003LM2727/LM2737N-Channel FET Synchronous Buck Regulator Controller for Low Output Voltages©2003National Semiconductor Corporation Connection Diagram2004941114-Lead Plastic TSSOPθJA =155˚C/WNS Package Number MTC14Pin DescriptionBOOT (Pin 1)-Supply rail for the N-channel MOSFET gate drive.The voltage should be at least one gate threshold above the regulator input voltage to properly turn on the high-side N-FET.LG (Pin 2)-Gate drive for the low-side N-channel MOSFET.This signal is interlocked with HG to avoid shoot-through problems.PGND (Pins 3,13)-Ground for FET drive circuitry.It should be connected to system ground.SGND (Pin 4)-Ground for signal level circuitry.It should be connected to system ground.V CC (Pin 5)-Supply rail for the controller.PWGD (Pin 6)-Power Good.This is an open drain output.The pin is pulled low when the chip is in UVP ,OVP ,or UVLO mode.During normal operation,this pin is connected to V CC or other voltage source through a pull-up resistor.ISEN (Pin 7)-Current limit threshold setting.This sources a fixed 50µA current.A resistor of appropriate value should be connected between this pin and the drain of the low-side FET.EAO (Pin 8)-Output of the error amplifier.The voltage level on this pin is compared with an internally generated ramp signal to determine the duty cycle.This pin is necessary for compensating the control loop.SS (Pin 9)-Soft start pin.A capacitor connected between this pin and ground sets the speed at which the output voltage ramps rger capacitor value results in slower output voltage ramp but also lower inrush current.FB (Pin 10)-This is the inverting input of the error amplifier,which is used for sensing the output voltage and compen-sating the control loop.FREQ (Pin 11)-The switching frequency is set by connect-ing a resistor between this pin and ground.SD (Pin 12)-IC Logic Shutdown.When this pin is pulled low the chip turns off the high side switch and turns on the low side switch.While this pin is low,the IC will not start up.An internal 20µA pull-up connects this pin to V CC .HG (Pin 14)-Gate drive for the high-side N-channel MOS-FET.This signal is interlocked with LG to avoid shoot-through problems.L M 2727/L M 2737 2Absolute Maximum Ratings(Note1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.V CC7V BOOTV21V Junction Temperature150˚C Storage Temperature−65˚C to150˚C Soldering InformationLead Temperature(soldering,10sec)260˚CInfrared or Convection(20sec)235˚C ESD Rating2kVOperating RatingsSupply Voltage(V CC) 4.5V to5.5V Junction Temperature Range−40˚C to+125˚C Thermal Resistance(θJA)155˚C/WElectrical CharacteristicsV CC=5V unless otherwise indicated.Typicals and limits appearing in plain type apply for T A=T J=+25˚C.Limits appearing in boldface type apply over full Operating Temperature Range.Datasheet min/max specification limits are guaranteed by design, test,or statistical analysis.Symbol Parameter Conditions Min Typ Max UnitsV FB_ADJ FB Pin Voltage V CC=4.5V,0˚C to+125˚C0.5910.60.609V V CC=5V,0˚C to+125˚C0.5910.60.609V CC=5.5V,0˚C to+125˚C0.5910.60.609V CC=4.5V,−40˚C to+125˚C0.5890.60.609V CC=5V,−40˚C to+125˚C0.5890.60.609V CC=5.5V,−40˚C to+125˚C0.5890.60.609V ON UVLO Thresholds RisingFalling 4.23.6VI Q-V5Operating V CC CurrentSD=5V,FB=0.55VFsw=600kHz1 1.52mASD=5V,FB=0.65VFsw=600kHz0.8 1.7 2.2 Shutdown V CC Current SD=0V0.150.40.7mAt PWGD1PWGD Pin Response Time FB Voltage Going Up6µs t PWGD2PWGD Pin Response Time FB Voltage Going Down6µs I SD SD Pin Internal Pull-up Current20µA I SS-ON SS Pin Source Current SS Voltage=2.5V0˚C to+125˚C -40˚C to+125˚C 8511111515µAI SS-OC SS Pin Sink Current During OverCurrent SS Voltage=2.5V95µAI SEN-TH I SEN Pin Source Current TripPoint0˚C to+125˚C-40˚C to+125˚C352850506565µAERROR AMPLIFIERGBW Error Amplifier Unity GainBandwidth5MHzG Error Amplifier DC Gain60dBSR Error Amplifier Slew Rate6V/µAI FB FB Pin Bias Current FB=0.55VFB=0.65V 01530100155nAI EAO EAO Pin Current Sourcing andSinking V EAO=2.5,FB=0.55VV EAO=2.5,FB=0.65V2.80.8mAV EA Error Amplifier Maximum Swing MinimumMaximum1.23.2VLM2727/LM27373Electrical Characteristics(Continued)V CC =5V unless otherwise indicated.Typicals and limits appearing in plain type apply for T A =T J =+25˚C.Limits appearing in boldface type apply over full Operating Temperature Range.Datasheet min/max specification limits are guaranteed by design,test,or statistical analysis.SymbolParameterConditionsMinTypMaxUnitsGATE DRIVE I Q-BOOTBOOT Pin Quiescent CurrentBOOTV =12V,EN =00˚C to +125˚C -40˚C to +125˚C 9595160215µAR DS1Top FET Driver Pull-Up ON resistanceBOOT-SW =5V @350mA 3ΩR DS2Top FET Driver Pull-Down ON resistanceBOOT-SW =5V @350mA 2ΩR DS3Bottom FET Driver Pull-Up ON resistanceBOOT-SW =5V @350mA 3ΩR DS4Bottom FET Driver Pull-Down ON resistanceBOOT-SW =5V @350mA2ΩOSCILLATORf OSCPWM FrequencyR FADJ =590k Ω50kHzR FADJ =88.7k Ω300R FADJ =42.2k Ω,0˚C to +125˚C 500600700R FADJ =42.2k Ω,-40˚C to +125˚C 490600700R FADJ =17.4k Ω1400R FADJ =11.3k Ω2000DMax Duty Cyclef PWM =300kHz f PWM =600kHz9088%LOGIC INPUTS AND OUTPUTSV SD-IH SD Pin Logic High Trip Point 2.63.5V V SD-IL SD Pin Logic Low Trip Point 0˚C to +125˚C -40˚C to +125˚C 1.31.25 1.61.6VV PWGD-TH-LOPWGD Pin Trip PointsFB Voltage Going Down 0˚C to +125˚C -40˚C to +125˚C 0.4130.4100.4300.4300.4460.446VV PWGD-TH-HIPWGD Pin Trip PointsFB Voltage Going Up 0˚C to +125˚C -40˚C to +125˚C0.6910.6880.7100.7100.7340.734VV PWGD-HYSPWGD Hysteresis (LM2737only)FB Voltage Going Down FB VoltageGoing Up35110mVNote 1:Absolute maximum ratings indicate limits beyond which damage to the device may occur.Operating ratings indicate conditions for which the device operates correctly.Opearting Ratings do not imply guaranteed performance limits.Note 2:The human body model is a 100pF capacitor discharged through a 1.5k resistor into each pin.L M 2727/L M 2737 4Typical Performance CharacteristicsEfficiency (V O =1.5V)F SW =300kHz,T A =25˚CEfficiency (V O =3.3V)F SW =300kHz,T A =25˚C2004941220049413V CC Operating Current vs TemperatureF SW =600kHz,No-Load Bootpin Current vs Temperature for BOOTV =12VF SW =600kHz,Si4826DY FET,No-Load2004941420049415Bootpin Current vs Temperature with 5V BootstrapF SW =600kHz,Si4826DY FET,No-Load PWM Frequency vs Temperaturefor R FADJ =43.2k Ω2004941620049417LM2727/LM27375Typical Performance Characteristics(Continued)R FADJ vs PWM Frequency(in 100to 800kHz range),T A =25˚CR FADJ vs PWM Frequency(in 900to 2000kHz range),T A =25˚C2004941820049419V CC Operating Current Plus Boot Current vs PWM Frequency (Si4826DY FET,T A =25˚C)Switch Waveforms (HG Falling)V IN =5V,V O =1.8V I O =3A,C SS =10nF F SW =600kHz2004942020049423Switch Waveforms (HG Rising)V IN =5V,V O =1.8V I O =3A,F SW =600kHzStart-Up (No-Load)V IN =10V,V O =1.2V C SS =10nF,F SW =300kHz2004942420049421L M 2727/L M 2737 6Typical Performance Characteristics(Continued)Start-Up (Full-Load)V IN =10V,V O =1.2V I O =10A,C SS =10nFF SW =300kHzStart Up (No-Load,10x C SS )V IN =10V,V O =1.2V C SS =100nF,F SW =300kHz2004942220049426Start Up (Full Load,10x C SS )V IN =10V,V O =1.2V I O =10A,C SS =100nFF SW =300kHz ShutdownV IN =10V,V O =1.2V I O =10A,C SS =10nFF SW =300kHz2004942520049427Start Up (Full Load,10x C SS )V IN =10V,V O =1.2V I O =10A,C SS =100nFF SW =300kHzLoad Transient Response (I O =0to 4A)V IN =12V,V O =1.2VF SW =300kHz2004943320049428LM2727/LM27377Typical Performance Characteristics(Continued)Load Transient Response (I O =4to 0A)V IN =12V,V O =1.2VF SW =300kHzLine Transient Response (V IN =5V to 12V)V O =1.2V,I O =5A F SW =300kHz2004942920049430Line Transient Response (V IN =12V to 5V)V O =1.2V,I O =5A F SW =300kHz Line Transient ResponseV O =1.2V,I O =5A F SW =300kHz2004943120049432L M 2727/L M 2737 8Block Diagram20049401Application InformationTHEORY OF OPERATIONThe LM2727is a voltage-mode,high-speed synchronous buck regulator with a PWM control scheme.It is designed for use in set-top boxes,thin clients,DSL/Cable modems,and other applications that require high efficiency buck convert-ers.It has power good (PWRGD),output shutdown (SD),over voltage protection (OVP)and under voltage protection (UVP).The over-voltage and under-voltage signals are OR gated to drive the Power Good signal and a shutdown latch,which turns off the high side gate and turns on the low side gate if pulled low.Current limit is achieved by sensing the voltage V DS across the low side FET.During current limit the high side gate is turned off and the low side gate turned on.The soft start capacitor is discharged by a 95µA source (reducing the maximum duty cycle)until the current is under control.The LM2737does not latch off during UVP or OVP ,and uses the HIGH and LOW comparators for the power-good function only.START UPWhen V CC exceeds 4.2V and the enable pin EN sees a logic high the soft start capacitor begins charging through an internal fixed 10µA source.During this time the output of the error amplifier is allowed to rise with the voltage of the soft start capacitor.This capacitor,Css,determines soft start time,and can be determined approximately by:An application for a microprocessor might need a delay of 3ms,in which case C SS would be 12nF.For a different device,a 100ms delay might be more appropriate,in which case C SS would be 400nF.(39010%)During soft start the PWRGD flag is forced low and is released when the voltage reaches a set value.At this point this chip enters normal operation mode,the Power Good flag is released,and the OVP and UVP functions begin to monitor Vo.NORMAL OPERATIONWhile in normal operation mode,the LM2727/37regulates the output voltage by controlling the duty cycle of the high side and low side FETs.The equation governing output voltage is:The PWM frequency is adjustable between 50kHz and 2MHz and is set by an external resistor,R FADJ ,between the FREQ pin and ground.The resistance needed for a desired frequency is approximately:LM2727/LM27379Application Information(Continued)MOSFET GATE DRIVERSThe LM2727/37has two gate drivers designed for driving N-channel MOSFETs in a synchronous mode.Power for the drivers is supplied through the BOOTV pin.For the high side gate (HG)to fully turn on the top FET,the BOOTV voltage must be at least one V GS(th)greater than Vin.(BOOTV ≥2*Vin)This voltage can be supplied by a separate,higher voltage source,or supplied from a local charge pump struc-ture.In a system such as a desktop computer,both 5V and 12V are usually available.Hence if Vin was 5V,the 12V supply could be used for BOOTV.12V is more than 2*Vin,so the HG would operate correctly.For a BOOTV of 12V,the initial gate charging current is 2A,and the initial gate dis-charging current is typically 6A.In a system without a separate,higher voltage,a charge pump (bootstrap)can be built using a diode and small ca-pacitor,Figure 1.The capacitor serves to maintain enough voltage between the top FET gate and source to control the device even when the top FET is on and its source has risen up to the input voltage level.The LM2727/37gate drives use a BiCMOS design.Unlike some other bipolar control ICs,the gate drivers have rail-to-rail swing,ensuring no spurious turn-on due to capacitive coupling.POWER GOOD SIGNALThe power good signal is the or-gated flag representing over-voltage and under-voltage protection.If the output volt-age is 18%over it’s nominal value,V FB =0.7V,or falls 30%below that value,V FB =0.41V,the power good flag goes low.The converter then turns off the high side gate,and turns on the low side gate.Unlike the output (LM2727only)the power good flag is not latched off.It will return to a logic high whenever the feedback pin voltage is between 70%and 118%of 0.6V.UVLOThe 4.2V turn-on threshold on V CC has a built in hysteresis of 0.6V.Therefore,if V CC drops below 3.6V,the chip enters UVLO mode.UVLO consists of turning off the top FET,turning on the bottom FET,and remaining in that conditionuntil V CC rises above 4.2V.As with shutdown,the soft start capacitor is discharged through a FET,ensuring that the next start-up will be smooth.CURRENT LIMITCurrent limit is realized by sensing the voltage across the low side FET while it is on.The R DSON of the FET is a known value,hence the current through the FET can be determined as:V DS =I *R DSON The current limit is determined by an external resistor,R CS ,connected between the switch node and the ISEN pin.A constant current of 50µA is forced through Rcs,causing a fixed voltage drop.This fixed voltage is compared against V DS and if the latter is higher,the current limit of the chip has been reached.R CS can be found by using the following:R CS =R DSON (LOW)*I LIM /50µAFor example,a conservative 15A current limit in a 10A design with a minimum R DSON of 10m Ωwould require a 3.3k Ωresistor.Because current sensing is done across the low side FET,no minimum high side on-time is necessary.In the current limit mode the LM2727/37will turn the high side off and the keep low side on for as long as necessary.The chip also discharges the soft start capacitor through a fixed 95µA source.In this way,smooth ramping up of the output voltage as with a normal soft start is ensured.The output of the LM2727/37internal error amplifier is limited by the volt-age on the soft start capacitor.Hence,discharging the soft start capacitor reduces the maximum duty cycle D of the controller.During severe current limit,this reduction in duty cycle will reduce the output voltage,if the current limit con-ditions lasts for an extended time.During the first few nanoseconds after the low side gate turns on,the low side FET body diode conducts.This causes an additional 0.7V drop in V DS .The range of V DS is normally much lower.For example,if R DSON were 10m Ωand the current through the FET was 10A,V DS would be 0.1V.The current limit would see 0.7V as a 70A current and enter current limit immediately.Hence current limit is masked dur-ing the time it takes for the high side switch to turn off and the low side switch to turn on.UVP/OVPThe output undervoltage protection and overvoltage protec-tion mechanisms engage at 70%and 118%of the target output voltage,respectively.In either case,the LM2727will turn off the high side switch and turn on the low side switch,and discharge the soft start capacitor through a MOSFET switch.The chip remains in this state until the shutdown pin has been pulled to a logic low and then released.The UVP function is masked only during the first charging of the soft start capacitor,when voltage is first applied to the V CC pin.In contrast,the LM2737is designed to continue operating dur-ing UVP or OVP conditions,and to resume normal operation once the fault condition is cleared.As with the LM2727,the powergood flag goes low during this time,giving a logic-level warning signal.SHUT DOWNIf the shutdown pin SD is pulled low,the LM2727/37dis-charges the soft start capacitor through a MOSFET switch.The high side switch is turned off and the low side switch is turned on.The LM2727/37remains in this state until SD is released.20049402FIGURE 1.BOOTV Supplied by Charge Pump L M 2727/L M 2737 10Application Information(Continued)DESIGN CONSIDERATIONSThe following is a design procedure for all the componentsneeded to create the circuit shown in Figure3in the Ex-ample Circuits section,a5V in to1.2V out converter,capableof delivering10A with an efficiency of85%.The switchingfrequency is300kHz.The same procedures can be followedto create the circuit shown in Figure3,Figure4,and tocreate many other designs with varying input voltages,out-put voltages,and output currents.INPUT CAPACITORThe input capacitors in a Buck switching converter are sub-jected to high stress due to the input current waveform,which is a square wave.Hence input caps are selected fortheir ripple current capability and their ability to withstand theheat generated as that ripple current runs through their ESR.Input rms ripple current is approximately:The power dissipated by each input capacitor is:Here,n is the number of capacitors,and indicates that powerloss in each cap decreases rapidly as the number of inputcaps increase.The worst-case ripple for a Buck converteroccurs during full load,when the duty cycle D=50%.In the5V to 1.2V case,D= 1.2/5=0.24.With a10Amaximum load the ripple current is 4.3A.The Sanyo10MV5600AX aluminum electrolytic capacitor has a ripplecurrent rating of2.35A,up to105˚C.Two such capacitorsmake a conservative design that allows for unequal currentsharing between individual caps.Each capacitor has a maxi-mum ESR of18mΩat100kHz.Power loss in each device isthen0.05W,and total loss is0.1W.Other possibilities forinput and output capacitors include MLCC,tantalum,OSCON,SP,and POSCAPS.INPUT INDUCTORThe input inductor serves two basic purposes.First,in highpower applications,the input inductor helps insulate theinput power supply from switching noise.This is especiallyimportant if other switching converters draw current from thesame supply.Noise at high frequency,such as that devel-oped by the LM2727at1MHz operation,could pass throughthe input stage of a slower converter,contaminating andpossibly interfering with its operation.An input inductor also helps shield the LM2727from highfrequency noise generated by other switching converters.The second purpose of the input inductor is to limit the inputcurrent slew rate.During a change from no-load to full-load,the input inductor sees the highest voltage change across it,equal to the full load current times the input capacitor ESR.This value divided by the maximum allowable input currentslew rate gives the minimum input inductance:In the case of a desktop computer system,the input currentslew rate is the system power supply or"silver box"outputcurrent slew rate,which is typically about0.1A/µs.Total inputcapacitor ESR is9mΩ,hence∆V is10*0.009=90mV,andthe minimum inductance required is0.9µH.The input induc-tor should be rated to handle the DC input current,which isapproximated by:In this case I IN-DC is about2.8A.One possible choice is theTDK SLF12575T-1R2N8R2,a1.2µH device that can handle8.2Arms,and has a DCR of7mΩ.OUTPUT INDUCTORThe output inductor forms the first half of the power stage ina Buck converter.It is responsible for smoothing the squarewave created by the switching action and for controlling theoutput current ripple.(∆I o)The inductance is chosen byselecting between tradeoffs in efficiency and response time.The smaller the output inductor,the more quickly the con-verter can respond to transients in the load current.Asshown in the efficiency calculations,however,a smaller in-ductor requires a higher switching frequency to maintain thesame level of output current ripple.An increase in frequencycan mean increasing loss in the FETs due to the chargingand discharging of the gates.Generally the switching fre-quency is chosen so that conduction loss outweighs switch-ing loss.The equation for output inductor selection is:Plugging in the values for output current ripple,input voltage,output voltage,switching frequency,and assuming a40%peak-to-peak output current ripple yields an inductance of1.5µH.The output inductor must be rated to handle the peakcurrent(also equal to the peak switch current),which is(Io+0.5*∆I o).This is12A for a10A design.The Coilcraft D05022-152HC is1.5µH,is rated to15Arms,and has a DCR of4mΩ.OUTPUT CAPACITORThe output capacitor forms the second half of the powerstage of a Buck switching converter.It is used to control theoutput voltage ripple(∆V o)and to supply load current duringfast load transients.In this example the output current is10A and the expectedtype of capacitor is an aluminum electrolytic,as with theinput capacitors.(Other possibilities include ceramic,tanta-lum,and solid electrolyte capacitors,however the ceramictype often do not have the large capacitance needed tosupply current for load transients,and tantalums tend to bemore expensive than aluminum electrolytic.)Aluminum ca-pacitors tend to have very high capacitance and fairly lowESR,meaning that the ESR zero,which affects systemstability,will be much lower than the switching frequency.The large capacitance means that at switching frequency,the ESR is dominant,hence the type and number of outputcapacitors is selected on the basis of ESR.One simpleformula to find the maximum ESR based on the desiredoutput voltage ripple,∆V o and the designed output currentripple,∆I o,is:LM2727/LM2737Application Information(Continued)In this example,in order to maintain a 2%peak-to-peak output voltage ripple and a 40%peak-to-peak inductor cur-rent ripple,the required maximum ESR is 6m Ω.Three Sanyo 10MV5600AX capacitors in parallel will give an equivalent ESR of 6m Ω.The total bulk capacitance of 16.8mF is enough to supply even severe load ing the same capacitors for both input and output also keeps the bill of materials simple.MOSFETSMOSFETS are a critical part of any switching controller and have a direct impact on the system efficiency.In this case the target efficiency is 85%and this is the variable that will determine which devices are acceptable.Loss from the ca-pacitors,inductors,and the LM2727itself are detailed in the Efficiency section,and come to about 0.54W.To meet the target efficiency,this leaves 1.45W for the FET conduction loss,gate charging loss,and switching loss.Switching loss is particularly difficult to estimate because it depends on many factors.When the load current is more than about 1or 2amps,conduction losses outweigh the switching and gate charging losses.This allows FET selection based on the R DSON of the FET.Adding the FET switching and gate-charging losses to the equation leaves 1.2W for conduction losses.The equation for conduction loss is:P Cnd =D(I 2o *R DSON *k)+(1-D)(I 2o *R DSON *k)The factor k is a constant which is added to account for the increasing R DSON of a FET due to heating.Here,k =1.3.The Si4442DY has a typical R DSON of 4.1m Ω.When plugged into the equation for P CND the result is a loss of 0.533W.If this design were for a 5V to 2.5V circuit,an equal number of FETs on the high and low sides would be the best solution.With the duty cycle D =0.24,it becomes apparent that the low side FET carries the load current 76%of the time.Adding a second FET in parallel to the bottom FET could improve the efficiency by lowering the effective R DSON .The lower the duty cycle,the more effective a second or even third FET can be.For a minimal increase in gate charging loss (0.054W)the decrease in conduction loss is 0.15W.What was an 85%design improves to 86%for the added cost of one SO-8MOSFET.CONTROL LOOP COMPONENTSThe circuit is this design example and the others shown in the Example Circuits section have been compensated to improve their DC gain and bandwidth.The result of this compensation is better line and load transient responses.For the LM2727,the top feedback divider resistor,Rfb2,is also a part of the compensation.For the 10A,5V to 1.2V design,the values are:Cc1=4.7pF 10%,Cc2=1nF 10%,Rc =229k Ω1%.These values give a phase margin of 63˚and a bandwidth of 29.3kHz.SUPPORT CAPACITORS AND RESISTORSThe Cinx capacitors are high frequency bypass devices,designed to filter harmonics of the switching frequency and input noise.Two 1µF ceramic capacitors with a sufficient voltage rating (10V for the Circuit of Figure 3)will work well in almost any case.Rbypass and Cbypass are standard filter components de-signed to ensure smooth DC voltage for the chip supply and for the bootstrap structure,if it is e 10Ωfor the resistor and a 2.2µF ceramic for the cap.Cb is the bootstrap capacitor,and should be 0.1µF.(In the case of a separate,higher supply to the BOOTV pin,this 0.1µF cap can be used to bypass the supply.)Using a Schottky device for the boot-strap diode allows the minimum drop for both high and low side drivers.The On Semiconductor BAT54or MBR0520work well.Rp is a standard pull-up resistor for the open-drain power good signal,and should be 10k Ω.If this feature is not necessary,it can be omitted.R CS is the resistor used to set the current limit.Since the design calls for a peak current magnitude (Io +0.5*∆I o )of 12A,a safe setting would be 15A.(This is well below the saturation current of the output inductor,which is 25A.)Following the equation from the Current Limit section,use a 3.3k Ωresistor.R FADJ is used to set the switching frequency of the chip.Following the equation in the Theory of Operation section,the closest 1%tolerance resistor to obtain f SW =300kHz is 88.7k Ω.C SS depends on the users requirements.Based on the equation for C SS in the Theory of Operation section,for a 3ms delay,a 12nF capacitor will suffice.EFFICIENCY CALCULATIONSA reasonable estimation of the efficiency of a switching controller can be obtained by adding together the loss is each current carrying element and using the equation:The following shows an efficiency calculation to complement the Circuit of Figure 3.Output power for this circuit is 1.2V x 10A =12W.Chip Operating LossP IQ =I Q-V CC *V CC2mA x 5V =0.01WFET Gate Charging LossP GC =n *V CC *Q GS *f OSCThe value n is the total number of FETs used.The Si4442DY has a typical total gate charge,Q GS ,of 36nC and an r ds-on of 4.1m Ω.For a single FET on top and bottom:2*5*36E -9*300,000=0.108W FET Switching LossP SW =0.5*V in *I O *(t r +t f )*f OSC The Si4442DY has a typical rise time t r and fall time t f of 11and 47ns,respectively.0.5*5*10*58E -9*300,000=0.435WL M 2727/L M 2737。
二极管参数中英文对照表
Cj Junction Capacitance 结电容ηV Rectification Efficiency 整流效率If DC Forward Current 正向直流电流I(AV) Average Forward Rectified Current 正向平均整流电流ID Stand-off Reverse Leakage Current 关态反向漏电流IFSM Peak Forward Surge Current 正向浪涌峰植电流ITSM Non Repetitive Surge Peak on-state Current 不重复浪涌峰值开态电流IDM Maximum Reverse Leakage 最大反向漏电流IFRM Repetitive Peak Forward Current 正向重复峰值电流IH Holding Current 维持电流IO Mean Forward Current 正向平均电流IR Reverse Leakage Current 反向漏电流Irr Reverse Recovery Current 反向恢复电流IPPM Maximum peak lmpulse Current 最大脉冲峰值电流IRM Maximum peak Reverse Current 最大峰值反向电流IRM(REC) Maximum peak Reverse recovery Current 最大峰值反向恢复电流IRSM Maximum Non-repetitive recovery Peak Current 最大峰值反向恢复电流IT On-state Test Current 导通测试电流I2t Rating for fusing 正向浪涌电流的平方对电流浪涌持续时间的积分值PM(AV)Maximum Steady State Power Dissipation 最大稳态功耗PPM Peak Pulse Power Dissipation 峰值脉冲功耗Ptot Total Power Dissipation 总功耗Qrr Recovered Charge 恢复电荷ROJA Thermal Resistance (Junction to Ambient)热阻(结到环境)ROJC Thermal Resistance(Junction to Case )热阻(结到管壳) ROJL Thermal Resistance(Junction to Lead )热阻(结到引线)TA Ambient Temperature 环境温度TC Case Temperature 管壳温度td Time Duration 持续时间tf Fall Time 下降时间Tj Junction Temperature 结温TL Lead Temperature 引线温度tfr Forward Recovery Time 正向恢复时间tr Rise Time 上升时间trr Reverse Recovery Time 反向恢复时间TSTG Storage Temperature 存储温度VBO Breakover Voltage 转折电压V(BR) Reverse Breakdown Voltage 反向击穿电压VF Instantaneous Forward Voltage 正向瞬态电压VFR Forward Recovery Voltage 正向恢复电压VDC,VR DC Reverse Voltage 反向直流电流VRM Maximum Reverse Paek Reverse Voltage 最大重复峰值反向电压VRMS RMS Input Voltage 均方根输入电压VRRM Peak Repetitive Reverse Voltage 反向重复峰值电压VWM Working Peak Reverse Voltage 反向工作峰值电压VC Clamping Voltage 箝位电压VWM Working Stand-off Voltage 关态工作电压VZ Zener Voltage 齐纳电压ZZ Dynamia Zener Impedance 动态齐纳阻抗αVF Temperature coefficient of forward voltage 正向压降的温度系数二极管电压参数及含义1)UTo:阈值电压。
PT4564C;PT4561C;PT4561N;PT4562C;PT4562N;中文规格书,Datasheet资料
Io
Vin Vo tol
Regtemp Regline
Regload
∆Votot
η
Vr
ttr ∆Vtr Isc ƒs UVLO
VIH VIL IIL Iin standby Cin Cout
Ta Tc Ts MTBF — — — —
Over Vin range
Vo = 15V Vo = 12V Vo = 9.0V Vo =5.0V Vo ≤ 3.3V
(3) Output capacitor values are absolute. Allowances must be made for any additional de-coupling capacitors and the total external capacitor tolerance. The value of external capacitance is limited due to regulator startup current requirements. Consult the factory for further details.
PT4560 Series
30-W 48-V Input Isolated DC/DC Converter
Not Recommended For New Designs
Features
• Input Voltage Range: 36V to 75V
• 1500 VDC Isolation • On/Off Control • Vo Adjust • Differential Remote Sense • Current Limit • Short-Circuit Protection • Over-Temperature Shutdown
1N4746A(fairchild)中文数据手册「EasyDatasheet」
不重复 峰值反向
当前
IZSM (mA) (Note 2) 344 304 285 250 225
205 190 170 150 135
125 115 110 95 90
80
Notes:
1. Zener Voltage (V ) The zener voltage is measured with the device junction in the thermal equilibrium at the lead temperature (T
100
1
100
1
50
1
10
1
10
1
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10 7.6
5
8.4
5
9.1
不重复 峰值反向
当前
IZSM (mA) (Note 2)
1380 1260 1190 1070 970
890 810 730 660 605
550 500 454 414 380
© 2009 Fairchild Semiconductor Corporation
3
芯片中文手册,看全文,戳
1N4743A 1N4744A 1N4745A 1N4746A 1N4747A
1N4748A 1N4749A 1N4750A 1N4751A 1N4752A
1N4753A 1N4754A 1N4755A 1N4756A 1N4757A
1N4758A
1号线
LOGO LOGO LOGO LOGO LOGO
2N5657;中文规格书,Datasheet资料
2N5657SILICON NPN TRANSISTORsSTMicroelectronics PREFERRED SALESTYPEsNPN TRANSISTORDESCRIPTION The 2N5657 is a silicon epitaxial-base NPN transistor in Jedec SOT-32 plastic package. It is intended for use output amplifiers, low current,high voltage converters and AC line relays.December 2000ABSOLUTE MAXIMUM RATINGS®1/5s t ePr od u c t () -ls Ob so e t ePr od u c t (THERMAL DATAELECTRICAL CHARACTERISTICS (T case = 25 o C unless otherwise specified)Safe Operating AreaDerating Curve2N5657l)Ob so e t ePoc ) -O t (sDC Current Gain (NPN type)Collector Emitter Saturation Voltage (NPN type)DC Current Gain (PNP type)Collector Emitter Saturation Voltage (PNP type)2N56572N5657l s l c )Ob so e t ePr od u c t () -O bs o e t eP r od u t (sInformation furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a trademark of STMicroelectronics© 2000 STMicroelectronics – Printed in Italy – All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.2N5657分销商库存信息: STM2N5657。
SN74ALS257ADRG4;SN74ALS257ADG4;SN74ALS258ADRG4;SN74ALS258ADG4;中文规格书,Datasheet资料
PACKAG PACKAGING INFORMATIONOrderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Pea5962-88626012A ACTIVE LCCC FK201TBD Call TI Call TI 5962-8862601EA ACTIVE CDIP J161TBD Call TI Call TI 5962-8862601FA ACTIVE CFP W161TBD Call TI Call TI 85097012A ACTIVE LCCC FK201TBD Call TI Call TI 8509701EA ACTIVE CDIP J161TBD Call TI Call TI 8509701FA ACTIVE CFP W161TBD Call TI Call TI SN54ALS257AJ ACTIVE CDIP J161TBD A42N / A for Pkg SN74ALS257AD ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ADE4ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ADG4ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ADR ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ADRE4ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ADRG4ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C SN74ALS257AN ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for Pkg SN74ALS257ANE4ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for Pkg SN74ALS257ANSR ACTIVE SO NS162000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ANSRE4ACTIVE SO NS162000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS257ANSRG4ACTIVE SO NS162000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS258AD ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS258ADE4ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS258ADG4ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C/PACKAG Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL PeaSN74ALS258ADR ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS258ADRE4ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74ALS258ADRG4ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C SN74ALS258AN ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for PkgSN74ALS258ANE4ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for Pkg SN74AS257D ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS257DE4ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS257DG4ACTIVE SOIC D1640Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C SN74AS257N ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for PkgSN74AS257NE4ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for PkgSN74AS257NSR ACTIVE SO NS162000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS257NSRE4ACTIVE SO NS162000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS257NSRG4ACTIVE SO NS162000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS258DR ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS258DRE4ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260CSN74AS258DRG4ACTIVE SOIC D162500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C SN74AS258N ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for PkgSN74AS258NE4ACTIVE PDIP N1625Pb-Free (RoHS)CU NIPDAU N / A for PkgSNJ54ALS257AFK ACTIVE LCCC FK201TBD POST-PLATE N / A for PkgSNJ54ALS257AJ ACTIVE CDIP J161TBD A42N / A for PkgSNJ54ALS257AW ACTIVE CFP W161TBD A42N / A for PkgSNJ54ALS258AFK ACTIVE LCCC FK201TBD POST-PLATE N / A for Pkg /分销商库存信息:TISN74ALS257ADRG4SN74ALS257ANSRG4SN74ALS257ADG4 SN74ALS258ADRG4SN74ALS258ADG4SN74ALS258ANSRG4。
1N系列常用整流二极管的主要参数
1N系列常用整流二极管的主要参数正向不重反向工作额定正向正向反向工作复浪涌峰外形峰值电压整流电流压降电流频率型号值电流封装URM/V IF/A IFSM/A UF/V IR/uA f/KHZ 1N4000 251N4001 501N4002 1001N4003 200 1 30 ?1 ,5 3 DO-41 1N4004 4001N4005 6001N4006 8001N4007 10001N5100 501N5101 1001N5102 2001N5103 3001N5104 400 1(5 75 ?1 ,5 3 1N5105 5001N5106 6001N5107 8001N5108 1000 DO-15 1N5200 501N5201 1001N5202 2001N5203 3001N5204 400 2 100 ?1 ,10 3 1N5205 5001N5206 6001N5207 8001N5208 10001N5400 501N5401 1001N5402 2001N5403 3001N5404 400 3 150 ?0.8 ,10 3 DO-271N5405 5001N5406 6001N5407 8001N5408 1000常用二极管参数:05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V,Pzm=500mW, 05Z13X 硅稳压二极管Vz=12.4~13.1V,Pzm=500mW,05Z15Y 硅稳压二极管 Vz=14.4~15.15V,Pzm=500mW,05Z18Y 硅稳压二极管 Vz=17.55~18.45V,Pzm=500mW,稳压二极管参数大全常用稳压二极管参数代换型号稳定电压(V) 最大功电流型号国产稳压管日立稳耗(mW) (mA) 压管最小值最大值新型号旧型号 HZ4B2 500 3.8 4.0 5 2CW102 2CW21 4B2 HZ4C1 500 4.0 4.2 5 2CW102 2CW21 4C1HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21CHZ7A 500 6.3 6.9 5 2CW105 2CW21CHZ7B 500 6.7 7.3 5 2CW105 2CW21CHZ9A 500 7.7 8.5 5 2CW106 2CW21D HZ9CTA 500 8.9 9.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21GHZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW1112CW21H HZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 52CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21KHZ27 500 27.2 28.6 2 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 52CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21S RD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2RD5.6EN1 500 5.2 5.5 20 2CW103 2CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.5 5.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21B RD7.5E(B) 500 7.0 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10.0 20 2CW108 2CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.74 12.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 202CW109 2CW21GRD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 152CW112 2CW21J 12C3 RD24E 400 22 25 10 2CW116 2CW21H 24-1 RD24F 400 24 28 10 2CW117 2CW21L RD36EL1 500 32 34 15 2CW119 2CW21M 33-2 RD57E 500 48 54 10 1DS55-18 05Z5.1Y 500 4.94 5.20 2CW103 2CW21A 5C2 05Z5.6Z 500 5.615.91 2CW104 2CW21B 6B2 05Z6.2Y 500 5.96 6.27 41 2CW104 2CW21B 6C205Z7.5Y 500 7.07 7.45 34 2CW105 2CW21C 05Z7.5Z 500 7.3 7.7 34 2CW1052CW21C 7C2 05Z9.1Y 500 8.9 9.3 30 2CW107 2CW21E 9C1 05Z12 500 11.1312.35 21 2CW110 2CW21H 05Z12Z 500 12.0 12.6 20 2CW110 2CW21H 12A3 05Z13X500 12.11 12.75 19 2CW110 2CW21H 12A3 05Z13Z 500 13.5 14.1 18 2CW1112CW21H 12C2 05Z13Y 500 12.55 13.21 19 2CW111 2CW21H 12B2 05Z15 500 14.4 15.0 17 2CW112 2CW21J 15-2 05Z15Y 500 13.89 14.62 17 2CW111 2CW21H 12C3 05Z18 500 16.5 18.5 14 2CW113 2CW21J 05Z18Y 500 16.82 17.70 14 2CW1132CW21J 18-1 EQA01-11B 500 10.1 11.8 15 2CW109 2CW21G EQA01-12Z 500 11.2 13.1 15 2CW110 2CW21H EQA02-07B 400 6.66 7.01 20 2CW105 2CW21C 7A3EQA02-25A 500 24 25.5 2CW116 2CW21L 24-3 TVSQA106SB 500 5.88 6.6 202CW104 2CW21B TVSQA111SB 500 10.4 11.6 10 2CW109 2CW21G TVSQA111SE 500 11 11.5 10 2CW109 2CW21G 11C2 MA1130 1000 12.4 14.1 5 2CW111 2CW21HMA1330 500 31 35 25 2CW120 2CW21N M4030 500 2.9 3 5 2CW101 2CW21SuPC574JAG 200 31 35 25 2CW120 2CW21NRIMV 135 160 ZDW59快恢复二极管参数型号品牌电流电压时间极性 IN5817 GJ 1A 20V 10ns IN5819 GJ 1A 40V 10ns IN5819 MOT 1A 40V 10ns IN5822 MOT 3A 40V 10ns 21D-06 FUI 3A 60V10ns SBR360 GI 3A 60V 10ns C81-004 FUI 3A 40V 10ns 8TQ080 IR 8A 80V 10ns 单管 MBR1045 MOT 10A 45V 10ns 单管 MBR1545CT MOT 15A 45V 10ns 双管MBR1654 MOT 16A 45V 10ns 双管 16CTQ100 IR 16A 100V 10ns 双管 MBR2035CT MOT 20A 35V 10ns 双管 MBR2045CT MOT 20A 45V 10ns 双管 MBR2060CT MOT 20A 60V 10ns 双管 MBR20100CT IR 20A 100V 10ns 双管 025CTQ045 IR 25A 45V 10ns 双管 30CTQ045 IR 30A 45V 10ns 双管 C85-009* FUI 20A 90V 10ns 双管 D83-004* FUI 30A 40V 10ns 双管 D83-009* FUI 30A 90V 10ns 双管 MBR4060* IR40A 60V 10ns 双管 MBR30045 MOT 300A 45V 10ns MUR120 MOT 1A 200V 35ns MUR160 MOT 1A 600V 35ns MUR180 MOT 1A 800V 35ns MUR460 MOT 4A 600V 35nsBYV95 PHI 1.5A 1000V 250ns BYV27-50 PHI 2A 55V 25ns BYV927-100 PHI 2A 100V 25ns BYV927-300 PHI 2A 300V 25ns BYW76 PHI 3A 1000V 200ns BYT56G PHI 3A 600V 100ns BYT56M PHI 3A 1000V 100ns BYV26C PHI 1A 600V 30ns BYV26E PHI 1A 1000V 30ns FR607 GI 6A 1000V 200ns MUR8100 MOT 8A 1000V 35ns 单管HFA15TB60 IR 15A 600V 35ns 单管HFA25TB60 IR 25A 600V 35ns 单管MUR30100 HAR 30A 1000V 35ns 单管MUR30120 HAR 30A 1200V 35ns 单管MUR1620 PHI 16A 200V 35ns 双管MUR1620CT MOT 16A 200V 35ns 双管MUR1620P MOT 16A 200V 35ns 双管MUR1660CT MOT 16A 600V 35ns 双管HFA16TA600 IR 16A 600V 35ns 双管MUR3030 GI 30A 300V 35ns 双管MUR3040 MOT 30A 400V 35ns 双管MUR3060 MOT 30A 600V 35ns 双管HFA30TA600 IR 30A 600V 35ns 双管MUR20040 MOT 200A 400V 35ns 双管B92M-02 FUI 20A 200V 35ns 单管C92-02 FUI 20A 200V 35ns 双管D92M-02 FUI 30A 200V 35ns 双管D92M-03 FUI 30A 300V 35ns 双管DSE130-06 DSET 30A 600V 35ns 双管DSE160-06 DSET 60A 600V 35ns 双管稳压二极管常见稳压二极管的详细参数数据表代换型号稳定电压(V) 最大功耗电流型号国产稳压管日立稳压(mW) (mA) 管最小值最大值新型号旧型号 HZ4B2 500 3.8 4.0 5 2CW102 2CW21 4B2HZ4C1 500 4.0 4.2 5 2CW102 2CW21 4C1 HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1 HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21C HZ7A 500 6.3 6.9 5 2CW105 2CW21C HZ7B 5006.77.3 5 2CW105 2CW21C HZ9A 500 7.78.5 5 2CW106 2CW21D HZ9CTA 500 8.99.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21G HZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW111 2CW21HHZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 52CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21K HZ27 500 27.2 28.62 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 5 2CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21SRD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2 RD5.6EN1 500 5.2 5.5 20 2CW1032CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.55.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21BRD7.5E(B) 500 7.0 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10.0 20 2CW1082CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.7412.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 20 2CW109 2CW21GRD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 152CW112 2CW21J 12C3 RD24E 400 22 25 10 2CW116 2CW21H 24-1 RD24F 400 24 28 10 2CW117 2CW21L RD36EL1 500 32 34 15 2CW119 2CW21M 33-2 RD57E 500 48 5410 1DS55-18 05Z5.1Y 500 4.94 5.20 2CW103 2CW21A 5C2 05Z5.6Z 500 5.615.91 2CW104 2CW21B 6B2 05Z6.2Y 500 5.96 6.27 41 2CW104 2CW21B 6C205Z7.5Y 500 7.07 7.45 34 2CW105 2CW21C 05Z7.5Z 500 7.3 7.7 34 2CW1052CW21C 7C2 05Z9.1Y 500 8.9 9.3 30 2CW107 2CW21E 9C1 05Z12 500 11.1312.35 21 2CW110 2CW21H 05Z12Z 500 12.0 12.6 20 2CW110 2CW21H 12A3 05Z13X 500 12.11 12.75 19 2CW110 2CW21H 12A3 05Z13Z 500 13.5 14.1 18 2CW1112CW21H 12C2 05Z13Y 500 12.55 13.21 19 2CW111 2CW21H 12B2 05Z15 500 14.4 15.0 17 2CW112 2CW21J 15-2 05Z15Y 500 13.89 14.62 17 2CW111 2CW21H 12C3 05Z18 500 16.5 18.5 14 2CW113 2CW21J 05Z18Y 500 16.82 17.70 14 2CW1132CW21J 18-1 EQA01-11B 500 10.1 11.8 15 2CW109 2CW21G EQA01-12Z 500 11.2 13.1 15 2CW110 2CW21HEQA02-07B 400 6.66 7.01 20 2CW105 2CW21C 7A3 EQA02-25A 500 24 25.52CW116 2CW21L 24-3 TVSQA106SB 500 5.88 6.6 20 2CW104 2CW21B TVSQA111SB 500 10.4 11.6 10 2CW109 2CW21G TVSQA111SE 500 11 11.5 10 2CW109 2CW21G 11C2 MA1130 1000 12.4 14.1 5 2CW111 2CW21H MA1330 500 31 35 25 2CW1202CW21N M4030 500 2.9 3 5 2CW101 2CW21S uPC574JAG 200 31 35 25 2CW1202CW21NRIMV 135 160 ZDW59最大耗散功最大工作型号额定电压(V) 可代换型号率(W) 电流(mA)1N708 0.25 5.6 40 BWA54、2CW28-5.6V 1N709 0.25 6.2 40 2CW55/B、BWA55/E 1N710 0.25 6.8 36 2CW55A、2CW105-6.8V2CW56A、2CW28-7.5V、1N711 0.25 7.5 30 2CW106-7.5V 1N712 0.25 8.2 30 2CW57/B、2CW106-8.2V 1N713 0.25 9.1 27 2CW58A/B、2CW74 1N714 0.25 10 25 2CW18、2CW59/A/B 1N715 0.25 11 20 2CW76、2DW12F.BS31-12 1N716 0.25 12 202CW61/A、2CW77/A 1N717 0.25 13 18 2CW62/A、2DW12G 1N718 0.25 15 162CW112-15V、2CW78/A 1N719 0.25 16 15 2CW63/A/B、2DW12H 1N720 0.25 18 13 2CW20B、2CW64/B、2CW64-18 1N721 0.25 20 12 2CW65-20、2DW12I、BWA65 1N722 0.25 22 11 2CW20C、2DW12J 1N723 0.25 24 10 WCW116、2DW13A 1N724 0.25 27 9 2CW20D、2CW68、BWA68/D 1N725 0.40 30 13 2CW119-30V 1N726 0.40 33 122CW120-33V 1N727 0.40 36 11 2CW120-36V 1N728 0.40 39 10 2CW121-39V 1N748 0.50 3.8,4.0 125 HZ4B21N752 0.50 5.2,5.7 80 HZ6A1N753 0.50 5.8,6.1 80 2CW1321N754 0.5 6.3,6.8 70 H27A1N755 0.50 7.1,7.3 65 HZ7.5EB1N757 0.50 8.9,9.3 52 HZ9C1N962 0.50 9.5,11 45 2CW137 1N963 0.50 11,11.5 40 2CW138、HZ12A-21N964 0.50 12,12.5 40 HZ12C-2、MA1130TA 1N969 0.50 21,22.5 20 RD245B1N4240A 1 10 100 2CW108-10V、2CW109、2DW5 1N4724A 1 12 76 2DW6A、2CW110-12V 1N4728 1 3.3 270 2CW101-3V3 1N4729 1 3.6 252 2CW101-3V6 1N4729A 1 3.6 252 2CW101-3V6 1N4730A 1 3.9 234 2CW102-3V9 1N4731 1 4.3 217 2CW102-4V3 1N4731A 1 4.3 217 2CW102-4V3 1N4732/A 1 4.7 193 2CW102-4V7 1N4733/A 1 5.1 179 2CW103-5V1 1N4734/A 1 5.6 162 2CW103-5V6 1N4735/A 1 6.2 1461W6V2、2CW104-6V2 1N4736/A 1 6.8 138 1W6V8、2CW104-6V8 1N4737/A 1 7.5 121 1W7V5、2CW105-7V5 1N4738/A 1 8.2 110 1W8V2、2CW106-8V2 1N4739/A 1 9.1 100 1W9V1、2CW107-9V1 1N4740/A 1 10 91 2CW286-10V、B563-10 1N4741/A 1 11 83 2CW109-11V、2DW6 1N4742/A 1 12 76 2CW110-12V、2DW6A 1N4743/A 1 13 69 2CW111-13V、2DW6B、BWC114D 1N4744/A 1 15 57 2CW112-15V、2DW6D1N4745/A 1 16 51 2CW112-16V、2DW6E 1N4746/A 1 18 50 2CW113-18V、1W18V1N4747/A 1 20 45 2CW114-20V、BWC115E 1N4748/A 1 22 41 2CW115-22V、1W22V 1N4749/A 1 24 38 2CW116-24V、1W24V 1N4750/A 1 27 34 2CW117-27V、1W27V1N4751/A 1 30 30 2CW118-30V、1W30V、2DW19F 1N4752/A 1 33 27 2CW119-33V、1W33V 1N4753 0.5 36 13 2CW120-36V、1/2W36V 1N4754 0.5 39 12 2CW121-39V、1/2W39V 1N4755 0.5 43 12 2CW122-43V、1/2W43V 1N4756 0.5 47 10 2CW122-47V、1/2W47V 1N4757 0.5 51 9 2CW123-51V、1/2W51V 1N4758 0.5 56 8 2CW124-56V、1/2W56V 1N4759 0.5 62 8 2CW124-62V、1/2W62V1N4760 0.5 68 7 2CW125-68V、1/2W68V 1N4761 0.5 75 6.7 2CW126-75V、1/2W75V 1N4762 0.5 82 6 2CW126-82V、1/2W82V 1N4763 0.5 91 5.6 2CW127-91V、1/2W91V 1N4764 0.5 100 5 2CW128-100V、1/2W100V 1N5226/A 0.5 3.3 138 2CW51-3V3、2CW5226 1N5227/A/B 0.5 3.6 126 2CW51-3V6、2CW5227 1N5228/A/B 0.5 3.9 115 2CW52-3V9、2CW5228 1N5229/A/B 0.5 4.3 106 2CW52-4V3、2CW5229 1N5230/A/B 0.5 4.7 97 2CW53-4V7、2CW5230 1N5231/A/B 0.5 5.1 89 2CW53-5V1、2CW5231 1N5232/A/B 0.5 5.6 81 2CW103-5.6、2CW5232 1N5233/A/B 0.5 6 76 2CW104-6V、2CW5233 1N5234/A/B 0.5 6.2 73 2CW104-6.2V、2CW52341N5235/A/B 0.5 6.8 67 2CW105-6.8V、2CW5235稳压值稳定电流稳压值稳定电流型号功率(mW) 型号功率(mW) (V) (MA) (V) (MA) MA1030 3 5 400 MA2180 18 20 1000 MA1033 3.3 5 400 MA2200 20 20 1000 MA1036 3.6 5 400 MA2220 22 10 1000 MA1039 3.9 5 400 MA2240 24 10 1000 MA1043 4.3 5 400 MA2270 27 5 1000 MA1047 4.7 5 400 MA2300 30 5 1000 MA1051 5.1 5 400 MA2330 33 5 1000 MA1056 5.6 5 400 MA2360 36 5 1000MA1062 6.2 5 400 MA3047 4.7 5 150 MA1068 6.8 5 400 MA3051 5.1 5 150MA1075 7.5 5 400 MA3056 5.6 5 150 MA1082 8.2 5 400 MA3062 6.2 5 150MA1091 9.1 5 400 MA3082 8.2 5 150 MA1100 10 5 400 MA3091 9.1 5 150MA1110 11 5 400 MA3100 10 5 150 MA1114 11.4 10 400 MA3110 11 5 150MA1120 12 5 400 MA3120 12 5 150 MA1130 13 5 400 MA3130 13 5 150 MA1140 14 5 400 MA3150 15 5 150 MA1150 15 5 400 MA3160 16 5 150 MA1160 16 5 400 MA3180 18 5 150 MA1180 18 5 400 MA3200 20 5 150MA1200 20 5 400 MA3220 22 5 150 MA1220 22 5 400 MA3240 24 5 150MA1240 24 5 400 MA3270 27 2 150 MA1270 27 2 400 MA3300 30 2 150 MA1300 30 2 400 MA3330 33 2 150 MA1330 33 2 400 MA3360 36 2 150 MA1360 36 2 400 MA4030 3 5 370 MA2051 5.1 40 1000 MA4033 3.3 5 370 MA2056 5.6 40 1000 MA4036 3.6 5 370 MA2062 6.2 40 1000 MA4039 3.9 5 370 MA2068 6.8 40 1000 MA4043 4.3 5 370 MA2075 7.5 40 1000 MA4047 4.7 5 370 MA2082 8.2 40 1000 MA4051 5.1 5 370 MA2091 9.1 40 1000 MA4056 5.6 5 370 MA2100 10 40 1000 MA4062 6.2 5 370 MA2110 11 5 1000 MA4068 6.8 5 370 MA2120 12 5 1000MA4075 7.5 5 370 MA2130 13 5 1000 MA4082 8.2 5 370 MA2150 15 5 1000MA4091 9.1 5 370 MA2160 16 5 1000 MA4100 10 5 370 MA4110 11 5 370BZX55C6V8 6.8 5 500 MA4120 12 5 370 BZX55C7V5 7.5 5 500 MA4130 13 5 370 BZX55C8V2 8.2 5 500 MA4140 14 5 370 BZX55C9V1 9.1 5 500 MA4150 15 5 370 BZX55C10 10 5 500 MA4160 16 5 370 BZX55C11 11 5 500 MA4180 18 5 370BZX55C12 12 5 500 MA4200 20 5 370 BZX55C13 13 5 500 MA4220 22 5 370BZX55C15 15 5 500 MA4240 24 5 370 BZX55C16 16 5 500 MA4270 27 2 370BZX55C18 18 5 500 MA4300 30 2 370 BZX55C20 20 5 500 MA4330 33 2 370BZX55C22 22 5 500 MA4360 36 2 370 BZX55C24 24 5 500 MA5047 4.7 5 500 BZX55C27 27 5 500 MA5051 5.1 5 500 BZX55C30 30 5 500 MA5056 5.6 5 500BZX55C33 33 5 500 MA5062 6.2 5 500 BZX55C36 36 5 500 MA5068 6.8 5 500 BZX55C39 39 5 500 MA5075 7.5 5 500 BZX55C43 43 2.5 500MA5082 8.2 5 500 BZX55C47 47 2.5 500 MA5091 9.1 5 500 BZX55C51 51 2.5 500 MA5100 10 5 500 BZX55C56 56 2.5 500 MA5110 11 5 500 BZX55C62 622.5 500 MA5120 12 5 500 BZX85C2V7 2.7 80 1300 MA5130 13 5 500 BZX85C3V03.0 80 1300 MA5150 15 5 500 BZX85C3V3 3.3 80 1300 MA5160 16 5 500BZX85C3V6 3.6 70 1300 MA5180 18 5 500 BZX85C3V9 3.9 60 1300 MA5200 20 5 500 BZX85C4V3 4.3 50 1300 MA5240 24 5 500 BZX85C4V7 4.7 45 1300BZX55C2V4 2.4 5 500 BZX85C5V1 5.1 45 1300 BZX55C2V7 2.7 5 500 BZX85C5V6 5.6 45 1300 BZX55C3V0 3.0 5 500 BZX85C6V2 6.2 35 1300 BZX55C3V3 3.3 5 500 BZX85C6V8 6.8 35 1300 BZX55C3V6 3.6 5 500 BZX85C7V5 7.5 35 1300 BZX55C3V9 3.9 5 500 BZX85C8V2 8.2 25 1300 BZX55C4V3 4.3 5 500 BZX85C9V1 9.1 25 1300 BZX55C4V7 4.7 5 500 BZX85C10 10 25 1300 BZX55C5V1 5.1 5 500 BZX85C11 11 20 1300 BZX55C5V6 5.6 5 500 BZX85C12 12 20 1300 BZX55C6V2 6.2 5 500 BZX85C13 13 20 1300 BZX85C15 15 15 1300 BZX79A9V1 9.1 5 400 BZX85C16 16 15 1300 BZX79A10 10 5 400 BZX85C18 18 15 1300 BZX79A11 11 5 400 BZX85C20 20 10 1300 BZX79A12 12 5 400 BZX85C22 22 10 1300 BZX79A13 13 5 400 BZX85C24 24 10 1300 BZX79A15 15 5 400 BZX85C27 27 8 1300BZX79A16 16 5 400 BZX85C30 30 8 1300 BZX79A18 18 5 400 BZX85C33 33 8 1300 BZX79A20 20 5 400 BZX85C36 36 8 1300 BZX79A22 22 5 400 BZX85C39 39 6 1300 BZX79A24 24 5 400 BZX85C43 43 6 1300 BZX79A27 27 2 400 BZX85C47 47 4 1300 BZX79A30 30 2 400 BZX85C51 51 4 1300 BZX79A33 33 2 400BZX85C56 56 4 1300 BZX79A36 36 2 400 BZX85C62 62 4 1300 BZX79A39 39 2400 BZX55C68 68 2.5 500 BZX79A43 43 2 400 BZX55C75 75 2.5 500 BZX79A47 47 2 400BZX55C82 82 2.5 500 BZX79A51 51 2 400 BZX55C91 91 1 500 BZX79A56 56 2 400 BZX55C100 100 1 500 BZX79A62 62 2 400 BZX55C110 110 1 500 BZX79A68 68 2 400 BZX55C120 120 1 500 BZX79A75 75 2 400 BZX55C130 130 1 500BZX79C2V4 2.4 5 500 BZX55C150 150 1 500 BZX79C2V7 2.7 5 500 BZX55C160 160 1 500 BZX79C3V0 3.0 5 500 BZX55C180 180 1 500 BZX79C3V3 3.3 5 500 BZX55C200 200 1 500 BZX79C3V6 3.6 5 500 BZX79A2V4 2.4 5 400 BZX79C3V9 3.9 5 500 BZX79A2V7 2.7 5 400 BZX79C4V3 4.3 5 500 BZX79A3V0 3.0 5 400 BZX79C4V7 4.7 5 500 BZX79A3V3 3.3 5 400 BZX79C5V1 5.1 5 500 BZX79A3V6 3.6 5 400 BZX79C5V6 5.6 5 500 BZX79A3V9 3.9 5 400 BZX79C6V2 6.2 5 500 BZX79A4V3 4.3 5 400 BZX79C6V8 6.8 5 500 BZX79A4V7 4.7 5 400 BZX79C7V5 7.5 5 500 BZX79A5V1 5.1 5 400 BZX79C8V2 8.2 5 500 BZX79A5V6 5.6 5 400 BZX79C9V1 9.1 5 500 BZX79A6V2 6.2 5 400 BZX79C10 10 5 500 BZX79A6V8 6.8 5 400 BZX79C11 11 5 500 BZX79A7V5 7.5 5 400 BZX79C12 12 5 500 BZX79A8V2 8.2 5 400 BZX79C13 13 5 500变容二极管。
FGA40N65SMD;中文规格书,Datasheet资料
G CE
TO-3PN
Absolute Maximum Ratings
Symbol
VCES VGES IC
ICM (1) IF
IFM (1) PD
TJ Tstg TL
Description
Collector to Emitter Voltage
Gate to Emitter Voltage
Collector Current Collector Current
DTJ ICES IGES
Collector to Emitter Breakdown Voltage VGE = 0V, IC = 250mA
Temperature Coefficient of Breakdown
Voltage
VGE = 0V, IC = 250mA
Collector Cut-Off Current G-E Leakage Current
IC = 40A, VGE = 15V
IC = 40A, VGE = 15V, TC = 175oC
Dynamic Characteristics
Cies Coes Cres
Input Capacitance Output Capacitance Reverse Transfer Capacitance
Typical Performance Characteristics
Figure 1. Typical Output Characteristics
120
o
TC = 25 C
20V 12V 15V
100
10V
Collector Current, IC [A]
80
60
RB480YT2R;中文规格书,Datasheet资料
Symbol VR Io IFSM Tj Tstg
Limits 30 100 1 125 -40 to +125
Unit V mA A ℃ ℃
(*1) Rating of per diode
zElectrical characteristics (Ta=25°C) Parameter Symbol Min. VF1 VF2 Forward voltage VF3 Reverse current IR -
AVE:430.7mV
AVE:426.3mV σ:0.9486mV
20 PEAK SURGE FORWARD CURRENT:IFSM(A) Ifsm 15 8.3ms 10 PEAK SURGE FORWARD CURRENT:IFSM(A) 1cyc
10 PEAK SURGE FORWARD CURRENT:IFSM(A) Ifsm 8.3ms 8.3ms 1cyc 5
3.5±0.05
1.65±0.1
5.5±0.2
8.0±0.2
1.65±0.1 1.7±0.05
1PIN
4.0±0.1
φ0.8±0.1
0~0.1
0.65±0.1
zAbsolute maximum ratings (Ta=25°C) Parameter Reverse voltage Average rectified forward current (*1) Forward current surge peak (60Hz・1cyc)(*1) Junction temperature Storage temperature
10 Ifsm
t
5
5 AVE:5.60A 0 IFSM DISRESION MAP
IRF7342QTRPBF;中文规格书,Datasheet资料
®08/03/10DescriptionIRF7342QPbF 1ParameterMax.UnitsV DSDrain- Source Voltage-55V I D @ T C = 25°C Continuous Drain Current, V GS @ 10V -3.4I D @ T C = 70°C Continuous Drain Current, V GS @ 10V -2.7A I DMPulsed Drain Current -27P D @T C = 25°C Power Dissipation 2.0P D @T C = 70°C Power Dissipation 1.3Linear Derating Factor 0.016W/°C V GS Gate-to-Source Voltage± 20V V GSM Gate-to-Source Voltage Single Pulse tp<10µs 30V E AS Single Pulse Avalanche Energy 114dv/dt Peak Diode Recovery dv/dt5.0V/ns T J, T STGJunction and Storage Temperature Range-55 to + 150°CParameterTyp.Max.UnitsR θJAMaximum Junction-to-Ambient–––62.5°C/WThermal ResistanceAbsolute Maximum RatingsW SO-8l Advanced Process Technology l Ultra Low On-Resistance l Dual P Channel MOSFET l Surface Mountl Available in Tape & Reell 150°C Operating Temperature lLead-FreeThese HEXFET ® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these HEXFET Power MOSFET's are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.PD - 96109AIRF7342QPbFParameterMin.Typ.Max.Units Conditions V (BR)DSSDrain-to-Source Breakdown Voltage -55––––––V V GS = 0V, I D = -250µA∆V (BR)DSS /∆T JBreakdown Voltage Temp. Coefficient –––-0.054–––V/°C Reference to 25°C, I D = -1mA –––0.0950.105V GS = -10V, I D = -3.4A–––0.1500.170V GS = -4.5V, I D = -2.7A V GS(th)Gate Threshold Voltage -1.0––––––V V DS = V GS , I D = -250µA g fs Forward Transconductance 3.3––––––S V DS = -10V, I D= -3.1A ––––––-2.0V DS = -55V, V GS = 0V––––––-25V DS = -55V, V GS = 0V, T J = 55°C Gate-to-Source Forward Leakage ––––––-100V GS = -20VGate-to-Source Reverse Leakage ––––––100V GS = 20V Q g Total Gate Charge–––2638I D = -3.1A Q gs Gate-to-Source Charge––– 3.0 4.5nC V DS = -44V Q gd Gate-to-Drain ("Miller") Charge –––8.413V GS = -10V, See Fig. 10 t d(on)Turn-On Delay Time –––1422V DD = -28V t rRise Time–––1015I D = -1.0At d(off)Turn-Off Delay Time –––4364R G = 6.0Ωt f Fall Time–––2232R D = 16Ω, C iss Input Capacitance –––690–––V GS = 0V C oss Output Capacitance–––210–––pF V DS = -25V C rssReverse Transfer Capacitance–––86–––ƒ = 1.0MHz, See Fig. 9Electrical Characteristics @ T J = 25°C (unless otherwise specified)I GSS µAΩR DS(on)Static Drain-to-Source On-Resistance I DSS Drain-to-Source Leakage Current nAnsRepetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) I SD ≤ -3.4A, di/dt ≤ -150A/µs, V DD ≤ V (BR)DSS , T J ≤ 150°CNotes:Starting T J = 25°C, L = 20mHR G = 25Ω, I AS = -3.4A. (See Figure 8)Pulse width ≤ 300µs; duty cycle ≤ 2%.When mounted on 1 inch square copper board, t<10 secIRF7342QPbF 3Forward VoltageIRF7342QPbFVs. TemperatureFig 8. Maximum Avalanche EnergyVs. Drain CurrentCurrentFig 7. Typical On-Resistance Vs. Gate VoltageR D S (o n ) , D r a i n -t o -S o u r c e O n R e s i s t a n c e ( Ω )0.050.150.250.350.452581114GS-V , Gate-to-Source Voltage (V)IRF7342QPbF 5Gate-to-Source VoltageDrain-to-Source Voltage Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-AmbientIRF7342QPbFSO-8 Package OutlineIRF7342QPbF 7330.00(12.992) MAX.14.40 ( .566 )12.40 ( .488 )NOTES :1. CONTROLLING DIMENSION : MILLIMETER.2. OUTLINE CONFORMS TO EIA-481 & EIA-541.FEED DIRECTIONTERMINAL NUMBER 112.3 ( .484 )11.7 ( .461 )8.1 ( .318 )7.9 ( .312 )NOTES:1. CONTROLLING DIMENSION : MILLIMETER.2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).3. OUTLINE CONFORMS TO EIA-481 & EIA-541.SO-8 Tape and ReelDimensions are shown in millimeters (inches)IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903Visit us at for sales contact information .08/2010Data and specifications subject to change without notice.This product has been designed and qualified for the Industrial market.Qualification Standards can be found on IR’s Web site.分销商库存信息: IRIRF7342QTRPBF。
1.5SMC47AT3G(ONSEMI)中文数据手册「EasyDatasheet」
67
5
17.1 18 18.9 1
25.2
59.5
5
19 20 21
1
27.7
54
1.5SMC22AT3G
22A
18.8
5
20.9 22 23.1 1
30.6
49
1.5SMC24AT3G
24A
20.5
5
22.8 24 25.2 1
33.2
45
1.5SMC27AT3G
27A
23.1
5
25.7 27 28.4 1
5
71.3 75 78.8 1
103
14.6
5
77.9 82 86.1 1
113
13.3
5
86.5 91 95.5 1
125
12
产品性能参数显示在电气特性的上市测试条件,除非另有说明.产品的性能可能不被电气特性来表示,如果在不同条件下操作.
6.瞬态抑制器是根据工作峰值反向电压通常选择(V
直流或连续高峰运行电压电平.
0.092 0.094 0.096 0.097
0.098 0.099
0.1 0.101
0.101 0.102 0.103 0.104
0.104 0.105 0.105 0.106
3
芯片中文手册,看全文,戳
1.5SMC6.8AT 3G系 列 ,SZ1.5SMC6.8AT 3G系 列
The SMC series is designed to protect voltage sensitive components from high voltage, high energy transients.他们有 excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMC series is supplied in ON Semiconductor’s exclusive, cost-effective, highly reliable SURMETIC ® package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.
2N5415;2N5416;中文规格书,Datasheet资料
2N54152N5416SILICON PNP TRANSISTORSsSTMicroelectronics PREFERRED SALESTYPESsPNP TRANSISTORSDESCRIPTION The 2N5415, 2N5416 are high voltage silicon epitaxial planar PNP transistors in Jedec TO-39metal case designed for use in consumer and industrial line-operated applications.These devices are particularly suited as drivers in high-voltage low current inverters, switching and series regulators.December 2000ABSOLUTE MAXIMUM RATINGS®1/42N5415 / 2N5416THERMAL DATAC unless otherwise specified)ELECTRICAL CHARACTERISTICS (T case = 25 o2N5415 / 2N5416Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a trademark of STMicroelectronics© 2000 STMicroelectronics – Printed in Italy – All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.2N5415 / 2N5416分销商库存信息:STM2N54152N5416。
2N65中文资料
Resistance (Normailized) RDS(ON), Drain-to-Source On (Ω)
VDS, Drain-to-Source Voltage (V)
司 VGS, Gate-to-Source Voltage (V)
Fig3: Normalized On-Resistance Vs.Temperature
■Electronic Characteristics(TC=25℃)
PARAMETER
SYMBOL
TEST CONDITION
2N65 Series
N-Channel MOSFET
MIN
TYP
MAX
UNIT
Drain-source Breakdown Voltage
BVDSS
VGS=0V, ID=250μA
1.4
MAX 2.84
Thermal Resistance Junction-ambient
(Notes):
① (Repetitiv:e rating: Pulse width limited by maximum junction temperature)
)
② (Starting T =25 ℃ , V DD =50V, L=56mH, R G =25Ω, I AS =2A )
650
V
Breakdown Voltage Temperature Coefficient
ΔBVDSS/ΔTj
ID=250uA Referenced to 25℃
0.6
V/℃
Gate Threshold Voltage
VGS(TH)
VGS=VDS ID=250μA
BD6517F中文资料
(Contact address for overseas customers in Japan)
Yokohama
As of 18th. April 2005
Appendixtached-1
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.
The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
IN4745A中文资料
or Large Die identification only for BZXyy series
XY
5th line: Date Code - Two Digit - Six Weeks Date Code
F
General Requirements:
1.0 Cathod Band
2.0 First Line: F - Fairchild Logo 3.0 Second Line: Device name - For 1Nxx series: 3rd to 4th characters of the device name.
XY XY XY XY XY
XY XY XY XY XY
XY XY XY XY XY
XY XY
3 1N4728A - 1N4764A Rev. G2
1N4728A - 1N4764A Zeners
元器件交易网
Top Mark Information (Continued)
10.0 FSC logo must be 20 % taller than the alphanumeric marking and should occupy the 2 characters of the specified line.
11.0 Marking Font: Arial (Except FSC Logo)
(the 8th character is the large die identification)
For BZXyy series: Large Die Identification character
6.0 Fourth Line: Date Code - Two Digit - Six Weeks Date Code Where: X represents the last digit of the calendar year Y represents the Six weeks numeric code
2N2907A;中文规格书,Datasheet资料
20736Marilla Street Chatsworth! "#Symbol Parameter Min Max UnitsON CHARACTERISTICS*V CE(sat) Collector-Emitter Saturation Voltage*(I C =150mAdc, I B =15mAdc) (I C =500mAdc, I B =50mAdc)--- --- 400 1.6 mVdc Vdc V BE(sat) Base-Emitter Saturation Voltage *(I C =150mAdc, I B =15mAdc) (I C =500mAdc, I B =50mAdc)--- ---1.32.6Vdc VdcSMALL-SIGNAL CHARACTERISTICSC OB Output Capacitance(V CB =10Vdc,I E =ie=0, f=1.0MHz) --- 8.0 pFf T Transistor Frequency*(I C =50mAdc, V CE =20Vdc, f=100MHz) 200 --- MHzSWITCHING CHARACTERISTICST d Delay Time ---15 ns t r Rise Time --- 35 ns t s Storage Time --- 250 ns t f Fall TimeI CON =150mAdc,I BON =15mAdc, I B(off)=15mAdc ---50 ns* Pulse Test: tp ≦300us, Duty Cycle ≦2.0%2N2907,2N2907ATMMicro Commercial ComponentsMicro Commercial ComponentsOrdering Information :Device PackingPart Number-B P Bulk;100pcs/Box***IMPORTANT NOTICE***Micro Commercial Components Corp. reserve s the right to make changes without further notice to any product herein to make corrections, modifications , enhancements , improvements , or other changes . Micro Commercial Components Corp . does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights ,nor the rights of others . The user of products in such applications shall assume all risks of such use and will agree to hold Micro Commercial Components Corp . and all the companies whose products are represented on our website, harmless against all damages.***LIFE SUPPORT***MCC's products are not authorized for use as critical components in life support devices or systems without the express writtenapproval of Micro Commercial Components Corporation.***CUSTOMER AWARENESS***Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.分销商库存信息: MICRO-COMMERICAL-CO 2N2907A。
PMBTA45,215;中文规格书,Datasheet资料
NXP Semiconductors
PMBTA45
500 V, 150 mA NPN high-voltage low VCEsat (BISS) transistor
7. Characteristics
Table 7. Characteristics Tamb = 25 °C unless otherwise specified.
Typ Max Unit
-
100 nA
-
10
μA
-
100 nA
-
100 nA
100 -
100 -
60
75
65
90
0.75 0.9
35
-
4
-
200 -
80
-
2700 -
2780 -
3400 -
800 -
4200 -
mV mV V
MHz
pF
pF
ns ns ns ns ns ns
PMBTA45_2
Product data sheet
[1] * = -: made in Hong Kong * = p: made in Hong Kong * = t: made in Malaysia * = W: made in China
Marking code[1] LK*
Version SOT23
PMBTA45_2
Product data sheet
2. Pinning information
Table 2. Pin 1 2 3
Pinning Description base emitter collector
Simplified outline Graphic symbol
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2N6547
HIGH POWER NPN SILICON TRANSISTOR
s
STMicroelectronics PREFERRED SALESTYPE
s NPN TRANSISTOR
s HIGH VOLTAGE CAPABILITY s HIGH CURRENT CAPABILITY s
FAST SWITCHING SPEED
APPLICATIONS s SWITCH MODE POWER SUPPLIES s FLYBACK AND FORWARD SINGLE
TRANSISTOR LOW POWER CONVERTERS DESCRIPTION The 2N6547 is a silicon Multiepitaxial Mesa NPN transistor mounted in TO-3 metal case. It is particulary intended for switching and industrial applications from single and tree-phase mains.
October 2001 ABSOLUTE MAXIMUM RATINGS
®
1/4
2N6547
THERMAL DATA
C unless otherwise specified)
ELECTRICAL CHARACTERISTICS (T case = 25 o
RESISTIVE LOAD SWITCHING TIMES
INDUCTIVE LOAD SWITCHING TIMES
2N6547
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics © 2001 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
2N6547
分销商库存信息: STM
2N6547。