初二数学一次函数知识点总结

合集下载

初二数学知识点总结

初二数学知识点总结

初二数学知识点总结初二数学知识点总结上册知识点:第一章一次函数1.函数的定义,包括定义域、值域、表达式以及图像。

2.一次函数和正比例函数,包括它们的表达式、增减性以及图像。

3.从函数的角度看方程、方程组和不等式。

如果当自变量的值为a时,函数的值为b,则b被称为自变量等于a时的函数值。

形如y=kx(其中k是常数,且k≠0)的函数称为正比例函数,其中k被称为比例系数。

形如y=kx+b(其中k、b是常数,且k≠0)的函数称为一次函数。

正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小。

一、常量和变量在一个变化过程中,数值发生变化的量被称为变量,而数值始终不变的量被称为常量。

二、函数的概念函数的定义:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定值,y都有唯一确定的值与之对应,那么就称x是自变量,y是x的函数。

三、函数中自变量取值范围的求法1)用整式表示的函数,自变量的取值范围是全体实数。

2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

3)用奇次根式表示的函数,自变量的取值范围是全体实数。

4)用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

5)对于与实际问题有关的函数,自变量的取值范围应使实际问题有意义。

四、函数图象的定义一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。

五、用描点法画函数的图象的一般步骤1.列表:表中给出一些自变量的值及其对应的函数值。

注意:列表时自变量由小到大,相差一样,有时需对称。

2.描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3.连线:按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来。

六、函数有三种表示形式1)列表法2)图像法3)解析式法七、正比例函数与一次函数的概念一般地,形如y=kx(其中k是常数,且k≠0)的函数称为正比例函数,其中k被称为比例系数。

初二数学基础知识点总结大全范文三篇

初二数学基础知识点总结大全范文三篇

初二数学基础知识点总结大全范文三篇第一篇:初二数学基础知识点总结大全一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。

一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析数据的代表:平均数、众数、中位数、极差、方差第二篇:初二数学基础知识点总结大全第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。

定义:满足a+b=c的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

初二数学一次函数知识点总结精选

初二数学一次函数知识点总结精选

知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k0)的性质(1)k的正负决定直线的倾斜方向;①k0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b0时,直线与y轴交于正半轴上;②当b0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k0,b<o时,直线经过第一、三、四象限(直线不经过第二象限); </o时,直线经过第一、三、四象限(直线不经过第二象限);③如图所示,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(k0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k0时,图象经过第一、三象限,y随x的增大而增大;(3)当k0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点p(x0,y0)与直线y=kx+b的图象的关系(1)如果点p(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点p(1,2)必在函数的图象上.例如:点p(1,2)满足直线y=x+1,即x=1时,y=2,则点p(1,2)在直线y=x+l 的图象上;点p(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点p(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(k0)位置的影响.①当b0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kO,bO时,图象经过第一、二、三象限;当k0,b=0时,图象经过第一、三象限;当bO,b<o时,图象经过第一、三、四象限;</o时,图象经过第一、三、四象限;一、定义与定义式:自变量x和因变量y有如下关系:y=kx b则此时称y是x的一次函数。

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。

4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。

苏版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有解析)

苏版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有解析)

苏版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有解析)第一部分知识梳理知识点一:一次函数(正比例)的定义(1)形如y=kx+b (k,b是常数,k≠0),那么y叫做x的一次函数.因为当b=0时,y=kx,那么y叫做x的正比例函数,因此“正比例函数是专门的一次函数”。

(2)正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它能够看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,)上加下减,左加右减知识点二:正比例函数的图象及性质一样地,形如y=kx (k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一样形式y=kx (k不为零)①k不为零;②x指数为1;③b取零当k>0时,直线y=kx通过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx通过二、四象限,从左向右下降,即随x 增大y反而减小.解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)走向:k>0时,图像通过一、三象限;k<0时,•图像通过二、四象限增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴知识点三:一次函数的图象及性质一样地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.注:一次函数一样形式y=kx+b (k不为零)①k不为零;②x指数为1;③b取任意实数一次函数y=kx+b 的图象是通过(0,b )和(-k b,0)两点的一条直线,我们称它为直线y=kx+b,它能够看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b (k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-k b ,0)(3)走向: k>0,图象通过第一、三象限;k<0,图象通过第二、四象限b>0,图象通过第一、二象限;b<0,图象通过第三、四象限 ⇔⎩⎨⎧>>00b k 直线通过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线通过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线通过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线通过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位; 当b<0时,将直线y=kx 的图象向下平移b 个单位.知识点四:函数图象与系数的关系第二部分考点精讲精练考点1、一次函数(正比例)的定义例1、在糖水中连续放入糖x(g)、水y(g),并使糖完全溶解,假如甜度保持不变,那么y与x的函的函数关系一定是()A、正比例函数B、反比例函数C、图象不通过原点的一次函数D、二次函数例2、直角三角形两个锐角∠A与∠B的函数关系是()A、正比例函数B、一次函数C、反比例函数D、二次函数例3、若y=(m-3)x+1是一次函数,则()A、m=3B、m=-3C、m≠3D、m ≠-3例4、下列问题中,是正比例函数的是()A、矩形面积固定,长和宽的关系B、正方形面积和边长之间的关系C、三角形的面积一定,底边和底边上的高之间的关系D、匀速运动中,速度固定时,路程和时刻的关系例5、若函数y=-2xm+2+n-2是正比例函数,则m的值是_____,n 的值为_____.例6、我们明白,海拔高度每上升1km,温度下降6℃.某时刻测量我市地面温度为20℃.设高出地面xkm处的温度为y℃,则y与x的函数关系式为,y_____x的一次函数(填“是”或“不是”).例7、已知y=(k-1)xIkI+(k2-4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.例8、红星机械厂有煤80吨,每天需烧煤5吨,求工厂余煤量y(吨)与烧煤天数x(天)之间的函数表达式,指出y是不是x的一次函数,并求自变量x的取值范畴.例9、举一反三:1、下列函数中,是一次函数的有( ) A 、x y 2= B 、X -1=0 C 、y=2(x -1) D 、y=x2+12、y=(m -1)x|m|+3m 表示一次函数,则m 等于( )A 、1B 、-1C 、0或-1D 、1或-13、若函数y=(k -1)x+k2-1是正比例函数,则k 的值是( )A 、-1B 、1C 、-1或1D 、任意实数4、当自变量x= 时,正比例函数y=(n+2)xn 的函数值为3.5、已知函数y=3x+1,当自变量增加3时,相应的函数值增加______。

八年级下册数学函数知识点

八年级下册数学函数知识点

八年级下册数学函数知识点八年级下册数学函数知识点大全只有真正勤奋的人才能克服困难,持之以恒,不断开拓知识的领域,武装自己的头脑,成为自己的主宰,让我们勤奋学习,持之以恒,成就自己的人生,以下是我为大家带来的八年级下册数学函数知识点大全,欢迎参阅呀!八年级下册数学函数知识点大全知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y 是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b0时,直线与y轴交于正半轴上;②当b0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k0,b③如图所示,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k0时,图象经过第一、三象限,y随x的增大而增大;(3)当k0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kO,bO时,图象经过第一、二、三象限;当k0,b=0时,图象经过第一、三象限;初二下册数学知识点总结苏科版1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B 叫做分式。

初二数学复习:一次函数知识点

初二数学复习:一次函数知识点

初二数学复习:一次函数知识点?一次函数一、知识要点1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.2、一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=b仍是一次函数.(4)当b=0,k=0时,它不是一次函数.3、一次函数的图象(三步画图象)由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(- ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k)即可.4、一次函数y=kx+b(k,b为常数,k≠0)的性质(正比例函数的性质略)(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k?O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;5、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.6、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.7、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.8、本章思想方法(1)函数方法。

初二学生数学一次函数知识点总结8篇

初二学生数学一次函数知识点总结8篇

初二学生数学一次函数知识点总结8篇第1篇示例:初二学生在学习数学的过程中,一次函数是一个非常重要的知识点。

一次函数也称为一元一次方程,是数学中最简单的一种函数形式,通常表示为y=ax+b。

在初中阶段,学生需要了解一次函数的基本概念、性质和应用。

一、一次函数的基本概念1. 一次函数的定义一次函数是由形如y=ax+b的函数所构成,其中a和b是常数,a 不等于0。

其中a称为斜率,b称为截距。

2. 一次函数的图像一次函数的图像是一条直线,其斜率决定了直线的斜度,截距决定了直线与y轴的交点。

3. 一次函数的定义域和值域一次函数的定义域是整个实数集,值域也是整个实数集。

4. 一次函数的自变量和因变量在一次函数中,自变量是x,表示输入的数值;因变量是y,表示输出的数值。

二、一次函数的性质1. 斜率的意义一次函数中,斜率a表示当自变量x增加1单位时,因变量y的增量。

斜率可以告诉我们函数的增减趋势。

2. 相关性质一次函数中,两条直线平行或重合的条件是它们的斜率相等,截距相等。

3. 函数值的计算根据一次函数的表达式,可以通过代入自变量的值计算出相应的因变量的值。

4. 求解一元一次方程一次函数也可以看作是一元一次方程,通过方程的变形求解可以得到未知数的值。

三、一次函数的应用1. 数据拟合在实际问题中,可以利用一次函数对数据进行拟合,从而预测未来的发展趋势。

2. 函数关系一次函数描述了两个变量之间的线性关系,可以用来研究变量之间的影响和规律。

3. 图像分析通过一次函数的图像,可以分析函数的特性,如斜率的大小、截距的位置等。

四、注意事项1. 理解斜率和截距的含义,掌握它们在一次函数中的作用。

2. 熟练掌握一次函数的基本运算,如加减乘除等。

3. 多做练习,加深对一次函数的理解和掌握。

4. 注意一次函数在实际问题中的应用,培养运用数学解决问题的能力。

一次函数是初中数学中的基础知识之一,掌握好一次函数的概念、性质和应用可以为学生打下坚实的数学基础,提升数学运用能力。

初二数学八下一次函数所有知识点总结和常考题型练习题2

初二数学八下一次函数所有知识点总结和常考题型练习题2

一次函数知识点(一)函数1.变量: 在一个变化过程中可以取不同数值的量。

常量: 在一个变化过程中只能取同一数值的量。

2.函数:一般的, 在一个变化过程中, 如果有两个变量x和y, 并且对于x的每一个确定的值, y都有唯一确定的值与其对应, 那么我们就把x称为自变量, 把y称为因变量, y是x的函数。

判断y是否为x的函数, 只要看x取值确定的时候, y是否有唯一确定的值与之对应。

3.确定函数定义域的方法:(1)关系式为整式时, 函数定义域为全体实数;(2)关系式含有分式时, 分式的分母不等于零;(3)关系式含有二次根式时, 被开放方数大于等于零;(4)关系式中含有指数为零的式子时, 底数不等于零;(5)实际问题中, 函数定义域还要和实际情况相符合, 使之有意义。

4、函数的解析式: 用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5.函数的图像一般来说, 对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形, 就是这个函数的图象.6.描点法画函数图形的一般步骤第一步: 列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中, 以自变量的值为横坐标, 相应的函数值为纵坐标, 描出表格中数值对应的各点);第三步: 连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法列表法: 一目了然, 使用起来方便, 但列出的对应值是有限的, 不易看出自变量与函数之间的对应规律。

(二)解析式法: 简单明了, 能够准确地反映整个变化过程中自变量与函数之间的相依关系, 但有些实际问题中的函数关系, 不能用解析式表示。

(三)图象法:形象直观, 但只能近似地表达两个变量之间的函数关系。

根据几何知识:经过两点能画出一条直线, 并且只能画出一条直线, 即两点确定一条直线, 所以画一次函数的图象时, 只要先描出两点, 再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0, b ), (- , 0).即横坐标或纵坐标为0的点.3.(1)两直线平行⇔21k k =且21b b ≠ (2)两直线重合⇔21k k =且21b b =4.用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式并检验.一次函数练习1.下列y 关于x 的函数中, 是正比例函数的为( ) A.y =x2; B.y = ; C.y = ; D.y = .2. 在函数y=中, 函数的自变量x的取值范围是( )A.x≥0B.x≠-3C.x>0D.x≥0且x≠-33.已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A. a<﹣1B. a>C. ﹣<a<1D. ﹣1<a<4.一次函数的图像不经过的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限5.一条直线y=kx+b,其中k+b=﹣5.kb=6,那么该直线经过()A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限6. 一次函数y=kx+b(k≠0)的图象如右图所示, 当y>0时, x的取值范围是( )A.x<0B.x>0C.x<2D.x>27.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A. B. C. D.8.甲、乙两车从A城出发匀速行驶至B城. 在整个行驶过程中, 甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示. 则下列结论: ①A, B两城相距300千米;②乙车比甲车晚出发1小时, 却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时, t = 或. 其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第9题图第11题图9.若函数y=kx﹣b的图象如图所示, 则关于x的不等式k(x﹣3)﹣b>0的解集为()A. x<2B. x>2C. x<5D. x>510. 某油箱容量为60 L的汽车, 加满汽油后行驶了100 Km时, 油箱中的汽油大约消耗了, 如果加满汽油后汽车行驶的路程为x Km, 邮箱中剩油量为y L, 则y与x之间的函数解析式和自变量取值范围分别是()A. y=0.12x, x>0 B. y=60﹣0.12x, x>0C. y=0.12x, 0≤x≤500D. y=60﹣0.12x, 0≤x≤50011.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD. 若点B的坐标为(2,0),则点C的坐标为()A. (﹣1, )B. (﹣2, )C. (, 1)D. (, 2)12.若关于的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是()13.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A. B. C. D.二、填空题1.函数的自变量x的取值范围是.2.已知函数是正比例函数,则a= ,b= .3. y+2与x+1成正比例, 且当x=1时, y=4, 则当x=2时, y=__________.4. 已知一次函数y=2x-6与y=-x+3的图象交于点P, 则点P的坐标为.5.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32.如果某一温度的摄氏度数是25℃, 那么它的华氏度数是________℉.6.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如右图所示,则小明的骑车速度是___________千米/分钟.7.已知直线与轴的交点在A(2,0), B(3,0)之间(包括A.B两点), 则的取值范围是。

初二数学一次函数知识点总结

初二数学一次函数知识点总结

初二数学一次函数知识点总结
一、一次函数的定义
一次函数是指形如y=kx+b的函数,其中x是自变量,y是函数值,k是斜率,b是y轴截距。

二、一次函数的图像
1.当k>0时,图像呈现右上方向,斜率越大,直线越陡峭。

2.当k<0时,图像呈现左下方向,斜率越小,直线越平缓。

3.当k=0时,图像呈现水平直线。

4.当x=0时,函数的值为y=b,即y轴截距。

三、一次函数的性质
1.一次函数经过两个不同点时,确定一条直线。

2.一次函数的斜率与函数的图像的倾斜度和正负有关。

3.当k>0时,函数单调递增;当k<0时,函数单调递减。

4.一条直线的斜率与与其垂直的直线的斜率的积为−1。

四、一次函数的应用
1.求解直线上的点坐标。

–已知直线上某一点的坐标以及斜率,可以求解该直线上的其他点的坐标。

2.用直线解决实际问题。

–通过实际问题,建立一元一次方程,求解方程,解得的变量即为实际问题的解决方案。

3.计算商业利润。

–利润y与销售额x之间的关系可以表示为一次函数,以此计算商业利润。

五、一次函数的常见误区
1.认为k和b的单位相同。

–k的单位是“单位y轴上升一单位x轴上升的单位数”,而b的单位是距离单位。

2.认为函数的x和y的值的单位相同。

–x和y的单位通常不相同,并且要根据所给问题具体确定。

3.直接根据图形判断斜率。

–斜率应根据公式进行计算,而不是根据图形直接判断。

以上是初二数学一次函数知识点的总结,希望能对大家的学习有所帮助。

人教版初二数学上册知识点总结

人教版初二数学上册知识点总结

人教版初二数学上册知识点总结
一次函数:一般形式为y=kx+b(其中k和b是常数,且k≠0)。

x是自变量,y是因变量。

当b=0时,称为正比例函数。

正比例函数:一般形式为y=kx(其中k是常数,且k≠0)。

其图像是经过原点(0,0)的一条直线。

图像性质:当k>0时,图像经过第一、三象限,从左向右上升,即随着x的增大,y也增大。

当k<0时,图像经过第二、四象限,从左向右下降,即随着x的增大,y反而减小。

因式分解:运用公式x^2 +(p+q)x+pq=(x+q)(x+p)进行因式分解时,需要注意先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

分式的乘除法:这部分内容涉及到分式的运算规则和方法。

请注意,这只是人教版初二数学上册的部分知识点总结,实际内容可能因教材版本和地区差异而有所不同。

为了更全面地了解和学习这些知识点,建议参考具体的教材和教学大纲。

初二数学一次函数知识点总结

初二数学一次函数知识点总结

初二数学一次函数知识点总结若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x 轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k 0)的性质(1)k的正负决定直线的倾斜方向;①k 0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b 0时,直线与y轴交于正半轴上;②当b 0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k 0,b 0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k 0,b③如图所示,当k﹤O,b 0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(k 0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k 0时,图象经过第一、三象限,y随x的增大而增大;(3)当k 0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P (2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P (2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k 0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k 0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(k 0)位置的影响.①当b 0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当k O,b O时,图象经过第一、二、三象限; 当k 0,b=0时,图象经过第一、三象限;当b O,b。

初二数学一次函数知识点总结

初二数学一次函数知识点总结

一次函数知识点总结根本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯—确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

x 推断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯—确定的值与之对应例题:以下函数〔1〕y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有〔 〕 〔A 〕4个 〔B 〕3个 〔C 〕2个 〔D 〕1个3、定义域:一般的,一个函数的自变量同意取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:〔1〕关系式为整式时,函数定义域为全体实数;〔2〕关系式含有分式时,分式的分母不等于零;〔3〕关系式含有二次根式时,被放开方数大于等于零;〔4〕关系式中含有指数为零的式子时,底数不等于零; 〔5〕实际问题中,函数定义域还要和实际情况相符合,使之有意义。

例题:以下函数中,自变量x 的取值范围是x ≥2的是〔 〕A ... D .函数y =x 的取值范围是___________. 已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 〔 〕 A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y 5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

初二数学一次函数知识点总结[1]

初二数学一次函数知识点总结[1]

初二数学一次函数知识点总结[1]初二数学分析一次函数知识点总结[1]一次函数知识点概括基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取投资过程而此数值的量。

例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值为,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的最大值与之对应1-12例题:下列函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函数的有()x(A)4个(B)3个(C)2个(D)1个3、定义域:一般的,一个导数的范围自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)物理量含有分式时,代换的分母不等于零;(3)关系式含有二次根式时,被开放方数大于这两点;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域情况总要和实际情况相符合,使之有意义。

例题:下列函数中,自变量x的取值范围是x≥2的是()A.y=2xB.y=1C.y=4x2D.y=x2x2x2函数y已知函数yx5中自变量x的取值范围是___________.1x2,当1x1时,y的取值范围是()253353535A.yB.yC.yD.y222222225、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点共同完成的图形,就是这个导数的图象.6、函数解析式:用含有表示自变量的字母算式的代数式表示自变量的式子叫做解析式。

初二上册数学一次函数知识点总结

初二上册数学一次函数知识点总结

初二上册数学一次函数知识点总结初二上册数学一次函数知识点总结初中数学一次函数知识点总结基本概念:1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0)。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

图像性质1.作法与图形:(1)列表.(2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

初二数学下册一次函数知识点

初二数学下册一次函数知识点

八年级(初二)数学下册一次函数知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果bkxy+=(k,b是常数,k≠0),那么y叫做x的一次函数。

特别地,当一次函数bkxy+=中的b为0时,kxy=(k为常数,k≠0)。

这时,y叫做x的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数bkxy+=的图像是经过点(0,b)的直线;正比例函数kxy=的图像是经过原点(0,0)的直线。

(如下图)4. 正比例函数的性质一般地,正比例函数kxy=有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

5、一次函数的性质一般地,一次函数bkxy+=有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kxy=(k≠0)中的常数k。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结
基本概念
1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr 中,变量是________,常量是_________.
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定
的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应
例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x
(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D
3、定义域:
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;(2 (3)关系式含有二次根式时,被开放方数大于等于零;(4
(5例题:下列函数中,自变量x 的取值范围是x ≥2的是( )
A ..
. D .
函数y =
x 的取值范围是___________. 已知函数22
1+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2
523≤<y 5、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质
一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.
注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零
当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过
二、四象限,从左向右下降,即随x 增大y 反而减小.
(1) 解析式:y=kx (k 是常数,k ≠0)
(2) 必过点:(0,0)、(1,k )
(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限
(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小
(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴
例题:.正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.
若23y x b =+-是正比例函数,则b 的值是 ( )
A.0
B.23
C.23-
D.32
- .函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )
A.0<k
B.1>k
C.1≤k
D.1<k
东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______________. 平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________.
10、一次函数及性质
一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数
一次函数y=kx+b 的图象是经过(0,b )和(-k
b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k 、b 是常数,k ≠0)
(2)必过点:(0,b )和(-k
b ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>0
0b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩
⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.
(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.
(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;
当b<0时,将直线y=kx 的图象向下平移b 个单位.
例题:若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n .
.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )
将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .
若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________.
已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( )
A.3m +1 B.3m C.m D.3m -1
11、一次函数y=kx +b 的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),
.
即横坐标或纵坐标为0的点.
b>0
b<0 b=0 k>0
经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限
图象从左到右上升,y 随x 的增大而增大
k<0
经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限
图象从左到右下降,y 随x 的增大而减小
若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )
A.第一象限
B. 第二象限
C.第三象限
D.第四象限
12、正比例函数与一次函数图象之间的关系
一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).
13、直线y=k 1x+b 1与y=k 2x+b 2的位置关系
(1)两直线平行:k 1=k 2且b 1 ≠b 2
(2)两直线相交:k 1≠k 2
(3)两直线重合:k 1=k 2且b 1=b 2
14、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
15、一元一次方程与一次函数的关系
任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.
16、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
17、一次函数与二元一次方程组
(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b c x b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1
111b c x b a +-和y=2222b c x b a +-的图象交点.。

相关文档
最新文档