重点大学本科生机械设计基础期末考试复习要点(2008年7月5日增加)
机械设计基础复习提纲
机械设计基础复习大纲2009、6、1第1章绪论1.1机器的组成及机器中常用的机构和零件掌握:机器的特征:人为的实物组合、各实物间具有确定的相对运动、有机械能参与或作机械功机器的组成:原动机+传动系统+工作机构了解:机器、机构、机械、常用机构、通用零件、专用零件和部件的概念1.2本课程的内容、性质和任务了解:课程内容、性质、特点和任务第2章机械设计概述2.1机器的功能分析及功能原理设计了解:与机械设计有关的一些基础理论与技术2.2机器的功能分析及功能原理设计了解:机器的功能分析;功能原理设计2.3机械设计的基本要求和程序了解:机械设计的基本要求和一般程序2.4常用的设计方法了解:常用的设计方法第3章机械运动设计与分析基础知识机构组成要素掌握:构件的定义(运动单元体)、分类(机架、主动件、从动件)构件与零件(加工、制造单元体)的区别平面运动副的定义、分类(低幅:转动副、移动副;高副:平面滚滑副)各运动副的运动特征、几何特征、表示符号及位置了解:运动链的定义运动链成为机构的条件(具有一个机架、具有足够的主动件)平面机构运动简图了解:机构运动简图(能认识简图即可)机构运动简图与机动示意图(不按比例)的区别平面机构自由度计算掌握:机构自由度的定义(具有独立运动的数目)平面运动副引入的约束数(低幅:引入2个约束;高副:引入1个约束)自由度计算,注意事项(复合铰链、局部自由度、虚约束、公共约束)机构具有确定运动的条件(机构主动件数等于机构的自由度)速度瞬心及其在机构速度分析上的应用掌握:速度瞬心定义瞬心分类:绝对瞬心:绝对速度相等且为零的瞬时重合点,位于绝对速度的垂线上相对瞬心:绝对速度相等但不为零的瞬时重合点,位于相对速度的垂线上速度瞬心的数目速度瞬心的求法观察法:转动副位于转动中心移动副位于垂直于导轨的无穷远高副位于过接触点的公法线上三心定理:互作平面平行运动的三个构件共有三个瞬心,且位于同一直线上用速度瞬心求解构件的速度(关键找到三个速度瞬心,建立同速点方程,然后求解)第6章平面连杆机构平面连杆机构的基本形式和应用掌握:平面连杆的组成(构件+低副;各构件互作平行平面运动)──低副机构铰链四杆机构组成(四构件+四转动副)铰链四杆机构各构件名称(机架、连杆、连架杆、曲柄、摇杆、固定铰链、活动铰链)铰链四杆机构的分类:曲柄摇杆机构、双曲柄机构、双摇杆机构铰链四杆机构的变异方法:改变构件长度、改变机架(倒置)了解:连杆机构的特点、四杆机构的应用平面四杆机构的基本特性掌握:铰链四杆机构的运动特性:曲柄存在条件:①最长杆长度+最短杆长度≤其余两杆长度之和②连架杆与机架中有一杆为四杆中之最短杆曲柄摇杆机构的极限位置:曲柄与连杆共线位置曲柄摇杆机构的极位夹角θ:两极限位置时连杆(曲柄)所夹锐角曲柄摇杆机构的急回特性及行程速比系数平面连杆机构的运动连续性铰链四杆机构的传力特性:压力角α:不计摩擦、重力时从动件受力方向与受力点速度方向间所夹锐角传动角γ:压力角的余角曲柄摇杆机构最小传动角位置:曲柄与机架共线的两位置中的一个死点(止点)位置:传动角为零的位置了解:许用压力角、许用传动角死点(止点)位置的应用和渡过平面连杆机构的运动设计掌握:实现给定连杆二个或三个位置的设计实现给定行程速比系数的四杆机构设计:曲柄摇杆、曲柄滑块和摆动导杆机构了解:基本设计命题:实现给定的运动要求:连杆有限位置、连架杆对应角位移、轨迹满足各种附加要求:曲柄存在条件、运动连续条件、传力及其他条件实验法设计实现给定连杆轨迹的四杆机构解析法设计实现给定两连架杆对应位置的四杆机构第7章凸轮机构凸轮机构的类型和应用掌握:凸轮机构的组成(凸轮+从动件+机架)──高副机构凸轮机构的分类:按凸轮分类(平面凸轮:盘形凸轮、移动凸轮;空间凸轮)按从动件分类:端部形状:尖端、滚子、平底、曲面运动形式:移动、摆动安装方式:对心、偏置按锁合方式分类:力锁合、形锁合了解:凸轮机构的特点、凸轮机构的应用、凸轮机构的一般命名原则从动件的几种常用运动规律掌握:基圆(理论廓线上最小向径所作的圆)、理论廓线、实际廓线、行程从动件运动规律(升程、回程、远修止、近修止)刚性冲击(硬冲:速度突变,加速度无穷大)、柔性冲击(软冲:加速度突变)运动规律特点:等速运动规律:速度为常数、始末两点存在硬冲、用于低速等加速等减速:加速度为常数、始末中三点存在软冲、不宜用于高速余弦加速度:停─升─停型:始末两点存在软冲、不宜用于高速升─降─升型:无冲击、可用于高速了解:运动规律的基本形式:停─升─停;停─升─降─停;升─降─升运动规律的选择原则盘形凸轮轮廓曲线的设计掌握:反转法绘制凸轮廓线的方法:对心或偏置尖端移动从动件对心或偏置滚子移动从动件了解:反转法绘制摆动从动件凸轮廓线的方法凸轮机构的基本尺寸设计掌握:滚子半径的选择、运动失真、运动失真的解决方法了解:机构自锁、偏置对压力角的影响压力角、许用压力角、临界压力角三者关系基圆半径的确定第8章齿轮传动齿轮传动的类型和特点掌握:齿轮机构的组成(主动齿轮+从动齿轮+机架)──高副机构圆形齿轮机构分类:平行轴:直齿圆柱齿轮机构(外啮合、内啮合、齿轮齿条)斜齿圆柱齿轮机构(外啮合、内啮合、齿轮齿条)人字齿轮机构相交轴:圆锥齿轮机构(直齿、斜齿、曲齿)相错轴:螺旋齿轮机构、蜗轮蜗杆机构了解:齿轮传动的特点齿廓啮合基本定律掌握:齿廓啮合基本定律定传动比条件、节点、节圆、共轭齿廓了解:常用齿廓曲线:渐开线、摆线、圆弧渐开线及渐开线齿廓掌握:渐开线的形成、特点一对渐开线齿廓啮合特性:定传动比特性、可分性了解:一对渐开线齿廓啮合时啮合角、啮合线保持不变渐开线标准直齿圆柱齿轮及其啮合传动掌握:渐开线齿轮个部分名称:齿数、模数、压力角、齿顶高系数、顶隙系数分度圆、基圆、齿顶圆、齿根圆齿顶高、齿根高、齿全高齿距(周节)、齿厚、齿槽宽直齿圆柱齿轮的基本参数直齿圆柱齿轮的尺寸计算:d、h a、h f、h、db、p、p b、s、e外齿轮、外啮合、内齿轮、内啮合尺寸计算标准安装:分度圆与节圆重合一对渐开线齿轮啮合条件:正确啮合条件连续传动条件;重合度的几何含义一对渐开线齿轮啮合过程:起始啮合点(入啮点);终止啮合点(脱啮点)实际啮合线;理论啮合线;极限啮合点了解:齿廓工作段、重合度的最大值、重合度与基本参数的关系、轮齿间的相对滑动化渐开线直齿圆柱齿轮的加工及齿轮变位的概念掌握:范成法加工齿轮的特点:用同一把刀具可加工不同齿数相同模数和相同压力角的齿轮根切现象及不根切的最少齿数了解:根切现象及产生的原因(渐开线刀刃顶点超过极限啮合点)齿轮传动的失效形式、设计准则及材料选择掌握:齿轮传动的几种失效形式及防止失效的措施齿轮传动的设计准则齿轮材料的选择原则、软硬齿面的区别和各自的应用场合齿轮传动的计算载荷掌握:计算载荷中四个系数的含义及其主要影响因素、改善措施直齿圆柱齿轮的强度计算掌握:受力分析强度计算力学模型(接触:赫兹公式、弯曲:悬臂梁)强度计算的主要系数Y Fa、Y Sa、Yε、Z E、Z H、Zε的意义及影响因素(强度计算的公式不要求记,考试时若需要会给出)直齿圆柱齿轮传动的设计计算路线、设计参数(齿数、齿宽系数、齿数比等)的选择了解:齿轮结构设计第9章蜗杆传动掌握:蜗杆传动的特点普通圆柱蜗杆传动的主要参数(m、α、z、q、a、d、γ、i)蜗杆传动的主要失效形式蜗轮常用材料,结构蜗杆旋向、转向和受力的关系,力分析了解:自锁现象及自锁条件蜗杆传动热平衡计算(进行热平衡计算的原因及热平衡基本概念)第10章轮系轮系的类型掌握:定轴轮系:所有齿轮轴线位置相对机架固定不动周转轮系:至少有一个齿轮轴线可绕其他齿轮固定轴线转动组成:行星轮+太阳轮(中心轮)+行星架(系杆)分类:行星轮系(F=1)、差动轮系(F=2)混合轮系:由若干个定轴轮系和周转轮系组成的复杂轮系轮系的传动比计算掌握:定轴轮系传动比计算周转轮系传动比计算混合轮系传动比计算:求解步骤:①分清轮系、②分别计算、③找出联系、④联立求解关键:正确区分各基本轮系蜗杆旋向的判定:轴线铅锤放置,观察可见面齿的倾斜方向,左边高左旋,右边高右旋了解:惰轮;轮系的功用第11章带传动掌握:带传动的主要特点带传动的工作情况分析(运动分析、力分析、应力分析、失效分析)型号、主要参数(a、d、Z、α、L、v)及设计选择原则、方法了解:带传动的设计方法和步骤带的使用方法第12章其他传动类型简介棘轮机构掌握:组成、工作原理、类型(齿式、摩擦式)运动特性:往复摆动转换为单向间歇转动;有噪音有磨损、运动准确性差设计时满足:自动啮紧条件了解:特点、应用及设计槽轮机构掌握:组成、类型(外槽轮机构、内槽轮机构)、定位装置(锁止弧)运动特性:连续转动转换为单向间歇转动;主动拨销进出槽轮的瞬时其速度应与槽的中心线重合且有软冲第14章机械系统动力学机械动力学分析原理掌握:作用在机械上的力:驱动力、工作阻力等效构件、等效力矩、等效转动惯量、等效力、等效质量、等效动力学模型等效原则:等效力矩、等效力:功或功率相等等效转动惯量、等效质量:动能相等等效方程:速度波动的调节和飞轮设计掌握:机器运动的三个阶段:起动阶段、稳定运动阶段(匀速或变速稳定运动)、停车阶段周期性速度波动的原因、一个稳定运动循环调节周期性速度波动的目的(限制速度波动幅值)和方法(增加质量或转动惯量)平均角速度:不均匀系数:飞轮转动惯量计算:能量指示图、最大盈亏功、最大速度位置、最小速度位置了解:三个阶段中功能关系、非周期性速度波动的原因及调节方法刚性回转体的平衡掌握:静平衡的力学条件:动平衡的力学条件:静平衡原理、动平衡原理第15章螺纹连接了解:螺纹的类型,各种类型的特点及应用掌握:螺纹连接的基本类型、特点及应用螺纹连接的预紧和防松原理、方法单个螺栓连接的强度计算方法螺栓组连接的设计与受力分析提高螺纹连接强度的措施第16章轴了解:轴的功用及类型轴上载荷与应力的类型、性质轴设计的主要内容及特点掌握:轴按载荷所分类型轴的材料、热处理及选择轴的结构设计(结构设计原则、轴上主要零件的布置、轴的各段直径和长度、轴上零件的轴向固定、轴上零件的周向固定、轴的结构工艺性、提高轴的强度和刚度)平键、花键联接的特点、键强度计算轴的失效形式及设计准则轴的强度计算(初步计算方法:按扭转强度计算;按弯扭合成强度计算)第17章轴承了解:轴承的功用滚动轴承和滑动轴承的主要特点及应用场合滚动轴承受载元件的应力分析(定性)掌握:对滑动轴承轴瓦和轴承衬材料的要求和常用材料非液体摩擦滑动轴承的主要失效形式和设计计算方法常用滚动轴承的类型和各自的主要特点选择滚动轴承类型时要考虑的主要因素滚动轴承基本额定寿命的概念;寿命计算滚动轴承当量动负荷的计算角接触轴承轴向载荷的计算滚动轴承支撑轴系时的配置方式、应用场合轴承的调整、固定、装拆、预紧、润滑、密封的主要作用和方法四种考试题型选择题、填空题、计算题、结构题。
机械设计基础期末复习题纲汇总
0绪论0.1 机械的特征(1)人为实物的组合(2)各部分之间形成各个运动单元,且各单元之间具有确定的相对运动(3)在生产过程中能完成有用的机械功或转换机械能0.2 机构、机器、零件、构件习题册P11平面机构及其自由度1.1 机构具有确定运动的条件习题册P21.2 虚约束P91.3 平面机构的自由度及其计算F=3n-2P L-P H(1-1)1.4 速度瞬心多边形法(P12)2平面连杆机构☆☆☆☆☆2.1 曲柄的存在条件(1)在曲柄摇杆机构,曲柄是最短杆(2)最短杆与最长杆之和小于或等于其余两杆之和2.2 压力角、传动角1.压力角:作用在从动件的驱动力F与该力作用点绝对速度νC之间所夹的锐角α2.传动角:压力角的余角,连杆和从动摇杆之间所夹的锐角γ=90°-α ,3.α越小,传力性能越好2.3 死点位置及其应用习题册P52.3 急回特性行程速比系数 K=180°+θ180°−θ极位夹角θ=180°K−1K+12.4常用机构曲柄摇杆机构:最短杆相邻的构件为机架双曲柄机构:最短杆为机架双摇杆机构:最短杆的对边为机架2.5 最长杆要小于其余各杆之和3 凸轮机构3.1 刚性、柔性冲击,刚性与柔性冲击的应用场合 刚性:由于惯性力无穷大突变引起的冲击,用于低速场合 柔性:惯性力有限值突变,用于中低速场合 3.2 图解法4 齿轮机构☆☆☆☆☆4.1 节点、截圆的概念 节点:过齿廓接触点的公法线与连心线的交点 截圆:过节点所做的两个相切的圆 4.2 齿轮啮合基本定律 一对传动齿轮的瞬时角速度与其连心线O 1O 2被节点所分割的两线段长度成反比ω1ω2=O 2C O 1C 4.3 渐开线性质及渐开线齿廓 当一直线在一圆周上做纯滚动时,该直线上任一点的轨迹成为该圆的渐开线(1)NK =NA ̂ (2)NK 是渐开线上K 点的法线,且线段NK 为其曲率半径(3)渐开线齿廓上某点的法线(KN ),与齿廓上该点速度方向线所夹的锐角αk 称为该点的压力角cosa k =ON OK =r br kr b 为基圆半径(4)渐开线在K 点的曲率半径最大(4)渐开线齿轮的传动比i n 等于两轮基圆半径的反比i n =n 1n 2=ω1ω2=r b2r b14.4 渐开线直齿圆柱齿轮各部分的名称和尺寸计算(公式部分) 基本参数: 齿数z ,模数m ,压力角α,齿顶高系数ha *,径向间隙系数c * 齿根圆: 由齿槽底部所确定的圆 齿厚: 轮齿两侧齿廓之间的弧长 齿距p K : 相邻的两齿同侧齿廓之间的弧长 分度圆: 齿轮上该圆的p K /π的比值和该圆上的压力角均为标准值,直径为d,齿距为p 分度圆的压力角简称压力角αm =pπd=mzcos bkr r α=齿顶高h a : 介于齿顶圆和分度圆之间的高度 齿根高h f : 介于齿根圆和分度圆之间的高度全齿高:h=h a +h f基圆直径:cos b d d α=若将齿顶高和齿根高分别用m 表示*a a h h m =**f a h h c =+正常齿制h a *=1,c *=0.25,断齿制为 h a *=0.8,c *=0.3齿顶圆直径:2a a d d h =+齿根圆直径:2f f d d h =-曲率半径:1sin 2a d ρα=4.5 渐开线标准齿轮的啮合传动 1.正确啮合的条件:两轮的模数和压力角分别相等2.标准中心距aa =r1+r2=m2(z1+z2)4.6 渐开线齿廓的加工原理(分类) 成形法、范成法(齿轮插刀、齿条插刀、齿轮滚刀) 根切现象:用范成法加工齿轮时,若刀具的齿顶线或齿顶圆与啮合线的交点超过被切齿轮的极限点,则刀具的齿顶将切去齿轮齿根渐开线齿廓的一部分z ≥2ℎa ∗24.7 平行轴渐开线斜齿轮正确啮合的条件 两轮齿的模数和压力角分别相等,两轮螺旋角β大小相等,方向相反 4.8 平行斜齿齿轮机构 习题册P11 当量齿数:2cos v zz β=分度圆直径cos mzd β=斜齿轮的优点:(1)传动平稳,噪声小 (2)重合度较大(3)最小齿数小于直齿轮z min5 轮系☆☆☆☆☆5.1 定轴轮系及其传动比(与蜗轮蜗杆一起考察) 1.啮合处箭头对箭头,箭尾对箭尾 2.眼从轴线望,哪边高就是哪边旋 3.哪边旋用哪只手,四手指指向运动方向,大拇指的方向为输入力,输出力与其方向相反 4.一对齿轮转动的传动比分析11212221n z i n z ωω=== 外啮合取“-”,内啮合取”+” 5.2 周转轮系 设n G 和n K 为周转轮系中任意两个齿轮G 和K 的转速,它们与转臂H 的转速n H 之间的关系为(1)H m G H GK K Hn n i n n -==-- 从齿轮G 至K 间所有从动轮齿数的乘积从齿轮G 至K 间所有主动轮齿数的乘积6 其他常用机构6.1 能够实现间歇运动的机构棘轮机构:当从动件连续地往复摆动时,棘轮只作单向的间歇运动 槽轮机构:当拨盘做匀速转动时,驱使槽轮做间歇运动7 机械的动力性能7.1 回转件的平衡(静平衡与动平衡) 1.回转件(转子)平衡的目的 调整回转件的质量分布,使回转件工作时离心力系达到平衡,以消除附加动压力,尽可能减轻由离心力而产生的机械振动。
机械设计基础复习纲要
9.摆动导杆机构的行程速比系数K=2, 则该机构的摆角为__。
A. 90° B. 45° C. 60° D. 30°
10.下列机构中: 1) 对心曲柄滑块机构、2) 偏置曲柄滑块机构、3) 平行双曲 柄机构、4) 摆动导杆机构、5) 曲柄摇杆机构,当原动件均 为曲柄时,上述_____机构有急回运动特性。
2)简答题主要考核对基础理论的应用、基本概念的理解及应用时的注 意事项等。
3)计算题主要考核基本计算问题,如机构自由度计算、轮系传动比的 计算、螺栓联接强度计算、带传动受力计算、滚动轴承受力分析等。
4)分析题主要考核点如齿轮传动受力分析、蜗杆传动受力分析、凸轮 机构的压力角的校核计算等。
三、各章复习要点
7.铰链四杆机构的压力角是指,在不计摩擦情况下,连杆作 用于______上的力与该力作用点的速度间所夹的锐角。
A. 主动件 B. 从动件 C. 机架 D. 连架杆 答案
五、平面连杆机构自测题
8. 有一对心曲柄滑块机构,曲柄长为100mm,则滑块的行程 是__________。 A. 50mm B. 100mm C. 200mm D. 400mm
图1-3
五、平面机构自由度自测题
一.判断题(正确:T,错误:F) 1.构件组成移动副和转动副所引入的约束数目相等。
2.在平面机构中,一个高副引入两个约束。
3.用简单线条和符号按一定比例定出各运动副的相对位置,并能 反映机构各构件间相对运动关系的简单图形,称为机构示意 图。
4.一个作平面运动的自由构件有六个自由度。
4.在曲柄滑块机构中,当曲柄为主动件时,机构没有死点 。 答案
五、平面连杆机构自测题
5.在摆动导杆机构中,当曲柄为主动件时,曲柄在任何位置 时其传动角均相同 。
机械设计基础期末考试复习知识点
为了帮助您顺利复习期末考试,本次演讲将涵盖机械设计基础的关键知识点, 包括机械设计概述、工程材料机械性能、机械零件的图样与标注、机械传动 与结构设计、机械加工工艺、自动控制原理以及机械设计应用实践案例。
机械设计概述
基础理论
了解机械设计的基本概念、原理和发展历程。
常用设备
2
标准符号
熟悉常用的机械标准符号,以便与其他设计师交流。
3
装配图
学会绘制机械装配图,展示零件之间的关系和组装方式。
机械传动与结构设计
传动系统
了解不同类型的机械传动系统,如齿轮传动和皮 带传动。
结构设计
掌握机械结构设计的基本原理,确保设计的强度 和稳定性。
机械加工工艺
1 加工方法
了解不同的机械加工方法,如铣削、车削和钻孔等。
2 工艺参数
学习如何选择适当的切削速度和进给量,以获得理想的加工效果。
3 工艺优化
了解如何优化机械加工工艺,提高生产效率和产品质量。
自动控制原理
传感器
了解各种传感器的工作原理 和应用,能够选择合适的传 感器用于自动控制。
控制系统
熟悉自动控制系统的组成和 工作原理,能够设计和调试 控制系统。
反馈机制
理解反馈原理的重要性,学 会利用反馈机制提高系统的 稳定性和准确性。
机械设计应用实践案例
1
案例研究
分析真实的机械设计案例,讨论设计
实践项目
2
思路和解决方案。
参与机械设计实践项目,提升解决实
际问题的能力。
3
创新设计
激发创造力,尝试设计独一无二的机 械产品。
熟悉机械设计中常用的设备和工具,如CAD软件 和测量仪器。
机械设计基础期末复习指导要点
机械设计基础期末复习指导(数控技术专业适用)第一章机构静力分析基础1.力的基本概念及其性质(1)力的定义物体间相互的机械作用,这种作用使物体的运动状态(力的外效应)、形状或尺寸发生改变(力的内效应)。
(2)力的三要素力的大小、方向和作用点。
2.静力学定理(1)二力平衡定理作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,作用在一条直线上。
(2)三力平衡汇交定理构件在三个互不平行的力作用下处于平衡,这三个力的作用线必共面且汇交于一点。
3.约束和约束力应掌握四类常用的约束模型:柔性体约束、光滑面约束、铰链约束、固定端约束。
了解约束性质,掌握约束力的画法。
4.物体的受力分析及受力图(1)根据要分析的问题,确定研究对象;(2)解除研究对象的约束画出研究对象的分离体;(3)在分离体上画出全部主动力;(4)在分离体解除约束的地方按约束的类型或性质画出约束力。
5.力的投影和分解(1)力的投影和正交分解(2)合力投影定理合力在某一轴上的投影等于各分力在同轴上投影的代数和。
6.力矩与力偶(1)力矩力使物体产生转动效应的量度称为力矩。
(2)合力矩定理力系合力对某点的力矩等于力系各分力对同点力矩的代数和。
(3)力偶及其性质使物体产生转动效应的一对大小相等、方向相反、作用线平行的两个力称为力偶。
力偶矩的大小、转向和作用平面称为力偶的三要素。
力偶的基本性质:a.力偶无合力,在坐标轴上的投影之和为零。
b.力偶对其作用平面内任一点的力矩,恒等于其力偶矩,而与矩心的位置无关。
7.力的平移定理作用于刚体上的力F,可平移到刚体上的任一点O,但必须附加一力偶,其附加力偶矩的大小等于原力F对O点的力矩。
8.平面力系的平衡方程若力系是平衡力系,则该力系向平面任一点简化的主矢和主矩为零。
即:平面平衡力系在两坐标轴投影的代数和等于0,对平面上任意点力矩代数和等于0。
∑F x=0 ∑F y=0 ∑M O(F)=09.求解平面一般力系平衡问题的步骤(1)选择研究对象;(2)受力分析;(3)列平衡方程,求解未知力。
机械设计基础复习资料(综合整理)
机械设计基础复习资料一、基础知识0、零件(独立的机械制造单元)组成(无相对运动)构件(一个或多个零件、是刚体;独立的运动单元)组成(动连接)机构(构件组合体);两构件直接接触的可动连接称为运动副;运动副要素(点、线、面);平面运动副、空间运动副;转动副、移动副、高副(滚动副);点接触或线接触的运动副称为高副(两个自由度、一个约束)、面接触的运动副称为低副(一个自由度、两个约束,如转动副和移动副)0.1曲柄存在的必要条件:最短杆与最长杆长度之和小于其余两杆长度之和。
连架杆和机架中必有一杆是最短杆。
0.2在四杆机构中,不满足曲柄存在条件的为双摇杆机构,满足后,若以最短杆为机架,则为双曲柄机构;若以最短杆相对的杆为机架则为双摇杆机构;若以最短杆的两邻杆之一为机架,则为曲柄摇杆机构0.3 凸轮从动件作等速运动规律时,速度会突变,在速度突变处有刚性冲击,只能适用于低速凸轮机构;从动件作等加等减速运动规律时,有柔性冲击,适用于中、低速凸轮机构;从动件作简谐运动时,在始末位置加速度也会变化,也有柔性冲击,之适用于中速凸轮,只有当从动件做无停程的升降升连续往复运动时,才可以得到连续的加速度曲线(正弦加速度运动规律),无冲击,可适用于高速传动。
0.4凸轮基圆半径和凸轮机构压力角有关,当基圆半径减小时,压力角增大;反之,当基圆半径增大时,压力角减小。
设计时应适当增大基圆半径,以减小压力角,改善凸轮受力情况。
0.5.机械零件良好的结构工艺性表现为便于生产的性能便于装配的性能制造成本低1.按照工作条件,齿轮传动可分为开式传动两种。
1.1.在一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【齿面疲劳点蚀】1.2对于闭式软齿面来说,齿面点蚀,轮齿折断和胶合是主要失效形式,应先按齿面接触疲劳强度进行设计计算,确定齿轮的主要参数和尺寸,然后再按齿面弯曲疲劳强度进行校核。
1.3闭式齿轮传动中的轴承常用的润滑方式为飞溅润滑1.4. 直齿圆锥齿轮的标准模数规定在_大_端的分度圆上。
机械设计基础期末考试复习知识点
机械系统的设计要:性能要求
详细描述:机械系统的性能要求主要包括运动性能、动力性能、工作 性能和可靠性等,设计时应充分考虑这些要求。
总结词:经济性要求
详细描述:机械系统的经济性要求包括制造成本、运行成本和维护成 本等方面,设计时应注重降低成本,提高经济效益。
机械系统的设计方法
了弹簧在不同工作条件下的性能表现,是弹簧设计的重要依据。
03
机械系统设计
机械系统的组成与特点
01
总结词:基本组成
02
详细描述:机械系统通常由原动机、传动装置、执行装置和控制装置 等组成,各部分具有不同的功能和特点。
03
总结词:特点分析
04
详细描述:机械系统具有结构紧凑、工作可靠、传动效率高和制造成 本低等优点,但也存在摩擦、磨损和发热等问题。
轴承的设计
轴承的类型
轴承分为滚动轴承和滑动轴承两类,滚动轴承由内圈、外圈、滚动 体和保持架组成,滑动轴承由轴承座、轴瓦和润滑系统组成。
轴承的载荷分析
轴承所承受的载荷有径向载荷、轴向载荷和复合载荷,分析载荷时 应考虑瞬时最大载荷和平均载荷。
轴承的寿命计算
根据轴承的转速、载荷、润滑方式和材料等因素,计算轴承的寿命, 以确保轴承的使用寿命满足要求。
优化设计的方法与步骤
总结词
优化设计的方法、步骤
VS
详细描述
优化设计的方法包括数学规划法、遗传算 法、模拟退火算法等。基本步骤包括明确 设计问题、建立数学模型、选择优化方法 、编写求解程序和结果分析等。
优化设计在机械设计中的应用实例
总结词
优化设计在机械设计中的应用实例
详细描述
优化设计在机械设计中广泛应用于各个领域,如汽车、航空航天、能源和化工等。例如 ,在汽车设计中,优化设计可用于发动机、底盘和车身等部件的轻量化、性能提升和成 本降低等方面;在航空航天领域,优化设计可用于飞机和火箭的结构设计和性能优化。
《机械设计基础》考点复习.doc
《机械设计基础》考点复习考虑到有可能会用B卷,现给大家补充一些知识点(部分增加知识点为上次A卷漏划)。
祝大家考出理想成绩,暑假愉快!第0章绪论0-1本课程研究对象和内容掌握机械、机构、构件、零件的基本概念。
掌握如何区分构件、零件。
第1章平面机构自由度和速度分析1-1运动副及其分类掌握如何辨别低副(移动副、转动副)和高副。
1?2平面机构运动简图掌握如何绘运动简图(在给定机械结构下,例1?1、1-2)1-3平而机构自有度掌握辨别复合钱链、局部白由度、虚约束。
掌握平面机构白由度的计算。
1-4速度顺心及其在机构自由度分析上的应用掌握速度顺心的定义,会计算机构顺心数(式1?2)掌握三心定理。
第2章平面连杆机构2?1平面四杆机构的基本类型及其应用掌握平面四杆机构的基本类型和特点(重点看狡链四杆机构和含一个移动副的四杆机构)2-2平而四杆机构的基本特性掌握钱链四杆机构具有整转副条件掌握急冋特性屮行程速度变化系数的计算。
(填空)掌握压力角和传动角的定义和计算。
掌握死点位置的定义。
第3章凸轮机构3-1凸轮机构的应用和类型掌握凸轮的分类3-2从动件的常用运动规律掌握从动件常用运动规律。
3-3凸轮机构的压力角掌握压力角定义,及判别。
掌握压力角与作用力的关系掌握压力角与凸轮机构尺寸的°3-4图解法设计凸轮结构了解直动从动件盘型凸轮轮廓的绘制过程(1、偏置尖顶直动从动件盘型凸轮、2、滚子直动从动件盘型凸轮)齿顶高、齿根咼、齿屮心距的计算方法。
第4章齿轮机构4-1齿轮机构的特点和类型掌握齿轮机构的优缺点4-3渐开线齿廉掌握渐开线、基圆、发生线定义。
掌握渐开线所具有的特性掌握渐开线齿酬啮合的特点4-4齿轮各部分名称及渐开线标准齿轮的基本尺寸掌握直齿圆柱齿轮分度圆直径、基圆直径、齿顶圆直径、齿根圆直径、全高、顶隙、齿厚、齿槽宽的计算方法。
4-5渐开线标准齿轮的啮合掌握正确啮合条件掌握满足正确啮合条件的一?对齿轮传动比计算方法掌握标准屮心距的定义及计算方法掌握重合度的定义及意义。
《机械设计基础》期末复习知识
《机械设计基础》期末复习知识目录一、内容概览 (2)1.1 机械设计基础课程的目的和任务 (3)1.2 机械设计的基本要求和一般过程 (4)二、机械设计中的力学原理 (5)2.1 力学基本概念 (7)2.2 杠杆原理与杠杆分析 (8)2.3 静定与静不定的概念及其应用 (9)2.4 连接件的强度计算 (10)2.5 转动件的强度和刚度计算 (11)三、机械零件的设计 (12)3.1 零件寿命与材料选择 (13)3.2 轴、轴承和齿轮的设计 (15)3.3 连接件的设计 (16)3.4 弹簧的设计 (18)四、机械系统的设计与分析 (19)4.1 机械系统运动方案设计 (20)4.2 机械系统的动力学分析 (22)4.3 机械系统的结构分析 (24)4.4 机械系统的控制分析 (25)五、机械系统的设计实例 (26)5.1 自动机床设计实例 (28)5.2 数控机床设计实例 (29)5.3 汽车发动机设计实例 (31)六、期末复习题及解答 (32)6.1 基础知识选择题 (33)6.2 应用能力计算题 (33)6.3 设计题及分析题 (34)七、参考答案 (35)7.1 基础知识选择题答案 (37)7.2 应用能力计算题答案 (38)7.3 设计题及分析题答案 (39)一、内容概览《机械设计基础》是机械工程及相关专业的核心课程,旨在培养学生机械系统设计的基本能力和综合素质。
本课程内容广泛,涵盖了机械系统设计中的基本原理、结构分析、传动设计、支承设计、控制设计以及现代设计方法等多个方面。
机械系统设计概述:介绍机械系统设计的基本概念、设计目标和步骤,帮助学生建立整体观念,理解机械系统设计的综合性。
机械零件设计:详细阐述各类机械零件的设计原理和方法,包括齿轮、轴承、联轴器、弹簧等,注重实际应用和标准规范。
机械传动设计:讲解机械传动的分类、特点和应用,重点分析带传动、链传动、齿轮传动和蜗杆传动的设计计算方法和实际应用。
机械设计基础复习要点
机械设计基础复习要点第一章平面机构运动简图一、基本概念:1、运动副:由两构件组成的可动联接。
三要素:两构件组成、直接接触、有相对运动2、约束:对物体运动的限制。
3、机构运动简图:根据机构的运动尺寸,按一定的比例尺定出各运动副的位置,用国标规定的运动副及常用机构运动简图的符号和简单的线条将机构的运动情况表示出来,与原机构运动特性完全相同的,表示机构运动情况的简化图形。
机构示意图:表示机构的运动情况,不严格地按比例来绘制的简图。
4、机构的自由度:机构中各构件相对于机架所具有的独立运动5、机构具有确定运动的条件:机构的原动件数应等于机构的自由度数6、复合铰链——两个以上的构件同在一处以转动副相联接。
(可以使机构的结构更紧凑)7、局部自由度——某些不影响整个机构运动的自由度。
(用来改善机构的运动摩擦状况)8、虚约束——在机构运动中,有些约束对机构自由度的影响是重复的(虽然对机构的运动不起限制作用,但对构件的强度和刚度的提高以及保证机构的顺利进行等是有利的)。
二、计算下列机构的自由度书后习题1-6第二章:平面连杆机构一、基本概念:平面连杆机构——许多刚性构件用低副联接组成的平面机构。
铰链四杆机构——全部回转副组成的平面四杆机构。
铰链四杆机构的组成:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧2314连杆:—摇杆—摆动只能在一定角度范围内—曲柄—能作整周回转、连架杆:机架: 铰链四杆机构的基本型式:曲柄摇杆机构 双曲柄机构 双摇杆机构铰链四杆机构的演化形式:改变构件的相对长度、取不同的构件为机架、扩大转动副的半径演化为偏心轮机构曲柄存在条件1、最短杆与最长杆的长度之和应小于或等于其余两杆长度之和。
2、曲柄是由最短杆与其邻边组成。
急回运动:输出构件摆回的速度大于其工作行程的速度,输出构件的这种运动性质称为急回运动(曲柄摇杆机构、偏置曲柄滑块机构、摆动导杆机构有急回特性)行程速比系数:用来表明急回运动的急回程度死点位置:连杆与从动件共线。
《机械设计基础》期末复习重点
《机械设计基础》期末复习重点第1章1、能够区分虚约束、局部自由度、复合铰链等概念。
2、掌握平面机构自由度的计算。
如例题1-7,习题1-10等。
3、掌握速度瞬心、三心定理、N个构件组成的机构的瞬心总数K= N(N-1)/2 第2章1、掌握铰链四杆机构有曲柄的条件,尤其是对杆长条件的理解。
2、对于给定的铰链四杆机构,能够判断其类型。
如习题2-1等。
3、掌握急回特性、最小传动角及死点位置等相关知识。
对于给定的铰链四杆机构,能够画出该机构的极位夹角、最小传动角及死点的位置,如教材图2-22、2-23及2-24等。
第3章1、掌握凸轮机构相关名词术语,并能够在图上依次标出,如基圆半径、推程运动角、远休止角、回程运动角、近休止角、行程、偏心距等。
2、了解常用的几种从动件运动规律的特点。
第4章1、了解渐开线齿廓的特点。
2、掌握标准直齿轮、斜齿轮的几何尺寸计算,如习题4-1、4-2、4-11及4-12等。
第5章1、了解什么是定轴轮系、行星轮系、周转轮系以及复合轮系。
2、掌握复合轮系传动比的计算,如例题5-4,习题5-10等。
第9章1、掌握常用的机械零件的失效形式。
2、掌握机械零件设计的一般步骤。
第10章1、了解螺纹主要参数的定义。
2、掌握机械制造常用螺纹的特点。
3、了解键的类型及键的失效形式。
4、掌握如何进行键的尺寸选择。
第11章1、掌握轮齿失效形式。
2、了解齿轮传动的设计准则。
3、了解直齿圆柱齿轮传动的强度计算,如齿形系数、齿根修正系数的确定。
第13章1、了解带传动的类型。
2、掌握带传动的弹性滑动和打滑的区别。
3、了解带的应力分析,如教材图13-10。
4、了解V带传动的计算,如V带型号的确定,中心距大小不同对带传动的影响,及如何确定中心距等。
第14章1、了解轴的功用及类型。
2、掌握轴的结构设计,了解轴上零件的定位及固定。
如在给定的装配图上找出结构设计中的错误,并加以改正,参考课件中给的例子。
第16章1、掌握滚动轴承的基本类型和特点。
《机械设计基础》复习重点、要点总结
《机械设计基础》第1章机械设计概论复习重点1. 机械零件常见的失效形式2. 机械设计中,主要的设计准则习题1-1 机械零件常见的失效形式有哪些?1-2 在机械设计中,主要的设计准则有哪些?1-3 在机械设计中,选用材料的依据是什么?第2章润滑与密封概述复习重点1. 摩擦的四种状态2. 常用润滑剂的性能习题2-1 摩擦可分哪几类?各有何特点?2-2 润滑剂的作用是什麽?常用润滑剂有几类?第3章平面机构的结构分析复习重点1、机构及运动副的概念2、自由度计算平面机构:各运动构件均在同一平面或相互平行平面运动的机构,称为平面机构。
3.1 运动副及其分类运动副:构件间的可动联接。
(既保持直接接触,又能产生一定的相对运动)按照接触情况和两构件接触后的相对运动形式的不同,通常把平面运动副分为低副和高副两类。
3.2 平面机构自由度的计算一个作平面运动的自由构件具有三个自由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个自由度。
当用P L个低副和P H个高副连接组成机构后,每个低副引入两个约束,每个高副引入一个约束,共引入2P L+P H个约束,因此整个机构相对机架的自由度数,即机构的自由度为F=3n-2P L-P H (1-1)下面举例说明此式的应用。
例1-1 试计算下图所示颚式破碎机机构的自由度。
解由其机构运动简图不难看出,该机构有3个活动构件,n=3;包含4个转动副,P L=4;没有高副,P H=0。
因此,由式(1-1)得该机构自由度为F=3n-2P L-P H =3×3-2×4-0=13. 2.1 计算平面机构自由度的注意事项应用式(1-1)计算平面机构自由度时,还必须注意以下一些特殊情况。
1. 复合铰链2. 局部自由度3. 虚约束例3-2 试计算图3-9所示大筛机构的自由度。
解机构中的滚子有一个局部自由度。
顶杆与机架在E和E′组成两个导路平行的移动副,其中之一为虚约束。
机械设计基础考试重点整理
第2章平面机构的结构分析1、运动副:使两个构件直接接触仍能产生一定相对运动的连接2、低副:两个构件为面接触的运动副3、移动副:组成运动副的两个构件通过面接触只能做相对移动的低副4、高副:两个构件通过点或线接触组成的运动副5、运动链:由两个以上运动副连接而成的系统6、运动链分为闭链和开链两种。
闭链:若组成运动链的各构件首尾相连,则所构成的系统成为封闭式运动链,简称闭链;开链:若组成运动链的各构件未构成首尾相连的封闭系统,则成为开式运动链,简称开链。
7、若运动链中其余各构件都有确定的相对运动,这种运动链便构成了机构8、机架:机构中固定不动的构件。
按照给定的运动规律相对于该固定构件运动的构件成为原动件或主动件,其余各活动构件成为从动件。
9、移动副的导路必须与相对移动方向一致10、F = 3n - 2P L - P H (F表示平面机构的自由度数)11、复合铰链:两个或两个以上的构件公用同一转动轴线相连接所构成的运动副12、局部自由度:机构中出现的不影响其他构件运动的构件的自由度13、虚约束:机构中对传递运动不起独立作用的对称部分引入的约束14、机构具有确定运动的条件是:机构的原动件数与机构的自由度数相等第3章挠性传动设计1、带传动的优点:①带具有良好的挠性,可缓和冲击、吸收振动②过载时带会在带轮上打滑,避免了其他零件的损坏③适用于中心距较大的传动④结构简单、制造安装方便、成本低廉带传动的缺点:①带与带轮直接存在滑动,不能保持准确的传动比②需要张紧装置③传动效率较低,带的寿命较短,不宜在易燃、易爆场合下工作2、通常情况下,带速V > 5 m/s,对于普通V带应使Vmax = 25~30 m/s第4章齿轮传动设计3、根据不同的分类方法,齿轮传动可分为以下几种类型:直齿轮传动平行轴齿轮传动斜齿轮传动人字齿轮传动直齿圆锥齿轮传动齿轮传动相交轴齿轮传动斜齿圆锥齿轮传动曲齿圆锥齿轮传动交错轴斜齿圆柱齿轮传动交错轴齿轮传动蜗杆蜗轮传动4、齿顶圆:各齿轮顶部所连成的圆称为齿顶圆,其直径用d a表示,其半径用r a表示5、齿根圆:各齿槽底部所连成的圆称为齿根圆,其直径用d f表示,其半径用r f 表示6、分度圆:为了设计、制造的方便,在齿顶圆与齿根圆之间规定了一个圆,作为计算齿轮各部分尺寸的基准,该圆称为分度圆,其直径用d表示,其半径用r 表示。
机械设计基础复习要点
机械设计基础复习要点绪论机器、机构、构件、零件的概念;机器、机构的特征;构件与零件的区别和联系第1章平面机构运动简图及自由度计算1.运动副的概念和形式;机构具有确定相对运动的条件;自由度的概念和计算公式,计算时要注意的三个问题(复合铰链、局部自由度和虚约束)。
2.平面机构运动简图的绘制;自由度的计算第2章平面连杆机构1.铰链四杆机构的基本类型;铰链四杆机构存在曲柄的条件(要会应用);铰链四杆机构的演化方法。
2.急回特性概念;行程速比系数及计算公式;压力角和传动角概念、关系及其对机构的运动特性的影响,并要求会在机构简图上画出从动件的压力角位置;最小传动角所在的位置;死点概念,机构有死点要具备什么条件。
3.用图解法设计平面连杆机构(曲柄摇杆机构、曲柄滑块机构、摆动导杆机构)第3章凸轮机构1.凸轮机构中从动件的四个运动过程及对应的凸轮转角;2.从动件常用运动规律及其运动特性;要求会画匀速运动规律、等加速等减速运动规律和余弦加速度运动规律的位移曲线3.凸轮机构的压力角概念并要求会在机构简图上画出压力角位置(对心直动尖顶(滚子)从动件凸轮机构、偏置直动尖顶(滚子)从动件凸轮机构);基圆、偏置圆概念;4.图解法设计凸轮轮廓曲线(主要包括对心直动尖顶从动件凸轮机构、偏置直动尖顶从动件凸轮机构)。
第4章齿轮传动1.渐开线的形成及其特性;了解基圆、发生线、压力角概念;2.渐开线齿廓啮合特点;齿轮传动的两个基本要求;齿廓啮合基本定律;渐开线齿廓的啮合特性(课件中总结的3点)3.标准直齿圆柱齿轮的基本参数及几何尺寸计算;4.渐开线直齿齿轮正确啮合条件;正确安装条件;连续传动条件;理解重合度的概念,并理解其对承载能力和传动平稳性的影响;5.齿轮的两种加工方法;渐开线齿廓在展成法(或范成法)加工时的根切现象的原因、影响及避免措施;6.了解变位齿轮的概念;7.齿轮传动的主要失效形式;两个强度计算准则;强度准则使用的基本原则(开式传动、闭式软齿面和硬齿面传动如何选择)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生机械设计基础期末考试复习要点(注意参考)
(机械原理部分)
第1章 绪论
掌握:机器的特征:人为的实物组合、各实物间具有确定的相对运动、有机械能参与或作机械功
了解:机器、机构、机械、常用机构、通用零件、专用零件和部件的概念
第2章 机构组成和机构分析基础知识
2.1 掌握:构件的定义(运动单元体)、构件与零件(加工、制造单元体)的区别
平面运动副的定义、分类(低副:转动副、移动副;高副:平面滚滑副)
各运动副的运动特征、几何特征、表示符号及位置
2.2 掌握:机构运动简图的画法(注意标出比例尺、主动件、机架和必要的尺寸)
2.3 掌握平面机构自由度计算:自由度计算公式:H L P P n F --=23;在应用计算
公式时的注意事项(复合铰链、局部自由度、虚约束);机构具有确定运动的条件(机构主动件数等于机构的自由度);
2.4 速度瞬心及其在机构速度分析上的应用 :掌握:速度瞬心定义;绝对瞬心、相对瞬心;
瞬心的数目;速度瞬心的求法:观察法: 三心定理法:用速度瞬心求解构件的速度;
第4章 平面连杆机构
4.1 掌握:铰链四杆机构的分类:铰链四杆机构的变异方法:改变构件长度、改变机架(倒置)
4.2 掌握:铰链四杆机构的运动特性:曲柄存在条件:曲柄摇杆机构的极限位置:曲柄摇杆机构的极位夹角θ:曲柄摇杆机构的急回特性及行程速比系数 K ;铰链四杆机构的传力特性:压力角α:传动角γ:许用传动角[γ];曲柄摇杆机构最小传动角位置:死点(止点)位置:死点(止点)位置的应用和渡过
4.3 掌握:平面连杆机构的运动设计:实现给定连杆二个或三个位置的设计;
实现给定行程速比系数的四杆机构设计:曲柄摇杆、曲柄滑块
第5章 凸轮机构
5.1 掌握:凸轮机构的分类
5.2 掌握:基圆(理论廓线上最小向径所作的圆)、理论廓线、实际廓线、行程; 从动件运动规律(升程、回程、远休止、近休止)刚性冲击(硬冲)、柔性冲击(软冲);
三种运动规律特点和等速、等加速等减速、余弦加速度位移曲线的画法;
5.3 掌握:反转法绘制凸轮廓线的方法、对心或偏置尖端移动从动件、对心或偏置滚子移动从动件;
5.4 掌握:滚子半径的选择、运动失真的解决方法,压力角α、许用压力角、基圆
半径的确定;
第6章 齿轮传动
6.2 掌握齿廓啮合基本定律 定传动比条件、节点、节圆、共轭齿廓
6.3 掌握:渐开线的形成、特点及方程;一对渐开线齿廓啮合特性:定传动比特性、可分性;
一对渐开线齿廓啮合时啮合角、啮合线保持不变;
6.4 掌握:渐开线齿轮个部分名称:基本参数:齿数、模数、压力角、齿顶高系数、顶隙系数;计算分度圆、基圆、齿顶圆、齿根圆;齿顶高、齿根高、齿全高,齿距(周节)、齿厚、齿槽宽;外啮合标准中心距;标准安装:分度圆与节圆重合(d d ='、αα=');
一对渐开线齿轮啮合条件:正确啮合条件、连续传动条件、重合度的几何含义;一对渐开线齿轮啮合过程:起始啮合点(入啮点)、终止啮合点(脱啮点);实际啮合线、理论啮合线、极限啮合点;
6.5 了解:范成法加工齿轮的特点、根切现象及产生的原因、不根切的最少齿数
第8章 轮系和减速器
8.1 掌握:定轴轮系、周转轮系、混合轮系概念
8.2 掌握:定轴轮系传动比计算,包括转向判定;周转轮系传动比计算;混合轮系传动比计算:
第11章 基本机构的变异和组合
11.1 掌握:棘轮机构的组成、工作原理、类型(齿式、摩擦式)运动特性:有噪音有磨损、运动准确性差、自动啮紧条件;
11.2 掌握:槽轮机构组成、类型(外槽轮机构、内槽轮机构)、定位装置(锁止弧)、运动特性:连续转动转换为单向间歇转动
了解:最少槽数、运动特性系数、主动拨销进出槽轮的瞬时其速度应与槽的中
心线重合且有软冲、动力特性概念:
第20章 机械系统动力学设计
20.1 掌握:作用在机械上的力:驱动力、工作阻力
等效构件、等效力矩、等效转动惯量、等效力、等效质量、等效动力学模
型
等效原则:等效力矩e M 、等效力e F :功或功率相等
等效转动惯量e J 、等效质量e m :动能相等 等效方程:∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛±+⎪⎭⎫ ⎝⎛=n i i i i i i e M v F M 1cos ωωωα ∑=⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n i i si si i e J v m J 122ωωω ∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛±+⎪⎭⎫ ⎝⎛=n i i i i i i e v M v v F F 1cos ωα ∑=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n
i i si si i e v J v v m m 122ω
20.2 掌握:机器运动的三个阶段、周期性速度波动的原因、调节周期性速度波动的目的(限制速度波动幅值)和方法(转动惯量)平均角速度、不均匀系数;
掌握等效力矩为位置函数时,飞轮转动惯量计算:[][]
J n W J W J m F -∆=-∆≥δπδω22max 2max
900 掌握:能量指示图、最大盈亏功、最大速度位置、最小速度位置
20.3 掌握:静平衡的力学条件:0=∑i F ;动平衡的力学条件:0=∑i F 、0=∑i M 与平衡方法。
(机械设计部分)
第六章 齿轮传动
掌握:1)齿轮传动的失效形式及防止失效的措施; 2)齿轮传动的设计准则;
3)齿轮材料的选择原则、软硬齿面的区别和各自的应用场合;
4)齿轮传动的计算载荷,n n A ca KF F K K K K F ==βαν中四个系数的含义及其主要影响因素、改善措施;
5)直齿圆柱齿轮的强度计算:受力分析、强度计算力学模型(接触:赫兹公式、弯曲:悬臂梁)、强度计算的主要系数Y Fa 、Y Sa 、Y ε、Z E 、Z H 、Z ε的意义及影响因素(强度计算的公式不要求记,考试时若需要会给出);
6)直齿圆柱齿轮传动的设计计算路线、设计参数(齿数、齿宽系数、齿数比等)的选择;齿轮结构设计;
第七章 蜗杆传动
掌握:1)蜗杆传动的特点;2)普通圆柱蜗杆传动的主要参数计算(齿数、模数、直径、直径系数、传动比、中心距、导程角);
3)蜗杆传动的相对滑动; 4)蜗杆传动的主要失效形式;
5)蜗轮常用材料,结构; 6)蜗杆传动受力分析,力与旋向、转向关系的判定; 了解:蜗杆传动的啮合效率及自锁条件、蜗杆传动热平衡计算基本概念(为什么蜗杆传动要进行热平衡计算及热平衡计算的基本概念)
第九章 带传动和链传动
掌握:1)带传动的主要特点;
2)带传动的工作情况分析:力分析(力平衡关系、临界打滑时的力关系);应力分析(类型、最大应力);运动分析(弹性滑动、打滑);
3)失效形式及设计准则;
4)主要参数(中心距、传动比、带轮基准直径、带速)及选择原则;
了解:带轮结构;带的安装与张紧;
第十三章螺纹联接
掌握:1)螺拴联接的基本类型、特点及应用、螺纹联接的预紧方法和防松方法;
2)螺栓连接的强度计算; 3)螺栓组联接的受力分析;4)提高螺纹联接强度的措施;
第十四章其他常用联接零件和弹簧
掌握:1)平键联接的特点,尺寸选择及强度计算; 2)花键联接的特点;
第十五章轴
掌握:1)轴的功用及类型、轴的材料及选择;
2)轴的结构设计;
3)轴的失效形式及设计准则
4)轴的强度计算(不包括轴的安全系数校核计算)
第十六章支撑零件
掌握:1)轴承的功用、滚动轴承和滑动轴承的主要特点及应用场合;
2)对滑动轴承轴瓦和轴承衬材料的要求和常用材料
3)非液体摩擦滑动轴承的要失效形式和设计计算方法
4)常用滚动轴承的类型和各自的主要特点
5)滚动轴承工作情况分析、主要失效形式及设计准则;选择滚动轴承类型时,要考虑的主要因素;
6)滚动轴承尺寸选择(重点掌握):滚动轴承基本额定寿命的概念、滚动轴承当量动负荷的计算、角接触轴承轴向载荷的计算
第十八章轴系零部件的结构设计
掌握:1)滚动轴承支承轴系时的配置方式、应用场合,正确的轴承固定结构2)润滑的主要作用,润滑剂类型(润滑油、润滑脂)
3)密封的主要作用及主要密封结构。