用平移旋转和轴对称几何问题

合集下载

平移旋转与对称平移旋转与对称的定义与性质

平移旋转与对称平移旋转与对称的定义与性质

平移旋转与对称平移旋转与对称的定义与性质平移、旋转和对称是几何学中重要的概念和操作。

它们是描述和变换图形位置和形状的基本工具。

本文将详细介绍平移、旋转和对称的定义及其性质。

一、平移的定义与性质平移是指将一个图形沿着一定方向移动一定距离,而不改变其形状和方向。

下面是平移的定义与性质:定义:平移是指将一个图形中的所有点,按照同样的方向和距离,同时保持相对位置的变换操作。

性质:1. 平移不改变图形的大小、形状和方向。

2. 平移后的图形与原图形之间的对应关系保持不变。

3. 平移是一个向量运算,可以用向量表示平移的方向和距离。

4. 任意两个平移可以合成为一个平移。

二、旋转的定义与性质旋转是指将一个图形绕着某个固定点旋转一定角度,使得旋转后的图形与原图形相似但方向和位置发生变化。

下面是旋转的定义与性质:定义:旋转是指将一个图形绕着固定点旋转一定角度,使得旋转前后图形中的对应点的距离保持不变。

性质:1. 旋转不改变图形的大小、形状和方向。

2. 旋转后的图形与原图形之间的对应关系保持不变。

3. 旋转可以按顺时针或逆时针方向进行。

4. 旋转是一个变换操作,可以用旋转中心和旋转角度来描述。

三、对称的定义与性质对称是指将一个图形分割成两个部分,使得两个部分关于某条直线、点或中心对称。

下面是对称的定义与性质:定义:对称是指将一个图形按照某个轴线或点进行折叠或旋转,使得折叠或旋转后的图形与原图形重合。

性质:1. 对称不改变图形的大小、形状和方向。

2. 对称后的图形与原图形之间的对应关系保持不变。

3. 图形关于对称轴对称时,对称轴上的点不动;图形关于对称中心对称时,对称中心不动。

4. 对称操作是可逆的,即对称两次会得到原来的图形。

综上所述,平移、旋转和对称是几何学中常用的图形变换操作。

它们各自有着特定的定义和性质,可以描述和变换图形的位置和形状。

理解和掌握平移、旋转和对称的定义与性质,将有助于我们在解决几何问题和应用几何知识时进行准确的操作和分析。

初中几何三大变换平移、旋转、轴对称

初中几何三大变换平移、旋转、轴对称

初中几何三大变换平移、旋转、轴对称
姓名:__________
指导:__________
日期:__________
【答案解析】先将ABC 绕着B C 的中点旋转180,再将所得的三角形绕着B C的中点旋转180,即可得到△ A B C;先将ABC 沿着B C 的垂直平分线翻折,再将所得的三角形沿着B C的垂直平分线翻折,即可得到△ A B C;故选:D.
典型易错题5(易错指数)
【答案解析】A .等腰三角形底边上的高所在的直线是它的对称轴,正确;B .线段和角都是轴对称图形,正确;C .连接轴对称图形的对应点的线段必被对称轴垂直平分,正确;D .ABC DEF ,则ABC 与DEF 不一定关于某条直线对称,错误;故选:D .
典型易错题6(易错指数)
图中序号(1)(2)(3)(4)对应的四个三角形,都是这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是
A.(1)B.(2)C.(3)D.(4)【答案解析】轴对称是沿着某条直线翻转得到新图形,通过轴对称得到的是(1).故选:A
典型易错题7(易错指数)
【答案解析】
典型易错题8(易错指数)
【答案解析】。

平移旋转轴对称经典题目

平移旋转轴对称经典题目

平移旋转轴对称经典题目平移旋转轴对称是几何中的基本概念,它在解决许多问题时都发挥了重要作用。

下面将介绍一些经典的与平移旋转轴对称相关的题目。

平移对称1. 问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。

试证明F是矩形ABCD的一个对称点。

问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。

试证明F是矩形ABCD的一个对称点。

问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。

试证明F是矩形ABCD的一个对称点。

证明:首先,连接BD并延长到交G于G点。

我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。

因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。

首先,连接BD并延长到交G于G点。

我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。

因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。

首先,连接BD并延长到交G于G点。

我们注意到BC 是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。

因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。

2. 问题:给定梯形ABCD,其中AD平行于BC。

点M是AB 的中点,点N是CD的中点。

试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。

问题:给定梯形ABCD,其中AD平行于BC。

点M是AB的中点,点N是CD的中点。

试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。

问题:给定梯形ABCD,其中AD平行于BC。

点M是AB的中点,点N是CD的中点。

试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。

证明:因为M是AB的中点,N是CD的中点,所以MN平行于AD。

另外,由于MN是平移MC得来的,所以MN的中点也是平移梯形ABCD的中线AD得来的,即MN的中点是梯形ABCD的一个对称点。

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。

轴对称平移与旋转轴对称轴对称的再认识

轴对称平移与旋转轴对称轴对称的再认识

2023-10-30•轴对称平移•旋转轴对称•轴对称的再认识目录•总结与展望01轴对称平移轴对称平移是指将图形以某条直线为轴,将图形上所有点沿该直线方向作对应平移。

定义轴对称平移不改变图形的形状和大小,只改变图形的位置和方向。

性质定义与性质轴对称平移的应用图像处理在图像处理中,轴对称平移可用于对图像进行平移、旋转等操作,实现图像的几何变换。

晶体学在晶体学中,轴对称平移是描述晶体结构的重要工具之一,可以帮助科学家更好地理解晶体的性质和结构。

图形设计在图形设计中,轴对称平移是一种常见的变换方式,可以用来创建新的图形或图案。

实例展示矩形平移将一个矩形以某条直线为轴,将矩形上所有点沿该直线方向作对应平移,得到一个新的矩形。

螺旋图案通过连续的轴对称平移和旋转操作,可以创建一个美丽的螺旋图案。

雪花图案通过多个轴对称平移和旋转操作,可以创建一个雪花图案。

02旋转轴对称定义旋转轴对称是指图形绕某一直线旋转一定的角度后,自身重合的现象。

性质旋转轴对称具有旋转不变性和对称性。

定义与性质旋转对称在建筑、雕塑、绘画等艺术领域中有着广泛的应用。

艺术领域自然界中许多现象,如雪花、螺旋壳等,都呈现出旋转对称性。

自然界中在计算机图形学中,旋转对称被广泛应用于图像处理和动画制作。

计算机科学旋转轴对称的应用螺旋图案是典型的旋转对称图形,其结构具有旋转不变性。

螺旋图案六角形雪花是一种典型的具有旋转对称性的自然结构。

雪花圆形花坛是常见的旋转对称建筑,其设计具有旋转不变性。

圆形花坛实例展示03轴对称的再认识轴对称是指一个物体关于某一直线(对称轴)对称,即物体在该直线的两侧或一侧,沿直线折叠后,物体两部分能够互相重合。

轴对称的定义轴对称的深入理解轴对称具有唯一性、反身性和对称性。

轴对称的性质可以通过观察物体的形状、位置、方向等是否关于对称轴对称来进行判断。

轴对称的判断如雪花、树叶等自然物的形状呈现出轴对称的特点。

自然界中的轴对称许多艺术品和建筑在设计时也会利用轴对称,如教堂、寺庙等。

了解简单的平移旋转和对称操作

了解简单的平移旋转和对称操作

了解简单的平移旋转和对称操作平移、旋转和对称是数学中常见的几何变换操作。

它们在几何学、物理学以及计算机图形学等领域都有广泛的应用。

本文将详细介绍平移、旋转和对称的概念、性质和运算方法。

一、平移操作平移是指将一个对象沿着某个方向移动一定的距离,保持其形状和大小不变。

在平面几何中,我们通常使用坐标系来描述平移操作。

对于二维平面上的点P(x,y),进行平移操作时,可以将点P的横坐标和纵坐标分别增加或减少一个常数来得到新的点P'。

具体而言,如果平移向量为(a,b),则点P(x,y)经过平移操作后的坐标为P'(x+a, y+b)。

平移向量可以是任意的实数或整数。

二、旋转操作旋转是指将一个对象围绕着某个点或某条线旋转一定的角度。

同样地,在平面几何中,我们使用坐标系来描述旋转操作。

为了方便起见,我们通常将旋转中心设为原点(0,0)。

对于二维平面上的点P(x,y),将其逆时针旋转θ角度后的新坐标可以通过以下公式计算得到:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,θ为旋转角度,cosθ和sinθ分别为角度θ的余弦和正弦值。

这个公式可以推广到三维空间中的点和向量的旋转。

三、对称操作对称是指将一个对象关于某个点、某条线或某个平面进行镜像反转。

常见的对称方式有关于原点对称、关于x轴对称、关于y轴对称等。

对于二维平面上的点P(x,y),进行关于原点的对称操作后,新的点P'的坐标可以通过以下公式计算得到:x' = -xy' = -y同样地,对称操作也可以推广到三维空间中。

综上所述,平移、旋转和对称是几何学中常见的基本变换操作。

通过这些操作,我们可以改变对象的位置、方向和形状,从而满足不同的应用需求。

在实际应用中,如计算机图形学、机器人运动规划等领域,平移、旋转和对称操作有重要的意义,并且与其他几何变换操作相互结合使用,构建复杂的模型和算法。

苏教版三年级数学教案——运用平移、旋转和轴对称解决生活中的问题

苏教版三年级数学教案——运用平移、旋转和轴对称解决生活中的问题

苏教版三年级数学教案——运用平移、旋转和轴对称解决生活中的问题在现代社会中,数学不仅仅是一门学科,更是应用于生活各个方面成为必备的技能。

在日常生活和工作中,我们经常需要借助数学知识来解决各种实际的问题,特别是在运用平移、旋转和轴对称这三个几何变换中,则可以增强我们观察能力和空间感,对审美、技能和解决实际问题的能力有促进作用。

在苏教版三年级数学中,平移、旋转和轴对称这三个几何变换,不仅需要学生掌握各种知识点,更需要让他们在生活中学会运用这些知识点来解决实际的问题。

以下是几个生活例子:生活例1:小区路口交通安全问题小区内某路口由于看不到对向的车辆会造成交通事故的风险。

为了解决这一问题,可采取轴对称的思想来设计出一个交通镜。

我们可以将该路口画出来,找到其对称轴(如图1)。

图1接着,我们可以找一张平面镜,将其放在对称轴上,得到一个对称镜像,如图2所示。

图2这样,就可以在路口内设立这个交通镜,让司机在行驶前用它观察车辆行驶情况,有效解决交通安全问题。

生活例2:书本封面设计从小就学习简单的平移、旋转和轴对称操作,会让孩子对空间、美学和设计更敏感。

例如,对于书本翻译封面设计中的图案,通过平移、旋转、轴对称变换,可以发现更有趣的布局。

生活例3:日常纺织品图案设计在日常纺织品图案设计中,可以根据需要进行平移和旋转操作,让图案变得更有艺术感。

同时,通过轴对称变换可以将图案扭曲成对称的形态。

这些变换操作,不仅可以让图案更美观,还可以简化图案,提高制作效率。

在苏教版三年级数学中,平移、旋转和轴对称这三个几何变换,不仅可以培养学生的观察能力和空间感,还可以帮助学生解决各种实际问题。

我们必须妥善地运用这些知识点,提高学生的创新和思考能力,让学生走向更加美好的未来。

平移旋转与对称

平移旋转与对称

平移旋转与对称在几何学中,平移、旋转和对称是三个重要的变换。

它们能够帮助我们研究和描述物体的位置、方向和形状特征。

本文将深入讨论平移、旋转和对称的基本概念、性质以及应用。

一、平移平移是指将一个图形沿着平行于某条线段或者某个平面的方向移动,且移动后与原来位置保持形状和大小不变的操作。

通常,我们用一个向量来表示平移的方向和距离。

平移的特点是保持图形的平行性和全等性。

也就是说,图形上的任意一条线段在平移后仍然平行于原始位置的相应线段,并且图形上的任意一对全等点在平移后仍然是全等的。

平移也可以通过坐标来描述。

考虑一个二维平面上的点P(x, y),若向右平移a个单位,向上平移b个单位,则新的坐标为P'(x+a, y+b)。

平移在实际生活中有着广泛的应用,例如地图的移动、对象的移动和图形的变换等等。

二、旋转旋转是指将一个图形绕着一个固定点旋转一定角度而得到的新图形。

旋转可以顺时针方向或逆时针方向进行,并且可以根据旋转的中心、角度和方向来确定旋转的特征。

旋转的特点是保持图形的形状和大小不变,但改变了图形的方向和位置。

在旋转过程中,原图形上的每一条线段会沿着旋转中心点为轴心旋转一定的角度,并且保持旋转前后的长度不变。

旋转也可以通过坐标来描述。

考虑一个二维平面上的点P(x, y),若绕着原点逆时针旋转θ角度,则新的坐标为P'(x', y'),其中:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)旋转在各个领域有着广泛的应用,例如机器人运动、地球旋转和三维模型变换等等。

三、对称对称是指一个图形相对于某个中心轴线或者中心点发生镜像,其左右或上下两部分是完全相同的。

对称分为轴对称和中心对称两种情况。

轴对称是指图形相对于某条直线对称,也称为镜像对称。

在轴对称中,图形上的每一点与对称轴上的对应点的距离相等,并且两者的连线垂直于对称轴。

苏教版三年级数学上册第六单元《平移、旋转和轴对称》单元分析及全部备课教案

苏教版三年级数学上册第六单元《平移、旋转和轴对称》单元分析及全部备课教案

苏教版三年级数学上册第六单元《平移、旋转和轴对称》单元分析及全部备课教案一. 教材分析苏教版三年级数学上册第六单元《平移、旋转和轴对称》是本册教材中的重要内容,主要让学生掌握平移、旋转和轴对称的基本概念和性质,以及它们在实际问题中的应用。

本单元的内容包括:平移的定义、平移的性质、旋转的定义、旋转的性质、轴对称的定义、轴对称的性质等。

这些内容旨在培养学生的空间观念和几何思维,提高学生解决实际问题的能力。

二. 学情分析学生在学习本单元之前,已经掌握了二年级的图形知识,对图形的认识有一定的基础。

但是,对于平移、旋转和轴对称的概念和性质,学生可能还比较陌生。

因此,在教学过程中,教师需要借助生活中的实例和模型,让学生直观地感受和理解这些概念。

同时,学生需要通过大量的练习,才能熟练掌握平移、旋转和轴对称的性质和应用。

三. 教学目标1.知识与技能目标:学生能够理解平移、旋转和轴对称的概念,掌握它们的性质和特点,能够运用平移、旋转和轴对称的知识解决实际问题。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间观念和几何思维,提高学生解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣和好奇心,让学生感受到数学与生活的紧密联系,培养学生的合作意识和团队精神。

四. 教学重难点1.教学重点:学生能够理解平移、旋转和轴对称的概念,掌握它们的性质和特点。

2.教学难点:学生能够运用平移、旋转和轴对称的知识解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实例和模型,让学生直观地感受和理解平移、旋转和轴对称的概念。

2.动手操作法:让学生亲自动手操作,通过实践来加深对平移、旋转和轴对称的理解。

3.交流讨论法:鼓励学生之间进行交流和讨论,培养学生的合作意识和团队精神。

4.问题解决法:引导学生运用平移、旋转和轴对称的知识解决实际问题,提高学生解决问题的能力。

六. 教学准备1.教具:准备一些图片、模型、卡片等教具,用于直观展示平移、旋转和轴对称的概念。

平移旋转轴对称的总结归纳

平移旋转轴对称的总结归纳

平移旋转轴对称的总结归纳平移、旋转、轴对称是几何学中常见的变换操作,它们在图形的变换中起着重要的作用。

本文将对平移、旋转和轴对称进行总结归纳,以便加深对这些概念的理解。

一、平移平移是指沿着固定的方向和距离,将一个点或者图形在平面内移动。

平移不改变图形的大小、形状和方向,只是改变了图形的位置。

1. 平移的特点- 平移是一种向量运算,其运算结果仍然是一个向量。

- 平移过程中,所有点的位移矢量都相等。

- 平移可以用向量表示,平移向量的起点为原图形上的一个点,终点为其平移后的位置。

2. 平移的表示方法平移可以使用向量运算的方式进行表示,如设平移向量为AB,其中A为原图形上的一个点,B为其平移后的位置。

3. 平移的性质平移具有以下性质:- 平移不改变图形的大小、形状和方向。

- 平移保持图形之间的相对位置关系不变。

二、旋转旋转是指将一个点或者图形按照一定的角度围绕某一点旋转。

旋转可以改变图形的方向,但保持其大小和形状不变。

1. 旋转的特点- 旋转是一种变换运算,将一个点或者图形按照一定的角度绕固定点旋转。

- 旋转可以用角度来描述,旋转角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。

- 旋转中心可以是任意点,也可以是图形的某个顶点。

2. 旋转的表示方法旋转可以使用坐标变换的方式进行表示,如设旋转中心为O,旋转角度为θ,则旋转过程中,点P(x, y)绕点O旋转后的新坐标为P'(x', y')。

3. 旋转的性质旋转具有以下性质:- 旋转不改变图形的大小和形状。

- 旋转改变图形的方向。

- 旋转保持图形上的点与中心点之间的距离不变。

三、轴对称轴对称是指图形相对于某条直线对称。

对称轴可以是任意直线,轴对称的图形可以通过对称轴翻转得到自身。

1. 轴对称的特点- 轴对称是一种空间变换,将图形相对于某条直线进行翻转。

- 轴对称的图形具有镜像对称性,即沿对称轴折叠后,两侧图形完全一致。

2. 轴对称的表示方法轴对称可以使用对称关系进行表示,如设对称轴为l,点P关于l的对称点为P',则P'与P关于l对称。

《图形的旋转》平移旋转和轴对称

《图形的旋转》平移旋转和轴对称
描述
这种组合在实际生活中并不常见,因为在实际应用中,旋转和轴对 称两种操作通常会分开进行。
应用
在几何学中,旋转轴对称组合常用于研究图形的旋转对称性质,如 圆形、椭圆形的性质等。
05
实际应用案例
平移旋转在机械制造中的应用
平移旋转在机械制造中有着广泛的应用。通过平移和旋转,可以方便地对机械零件 进行精确加工和调整。
《图形的旋转》平移旋转和 轴对称
2023-11-08
目 录
• 平移 • 旋转 • 轴对称 • 平移旋转和轴对称的组合应用 • 实际应用案例
01
平移
定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离 。
平移不改变图形的形状、大小和方向,只改变图形的位置。
性质
平移前后,图形的对应线段平行且相等,对应角相等,对应点所连接的线段平行 且相等。
描述
这种组合在实际生活中很常见,比 如汽车在公路上行驶,除了位置的 移动,车身也会围绕自己的轴线旋 转,保持方向不变。
应用
在几何学中,平移旋转组合常用于 研究图形的性质和变化,如平行四 边形的性质、三角形的稳定性等。
平移轴对称组合应用
定义
平移轴对称组合是指将平移和轴 对称两种操作结合起来,使图形 在平面上进行移动的同时,绕某
应用
在几何学中,旋转被广泛应用于图形 的位置和形状的变换。
在物理学中,旋转运动被广泛应用于 物体的运动和平衡状态的研究。
在机械工程中,旋转运动被广泛应用 于机器人的关节和传动装置。
在艺术领域,旋转被广泛应用于舞蹈 、音乐和绘画的表现形式。
03
轴对称
定义
轴对称是指一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是 它的对称轴。

图形的平移,对称与旋转的专项训练解析附答案

图形的平移,对称与旋转的专项训练解析附答案

图形的平移,对称与旋转的专项训练解析附答案一、选择题1.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.a a>,那么2.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!4.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x 轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A.(30)B.(3,0)C.(403523,32D.(30)【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.5.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.6.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG 的长就是EP+FP的最小值,据此即可求解.解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.7.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键. 8.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握9.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55,进而即可得到结论.【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD中,边长为1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.10.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.12.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC 1C 为等腰三角形;故①正确;∴AC 1=AC ,∴∠C 1=∠ACC 1=30°,∴∠C 1AC =120°,∴∠B 1AB =120°,∵AB 1=AB ,∴∠AB 1B =30°=∠ACB ,∵∠ADB 1=∠BDC ,∴△AB 1D ∽△BCD ;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C 1AB 1=∠BAC =45°,∴∠B 1AC =75°,∵∠AB 1C 1=∠BAC =105°,∴∠AB 1C =75°,∴∠B 1AC =∠AB 1C ,∴CA =CB 1;故④正确.故选:B .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.13.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.14.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .32B .5C .4D 31【答案】B【解析】【分析】【详解】 由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .15.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.16.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】 根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.17.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .7【答案】B【解析】 试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =45°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =45°,∴BC =BC ′=4,根据勾股定理可得DC ′=22'BC BD +=2234+=5.故选B .18.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C .【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.19.下列图形中,不一定是轴对称图形的是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.。

运用平移、对称和旋转设计图案 - 答案

运用平移、对称和旋转设计图案 - 答案

运用平移、对称和旋转设计图案答案典题探究例1.艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.考点:运用平移、对称和旋转设计图案.分析:根据运用平移、对称和旋转设计图案专题的内容进行填空.解答:解:艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.故答案为:平移,对称,旋转.点评:此题考查了运用平移、对称和旋转设计图案.例2.如图的图形是如何得到的?考点:运用平移、对称和旋转设计图案.分析:第一个图形的脸是正立的,嘴巴在下,第二个图形是横向的,说明第二个图形是由第一个图形绕下巴顺时针旋转90°得到,第三个图形与第二个图形方向相同,说明第三个图形是由第二个图形向右平移得到的,第四个图形是倒立的,是由第三个图形顺时针旋转90°得到的.解答:解:第一个图形顺时针旋转90°得到第二个图形,第二个图形向右平移得到第三个图形,第三个图形顺时针旋转90°得到第四的图形;点评:本题是考查图形变换,由旋转、平移.旋转、平移后的图形与原图形大小,形状不变,只是位置变了.例3.(1)图中长方形四个顶点的位置是:A(6,8),B(8,8),C(6,5),D(8,5);(2)把长方形向右平移3格,画出平移后的图形,平移后的长方形四个顶点用数对表示分别是A1(9,8),B1(11,8),C1(9,5),D1(11,5)(3)把长方形绕D点顺时针旋转90度,画出旋转后的图形,旋转后的长方形四个顶点用数对表示分别是A2(11,7),B2(11,5),C2(8,7),D2(8,5).考点:运用平移、对称和旋转设计图案.分析:利用画图工具,复制,平移3个格,得到把长方形向右平移3格的长方形A1B1C1D1,把长方形绕D点顺时针旋转90度的图形A2B2C2D2,数一数,就可以填上各个位置的坐标.解答:解:A(6,8)B(8,8)C(6,5)D(8,5);A1(9,8)B1(11,8)C1(9,5)D1(11,5);A2(11,7)B2(11,5)C2(8,7)D2(8,5).点评:此题考查了运用平移、对称和旋转设计图案.例4.用多个三角形设计一个美丽的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:以三角形的一个顶点为中心,顺时针旋转90度、180度、270度即可.解答:解:作图如下:点评:本题考查的是利用平移、对称及旋转设计图案.演练方阵A档(巩固专练)一.选择题(共12小题)1.下列图形中()是利用旋转设计而成的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:利用旋转设计而成的图形应有一个旋转点,图形旋转后的形状和大小不变;因此得解.解答:解:A、有一个旋转点,有一个形状和大小不变的图形菱形,因此A是利用菱形向右绕右顶点旋转90°、180°、270°而形成的;B、小图形有大小的变化,因此不是利用旋转设计而成的;C、菱形图形的大小形状虽然不变,但没有一个旋转点,它是菱形平移3次而形成的.故选:A.点评:图形旋转后的大小和形状不变是判断这个图形是否是通过旋转形成的基本方法.2.把正方形的右边剪去一块补到上面(如图),得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:把正方形的右边剪去一块,正方形缺失是右边,据此排除答案A和C.又因为剪去的部分是补到上面,答案D补到了下面,排除D,所以选B.解答:解:把正方形的右边剪去一块补到上面,只有C符合题意.故选:B.点评:解答此题最好的办法是动手操作一下,即可以解决问题,又锻炼动手操作能力.3.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形的特点结合轴对称图形和中心对称图形的概念解答.解答:解:A、不是对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既有轴对称,又有旋转,符合题意.故选:D.点评:此题考查了旋转的概念以及轴对称图形的概念:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.把一个图形绕某一点旋转一定角度后得到另一个图形,叫做旋转变换.4.如图的图形中,()是由旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.解答:解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.点评:此题考查了利用对称和旋转设计图案.5.如图是由☆经过()变换得到的.A.平移B.旋转C.对称考点:运用平移、对称和旋转设计图案.分析:平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.解答:解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.点评:此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.6.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.7.(•河西区模拟)下面()图形旋转会形成圆柱.A.B.C.考点:运用平移、对称和旋转设计图案.分析:一个长方形沿一条直线旋转就会成为一个圆柱.解答:解:选项中只有A是长方形旋转;故选:A.点评:本题是判断平面图形经过旋转后大图形,长方形旋转后是圆柱,半圆旋转后是球体,三角形旋转后是圆椎.8.已知一个半圆,下面()这种方式不能将半圆变成圆.A.平移B.翻折C.旋转考点:运用平移、对称和旋转设计图案.分析:一个半圆,如果以它的直径为轴翻折,会得到一个新的半圆,这个半圆由于是已知半圆翻成的,它的直径与已知半圆相等,这两个半圆是以已知半圆的直径所在的直线为对称轴的轴对称图形,两个半圆正好组成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°,都会得到一个与原半圆直径相等的半圆,这个半圆与原半圆能组成一个圆;一个半圆,平移后得到的半圆虽然与原半圆的直径相等,但平移后的半圆与原半圆的半圆弧总是在一个方向,这两个半圆不能组成一个圆.解答:解:一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°后的图形与已知半圆能变成一个圆;一个已知半圆,平移后得到的半圆,已知半圆方向相同,与已知半圆不能变成一个圆;故选:A点评:本题主要是考查运用平移、轴对称设计图案.9.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移4次,复制下图案,即可得到左图.解答:解:采用平移的方法,平移4次,复制下图案,即可得到左图.故答案为:A.点评:此题考查了运用平移、对称和旋转设计图案.10.如图是由经过()变换得到了.A.旋转B.平移C.对称考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移5次,复制下图案,即可得到右图.解答:解:采用平移的方法,平移5次,复制下图案,即可得到左图.故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.11.将图形顺时针旋转90°,得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:利用画图工具,逐个分析由原图旋转多少度得到的,如下图所示,即可得解.解答:解:4个选项各是由原图如何旋转得到的:通过画图分析,A符合题意;故选:A.点评:此题考查了运用平移、对称和旋转设计图案.12.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是()A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.解答:解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到;图形3可由一个基本图形三角形经过平移得到;其中没有运用旋转规律得到的图案是C;故选:C.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.二.填空题(共1小题)13.图B是由图A 经过旋转变换得到的图案,图b是由图a经过平移变换得到的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据题意,通过观察图形,(1)可知图形A和图形B中心对称,所以图形B是由图形A顺时针旋转180度得到的.(2)图形a经过平移变换得到图形b,即图形b是由图形a平移得到的.解答:解:(1)图形B是由图形A顺时针旋转180度得到的.(2)图形b是由图形a平移得到的.故答案为:旋转;平移.点评:本题主要考查几何图形的变换,关键在于认真分析图形,找到它们是怎么变换的.三.解答题(共1小题)14.下面图形是经过什么方式变换得来的?填一填.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移的意义,上图是由一个图形经过两次平移得到的;根据图形旋转的意义,左下图是由一个图形绕某点顺时针(或逆时针)旋转5个60°而成的;根据轴对称的意义,右下图是由一个图形经过轴对称得到的.解答:解:上图经过平移得到的;左下图是经过旋转得到的;右下图是经过轴对称得到的.故答案为:点评:本题是考查图形平移的意义、旋转的意义、轴对称的意义.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.B档(提升精练)一.选择题(共15小题)1.(•邗江区模拟)下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是.()A.平行四边形B.长方形C.圆考点:运用平移、对称和旋转设计图案.分析:把平行四边形转化成长方形的方法有三种:第一种是沿着平行四边形的顶点作的高剪开,通过平移拼出长方形;第二种是沿着平行四边形中间任意一高剪开;第三种是沿平行四边形两端的两个顶点作的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形;我们在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形,如果分的分数越多,每一份会越细,拼成的图形就会越接近长方形;长方形的长等于圆周长的一半,即c/2,宽等于圆的半径r,因为长方形的面积=长×宽,所以圆的面积s=c×r÷2 又因为c=2πr 所以s=πr2.解答:解:通过以上分析,平行四边形和圆的面积计算公式都是平移或旋转得到的,只有长方形利用小正方形拼组得到的;故选:B.点评:此题考查了运用平移、对称和旋转设计图案.2.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④D.④和③考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:解答此题的关键是:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3.图是由经过()变换得到的.A.平移B.对称C.平移或对称考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:如图,是经过一个图形平移得到的.解答:解:图是由经过平移变换得到的.故选:A.点评:此题是考查运用平移设计图案.平移就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移不改变图形的形状和大小,只改变位置.4.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.5.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90°得到图CB.A逆时针旋转180°得到图CC.A逆时针旋转90°得到图B,再逆时针旋转90°得到图C考点:运用平移、对称和旋转设计图案.专题:平面图形的认识与计算.分析:把一个图形绕着某一点转动一个角度的图形变换叫做旋转,旋转的要素是旋转方向,旋转中心,旋转角度.据此可对每个选项进行分析.解答:解:A.图A绕点“O”顺时针旋转90°得到图B,得不到图C,故错误.B.图A绕点“O”逆时针旋转180°得到图C.正确.C.图A绕点“O”逆时针旋转90°得到图D,得不到图B,所以错误.故选:B.点评:本题主要考查了学生对旋转知识的掌握情况.6.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A、B.B、C.C、D.D、考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.解答:解::图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C.点评:本题重点是考查的平移、旋转.关键弄清旋转一定度数时笑脸的特征及平移的格数.7.如图,甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,则丙的转向为()A.顺时针B.逆时针C.先顺后逆D.不能确定考点:运用平移、对称和旋转设计图案.分析:通过画图,皮带的转向的一致性,可以判断出每个轮子的转向,由此得解.解答:解:甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,丁是逆时针,则丙的转向为顺时针,乙是顺时针.故选:A.点评:此题考查了运用平移、对称和旋转设计图案.8.钟面上,时针从“8”起逆时针旋转90°后,时针应该指着()A.3B.12 C.5考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”,解答:解:如图,表盘上时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”;故选:C.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.9.下列图案中,()是由图案的一部分经过旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据平移,旋转,轴对称的定义即可作出判断.解答:解:图形A是平移得到的,图形C是平移得到的,只有图形B是旋转得到的;故选:B.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.10.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:根据旋转的概念以及图甲、图乙演示所体现的规律来判断.解答:解:根据旋转的概念和上述规律知:A、旋转120°得到;B、旋转180°得到;C、是轴对称图形,也是中心对称图形,旋转180°得到;D、不能通过旋转得到.故选:D.点评:此题不仅考查了旋转的概念,更考查了同学们的规律探索能力.11.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察国旗上的小五角星可知:国旗上的小五角星绕中心点进行旋转一定的角度,可以互相得到,据此即可解答.解答:解:四个小五角星通过旋转可以得到.故选:C.点评:本题考查旋转与平移的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;关键是要找到旋转中心.12.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:平移前后图形的大小、形状都不改变,由此可以判断由△OBC平移得到的三角形.解答:解:A、△COD方向发生了变化,不属于平移得到;故本选项错误;B、△OAB方向发生了变化,不属于平移得到,故本选项错误;C、△OAF属于平移得到;故本选项正确;D、△OEF方向发生了变化,不属于平移得到;故本选项错误;故选:C.点评:平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.)13.如图是按照一定的规律排列起来的,请按这一规律在“?”处画出适当的图形.(考点:运用平移、对称和旋转设计图案.分析:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,由此得解.解答:解:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,所以第3面旗帜上应是3颗星星,所以“?”处图形应为C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.14.根据下图的变化规律,在空白处填上适当的图形()A.B.C.考点:运用平移、对称和旋转设计图案.分析:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.因此得解.解答:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.所以,“?”处应填C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.认真观察找出规律,是解决此题的关键.15.(•顺德区模拟)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.考点:运用平移、对称和旋转设计图案.分析:找一张纸,裁一个正方形,上折,右折,沿虚线剪开,然后把余下的部分展开,即可得解.解答:解:经过实践,两次折叠后沿虚线剪开,图形展开,即可得解,图形是B的图形;故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.二.填空题(共12小题)16.一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.√.(判断对错)考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移、旋转、轴对称的特征,可以将一个简单的图案,通过这些变化,形成一个较复杂的图形.如,可以将一个图案通过平移形成壁报的花边、将一个梅花瓣通过四次旋转形成一朵梅花、把纸折叠,通过轴对称剪出一个图形的一半,展开后就是一个完整的图案.解答:解:一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.故答案为:√.点评:本题主要是考查平移、旋转、轴对称的意义及特征.利用这些变化可以将一个简的图案变成一个较复杂的图形.17.图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90゜、180゜、270゜,你会得到一个什么样的立体图形?考点:运用平移、对称和旋转设计图案.专题:作图题;图形与变换.分析:根据旋转图形的特征,这个图形绕点O顺时针旋转90°、180°,270°,点0的位置不动,其余各部分均绕点O顺时针旋转90゜、180゜、270゜,得到的是一个星星图案.解答:解:根据分析画图如下:故答案为:点评:本题是考查运用图形旋转设计图案.关键是旋转的角度要准确.18.我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案.考点:运用平移、对称和旋转设计图案.分析:我们学过的图形变换由平移、旋转、轴对称,利用这此基本方法,可以将一个图图形通过这些方法来设计精美的图案.解答:解:我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案;故答案为:平移,旋转,轴对称.点评:本题是回顾小学阶段学习的图形变换方法.19.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案.…√.(判断对错)考点:运用平移、对称和旋转设计图案.分析:规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.解答:解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.点评:此题考查了运用平移、对称和旋转设计图案.20.在方格图中设计一个你喜欢的图案,并写出你设计的图案占整幅图的多少?考点:运用平移、对称和旋转设计图案.专题:作图题.分析:根据旋转图形的特征,在图中画一等腰三角形,绕一底角(点O)顺(或逆)时针旋转90°,再旋转90°,再旋转90°即可得到一个美丽的图案;每个三角形占1格,四个三角形占1×4=4格,图中共有10×5=50格,据此可求出图案占整幅图的多少.解答:解:由分析画图如下:(1×4)÷(10×5)=4÷50=;所设计的图案占整幅图的.。

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。

运用平移、对称和旋转设计图案

运用平移、对称和旋转设计图案

运用平移、对称和旋转设计图案答案例1.艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.考点:运用平移、对称和旋转设计图案.分析:根据运用平移、对称和旋转设计图案专题的内容进行填空.解答:解:艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.故答案为:平移,对称,旋转.点评:此题考查了运用平移、对称和旋转设计图案.例2.如图的图形是如何得到的?考点:运用平移、对称和旋转设计图案.分析:第一个图形的脸是正立的,嘴巴在下,第二个图形是横向的,说明第二个图形是由第一个图形绕下巴顺时针旋转90°得到,第三个图形与第二个图形方向相同,说明第三个图形是由第二个图形向右平移得到的,第四个图形是倒立的,是由第三个图形顺时针旋转90°得到的.解答:解:第一个图形顺时针旋转90°得到第二个图形,第二个图形向右平移得到第三个图形,第三个图形顺时针旋转90°得到第四的图形;点评:本题是考查图形变换,由旋转、平移.旋转、平移后的图形与原图形大小,形状不变,只是位置变了.例3.(1)图中长方形四个顶点的位置是:A(6,8),B(8,8),C(6,5),D(8,5);(2)把长方形向右平移3格,画出平移后的图形,平移后的长方形四个顶点用数对表示分别是A1(9,8),B1(11,8),C1(9,5),D1(11,5)(3)把长方形绕D点顺时针旋转90度,画出旋转后的图形,旋转后的长方形四个顶点用数对表示分别是A2(11,7),B2(11,5),C2(8,7),D2(8,5).考点:运用平移、对称和旋转设计图案.分析:利用画图工具,复制,平移3个格,得到把长方形向右平移3格的长方形A1B1C1D1,把长方形绕D点顺时针旋转90度的图形A2B2C2D2,数一数,就可以填上各个位置的坐标.解答:解:A(6,8)B(8,8)C(6,5)D(8,5);A1(9,8)B1(11,8)C1(9,5)D1(11,5);A2(11,7)B2(11,5)C2(8,7)D2(8,5).点评:此题考查了运用平移、对称和旋转设计图案.例4.用多个三角形设计一个美丽的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:以三角形的一个顶点为中心,顺时针旋转90度、180度、270度即可.解答:解:作图如下:点评: 本题考查的是利用平移、对称及旋转设计图案.演练方阵A 档(巩固专练)一.选择题(共12小题)1.下列图形中( )是利用旋转设计而成的. A .B .C .考点: 运用平移、对称和旋转设计图案.分析: 利用旋转设计而成的图形应有一个旋转点,图形旋转后的形状和大小不变;因此得解. 解答: 解:A 、有一个旋转点,有一个形状和大小不变的图形菱形,因此A 是利用菱形向右绕右顶点旋转90°、180°、270°而形成的;B 、小图形有大小的变化,因此不是利用旋转设计而成的;C 、菱形图形的大小形状虽然不变,但没有一个旋转点,它是菱形平移3次而形成的. 故选:A . 点评: 图形旋转后的大小和形状不变是判断这个图形是否是通过旋转形成的基本方法.2.把正方形的右边剪去一块补到上面(如图),得到的图形是( )A .B .C .D .考点: 运用平移、对称和旋转设计图案. 专题: 图形与变换. 分析: 把正方形的右边剪去一块,正方形缺失是右边,据此排除答案A 和C .又因为剪去的部分是补到上面,答案D 补到了下面,排除D ,所以选B . 解答: 解:把正方形的右边剪去一块补到上面,只有C 符合题意.故选:B.点评:解答此题最好的办法是动手操作一下,即可以解决问题,又锻炼动手操作能力.3.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形的特点结合轴对称图形和中心对称图形的概念解答.解答:解:A、不是对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既有轴对称,又有旋转,符合题意.故选:D.点评:此题考查了旋转的概念以及轴对称图形的概念:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.把一个图形绕某一点旋转一定角度后得到另一个图形,叫做旋转变换.4.如图的图形中,()是由旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.解答:解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.点评:此题考查了利用对称和旋转设计图案.5.如图是由☆经过()变换得到的.A.平移B.旋转C.对称考点:运用平移、对称和旋转设计图案.分析:平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.解答:解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.点评:此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.6.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.7.(2012•河西区模拟)下面()图形旋转会形成圆柱.A.B.C.考点:运用平移、对称和旋转设计图案.分析:一个长方形沿一条直线旋转就会成为一个圆柱.解答:解:选项中只有A是长方形旋转;故选:A.点评:本题是判断平面图形经过旋转后大图形,长方形旋转后是圆柱,半圆旋转后是球体,三角形旋转后是圆椎.8.已知一个半圆,下面()这种方式不能将半圆变成圆.A.平移B.翻折C.旋转考点:运用平移、对称和旋转设计图案.分析:一个半圆,如果以它的直径为轴翻折,会得到一个新的半圆,这个半圆由于是已知半圆翻成的,它的直径与已知半圆相等,这两个半圆是以已知半圆的直径所在的直线为对称轴的轴对称图形,两个半圆正好组成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°,都会得到一个与原半圆直径相等的半圆,这个半圆与原半圆能组成一个圆;一个半圆,平移后得到的半圆虽然与原半圆的直径相等,但平移后的半圆与原半圆的半圆弧总是在一个方向,这两个半圆不能组成一个圆.解答:解:一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°后的图形与已知半圆能变成一个圆;一个已知半圆,平移后得到的半圆,已知半圆方向相同,与已知半圆不能变成一个圆;故选:A点评:本题主要是考查运用平移、轴对称设计图案.9.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移4次,复制下图案,即可得到左图.解答:解:采用平移的方法,平移4次,复制下图案,即可得到左图.故答案为:A.点评:此题考查了运用平移、对称和旋转设计图案.10.如图是由经过()变换得到了.A.旋转B.平移C.对称考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移5次,复制下图案,即可得到右图.解答:解:采用平移的方法,平移5次,复制下图案,即可得到左图.故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.11.将图形顺时针旋转90°,得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:利用画图工具,逐个分析由原图旋转多少度得到的,如下图所示,即可得解.解答: 解:4个选项各是由原图如何旋转得到的:通过画图分析,A 符合题意;故选:A . 点评: 此题考查了运用平移、对称和旋转设计图案. 12.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是( ) A . B .C .考点: 运用平移、对称和旋转设计图案. 专题:图形与变换. 分析: 寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断. 解答: 解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到; 图形3可由一个基本图形三角形经过平移得到; 其中没有运用旋转规律得到的图案是C ; 故选:C . 点评: 本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.二.填空题(共1小题)13.图B 是由图A 经过 旋转 变换得到的图案,图b 是由图a 经过 平移 变换得到的图案.考点: 运用平移、对称和旋转设计图案. 专题: 图形与变换. 分析: 根据题意,通过观察图形,(1)可知图形A 和图形B 中心对称,所以图形B 是由图形A 顺时针旋转180度得到的.(2)图形a 经过平移变换得到图形b ,即图形b 是由图形a 平移得到的. 解答: 解:(1)图形B 是由图形A 顺时针旋转180度得到的.(2)图形b 是由图形a 平移得到的. 故答案为:旋转;平移. 点评: 本题主要考查几何图形的变换,关键在于认真分析图形,找到它们是怎么变换的.三.解答题(共1小题)14.下面图形是经过什么方式变换得来的?填一填.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移的意义,上图是由一个图形经过两次平移得到的;根据图形旋转的意义,左下图是由一个图形绕某点顺时针(或逆时针)旋转5个60°而成的;根据轴对称的意义,右下图是由一个图形经过轴对称得到的.解答:解:上图经过平移得到的;左下图是经过旋转得到的;右下图是经过轴对称得到的.故答案为:点评:本题是考查图形平移的意义、旋转的意义、轴对称的意义.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.B档(提升精练)一.选择题(共15小题)1.(2009•邗江区模拟)下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是.()A.平行四边形B.长方形C.圆考点:运用平移、对称和旋转设计图案.分析:把平行四边形转化成长方形的方法有三种:第一种是沿着平行四边形的顶点作的高剪开,通过平移拼出长方形;第二种是沿着平行四边形中间任意一高剪开;第三种是沿平行四边形两端的两个顶点作的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形;我们在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形,如果分的分数越多,每一份会越细,拼成的图形就会越接近长方形;长方形的长等于圆周长的一半,即c/2,宽等于圆的半径r,因为长方形的面积=长×宽,所以圆的面积s=c×r÷2 又因为c=2πr 所以s=πr2.解答:解:通过以上分析,平行四边形和圆的面积计算公式都是平移或旋转得到的,只有长方形利用小正方形拼组得到的;故选:B.点评:此题考查了运用平移、对称和旋转设计图案.2.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④D.④和③考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:解答此题的关键是:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3.图是由经过()变换得到的.A.平移B.对称C.平移或对称考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:如图,是经过一个图形平移得到的.解答:解:图是由经过平移变换得到的.故选:A.点评:此题是考查运用平移设计图案.平移就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移不改变图形的形状和大小,只改变位置.4.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N ,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.5.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90°得到图CB.A逆时针旋转180°得到图CC.A逆时针旋转90°得到图B,再逆时针旋转90°得到图C考点:运用平移、对称和旋转设计图案.专题:平面图形的认识与计算.分析:把一个图形绕着某一点转动一个角度的图形变换叫做旋转,旋转的要素是旋转方向,旋转中心,旋转角度.据此可对每个选项进行分析.解答:解:A.图A绕点“O”顺时针旋转90°得到图B,得不到图C,故错误.B.图A绕点“O”逆时针旋转180°得到图C.正确.C.图A绕点“O”逆时针旋转90°得到图D,得不到图B,所以错误.故选:B.点评:本题主要考查了学生对旋转知识的掌握情况.6.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A、B.B、C.C、D.D、考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.解答:解::图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C.点评:本题重点是考查的平移、旋转.关键弄清旋转一定度数时笑脸的特征及平移的格数.7.如图,甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,则丙的转向为()A.顺时针B.逆时针C.先顺后逆D.不能确定考点:运用平移、对称和旋转设计图案.分析:通过画图,皮带的转向的一致性,可以判断出每个轮子的转向,由此得解.解答:解:甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,丁是逆时针,则丙的转向为顺时针,乙是顺时针.故选:A.点评:此题考查了运用平移、对称和旋转设计图案.8.钟面上,时针从“8”起逆时针旋转90°后,时针应该指着()A.3B.12 C.5考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”,解答:解:如图,表盘上时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”;故选:C.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.9.下列图案中,()是由图案的一部分经过旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据平移,旋转,轴对称的定义即可作出判断.解答:解:图形A是平移得到的,图形C是平移得到的,只有图形B是旋转得到的;故选:B.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.10.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC 绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:根据旋转的概念以及图甲、图乙演示所体现的规律来判断.解答:解:根据旋转的概念和上述规律知:A、旋转120°得到;B、旋转180°得到;C、是轴对称图形,也是中心对称图形,旋转180°得到;D、不能通过旋转得到.故选:D.点评:此题不仅考查了旋转的概念,更考查了同学们的规律探索能力.11.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察国旗上的小五角星可知:国旗上的小五角星绕中心点进行旋转一定的角度,可以互相得到,据此即可解答.解答:解:四个小五角星通过旋转可以得到.故选:C.点评:本题考查旋转与平移的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;关键是要找到旋转中心.12.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:平移前后图形的大小、形状都不改变,由此可以判断由△OBC平移得到的三角形.解答:解:A、△COD方向发生了变化,不属于平移得到;故本选项错误;B、△OAB方向发生了变化,不属于平移得到,故本选项错误;C、△OAF属于平移得到;故本选项正确;D、△OEF方向发生了变化,不属于平移得到;故本选项错误;故选:C.点评:平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.如图是按照一定的规律排列起来的,请按这一规律在“?”处画出适当的图形.()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,由此得解.解答:解:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,所以第3面旗帜上应是3颗星星,所以“?”处图形应为C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.14.根据下图的变化规律,在空白处填上适当的图形()A.B.C.考点:运用平移、对称和旋转设计图案.分析:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.因此得解.解答:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.所以,“?”处应填C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.认真观察找出规律,是解决此题的关键.15.(2014•顺德区模拟)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.考点:运用平移、对称和旋转设计图案.分析:找一张纸,裁一个正方形,上折,右折,沿虚线剪开,然后把余下的部分展开,即可得解.解答:解:经过实践,两次折叠后沿虚线剪开,图形展开,即可得解,图形是B的图形;故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.二.填空题(共12小题)16.一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.√.(判断对错)考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移、旋转、轴对称的特征,可以将一个简单的图案,通过这些变化,形成一个较复杂的图形.如,可以将一个图案通过平移形成壁报的花边、将一个梅花瓣通过四次旋转形成一朵梅花、把纸折叠,通过轴对称剪出一个图形的一半,展开后就是一个完整的图案.解答:解:一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.故答案为:√.点评:本题主要是考查平移、旋转、轴对称的意义及特征.利用这些变化可以将一个简的图案变成一个较复杂的图形.17.图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90゜、180゜、270゜,你会得到一个什么样的立体图形?考点:运用平移、对称和旋转设计图案.专题:作图题;图形与变换.分析:根据旋转图形的特征,这个图形绕点O顺时针旋转90°、180°,270°,点0的位置不动,其余各部分均绕点O顺时针旋转90゜、180゜、270゜,得到的是一个星星图案.解答:解:根据分析画图如下:故答案为:点评:本题是考查运用图形旋转设计图案.关键是旋转的角度要准确.18.我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案.考点:运用平移、对称和旋转设计图案.分析:我们学过的图形变换由平移、旋转、轴对称,利用这此基本方法,可以将一个图图形通过这些方法来设计精美的图案.解答:解:我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案;故答案为:平移,旋转,轴对称.点评:本题是回顾小学阶段学习的图形变换方法.19.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案.…√.(判断对错)考点:运用平移、对称和旋转设计图案.分析:规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.解答:解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.点评:此题考查了运用平移、对称和旋转设计图案.20.在方格图中设计一个你喜欢的图案,并写出你设计的图案占整幅图的多少?考点:运用平移、对称和旋转设计图案.专题:作图题.分析:根据旋转图形的特征,在图中画一等腰三角形,绕一底角(点O)顺(或逆)时针旋转90°,再旋转90°,再旋转90°即可得到一个美丽的图案;每个三角形占1格,四个三角形占1×4=4格,图中共有10×5=50格,据此可求出图案占整幅图的多少.解答:解:由分析画图如下:(1×4)÷(10×5)=4÷50=;。

图形的平移,对称与旋转的技巧及练习题附答案

图形的平移,对称与旋转的技巧及练习题附答案
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用平移、旋转和轴对称研究几何问题学习旋转要解决的问题:分三个层次①直接的旋转作图或者旋转关系的叙述;②增加干扰线段,隐含部分已知,主动发现旋转关系,并证明某些结论③需要添加辅助线,完善图形创造情境,进行证明。

要重视的问题:共顶点的等腰三角形的出现是实现旋转的情境;(辅助线添加方向)一、平移、旋转和轴对称在几何题中的应用1.已知:△ABC 与△ADE 都是等腰直角三角形.求证:BD ⊥EC.2.如图,已知△ABC ≌△ADE ,∠B =45°,∠C =20°,∠EAB =30°,则∠D = °,若AC 、DE 交于点F ,则∠EFC = °.3.如图,△ABC 中,∠BAC =120º,以BC 为边向形外作等边△BCD ,把△ABD 绕着点D 按顺时针方向旋转60º后到△ECD 的位置.若AB =3,AC =2,求∠BAD 的度数和AD 的长.4.已知:如图,A 、B 、C 在同一直线上,且ABE ∆与BCD ∆都是等边三角形,求证:CE AD =.拓展 如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN 、MC 交于点E ,BM 、CN 交于点F .(1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90º,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).5.如图,已知正方形ABCD 和BC 边上一点E ,将直角三角形ABE 绕点B 逆时针旋转90o ,再沿BC 方向平移,平移距离是线段BC 的长度,请画出图形.并回答:旋转后三角形的斜边与AE 有什么关系?为什么? 二、常见的利用平移、旋转和轴对称变换作的辅助线几何问题中的辅助线是对同学们几何思维能力的考验,通过分析找到辅助线的添加方法,能够使几何问题简化,有助于问题的解决.同时,通过研究平面几何的辅助线的添加方法,能够锻炼同学们分类研究问题的能力.平面几何的辅助线有一定的规律,而这些规律大多与几何图形的三种变换有关,下面我们就来研究常见辅助线与几何图形变换的关系.1.(三角形的倍长中线)已知:在△ABC 中,AB=AC ,CD 是中线,延长AB 到E ,使BE=AB ,连结CE.求证:CD=21CE.拓展1 如图1,已知△ABC 中,AD 是△ABC 的中线,AB=8,AC=6,求AD 的取值围.提示:延长AD 至A ',使A 'D =AD ,连结BA '.根据“SAS”易证△A'BD≌△ACD,得AC =A 'B .这样将AC 转移到△A'BA 中,根据三角形三边关系定理可解.拓展2 如图2,已知△ABC 中,AB =AC ,D 在AB 上,E 是AC 延长线上一点,且BD =CE ,DE 与BC 交于点F .求证:DF=EF .提示:此题辅助线作法较多,如: ①作DG∥AE 交BC 于G ;②作EH∥BA 交BC 的延长线于H ;再通过证三角形全等得DF =EF . 2.(三角形的翻折角平分线)已知:在ABC ∆中,C B ∠=∠2,AD 是BAC ∠的平分线. 求证:AC BD AB =+.拓展1 如图,已知:在ABC ∆中,AC AB >,AD 是BAC ∠的平分线,P 是AD 上任意一点. 求证:PC PB AC AB ->-.拓展2 已知:ΔABC 中,∠A=90,AD 是BC 边上的高,BE 是角平分线,且交AD 于P.求证:AE=AP.3.(梯形的线段倍长)已知:梯形ABCD 中,AD//BC ,E 是DC 的中点,AE 平分∠BAD .求证:AB=AD+BC .拓展1 如图,已知:在梯形ABCD 中,AB//CD ,∠ADC=90º,F 为BC 的中点,∠AFC=3∠BAF.求证:CD=CF.拓展2 已知:直角梯形ABCD 中,AB//DC ,AB ⊥AD ,F 为BC 的中点,CF=DC .求证:∠AFC=3∠BAF .拓展3 已知:如图5,在梯形ABCD 中,M BC AD ,//、N 分别是BD 、AC 的中点。

求证:)(21,//AD BC MN BC MN -=。

4.(正方形中的三角形旋转)已知:如图E 是正方形ABCD 边BC 上任意一点,AF 平分角EAD 交CD 于F ,试说明BE+DF=AE.拓展1如图,已知:在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,若有EF DF BE =+. 求:EAF ∠的度数.拓展2如图,已知:在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,若有︒∠45=EAF . 求证:EF DF BE =+.拓展3如图,正方形ABCD 边长为1,AB 、AD 上各有一点P 、Q ,若△APQ 的周长为2.求∠PCQ 的大小.拓展4如图,在正方形ABCD 中,E 、F 分别为BC 、DC 上的点,且∠EAF=45º,AH ⊥EF .求证:AH=AB .拓展5如图,正方形ABCD 被两条与边平行的线段EF 、GH 分割成4个小矩形,P 是EF 与GH 的交点,若矩形PFCH 的面积恰是矩形AGPE 面积的2倍.试确定∠HAF 的大小,写出推导的过程.5.(三角形的辅助线旋转)已知,如图在△ABC 中,AB=AC ,∠BAC=90°,∠DAE=45°,BD=2,CE=3 .求证:DE 的长.拓展1 如图,在等腰三角形ABC 中,P 是三角形的一点,且∠APB=∠APC .求证PB=PC .拓展2 △ABC 中,AB=AC ,D 是三角形一点,若∠ADB >∠ADC .求证∠DBC >∠DCB .分析 将△ABC 以A 为中心逆时针旋转一角度∠BAC ,到△ACE 的位置.连DE ,由∠ADB >∠ADC , 得 ∠AEC >∠ADC .又 ∠ADE=∠AED ,相减,得 ∠DEC >∠EDC . ∴ CD >CE .即 CD >BD ,从而∠DBC >∠DCB .拓展3 若P 为正方形ABCD 一点,PA ∶PB ∶PC=1∶2∶3.试证∠APB=135°.分析 利用正方形的特点设法经过旋转使AP 、PB 、PC 相对集中,为简单起见不妨设PA=1, PB=2,PC=3.绕B 点顺时针旋转90º,使△CBP 到△ABE 的位置,这时BE=2,AE=3,∠PBE=90º→PE=22,∠BPE=45º。

又222981AE PE AP ==+=+∴ ∠APE=90°. 于是 ∠APB=135°.拓展4 在等边三角形有一点P .连接P 与各顶点的三条线段的长为3、4、5.求正三角形的边长.(答案:31325+)分析 将△CPB 旋转到△AP`B ,连接PP`,延长BP ,过A 作AD ⊥BD.易知△APP`是直角三角形,因为∠BPP`=60º,所以∠APD=30º,则AD=2,DP=32.6.(轴对称变换(翻折问题))(1)如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C`处,BC`交AD 于E ,AD=8,AB=4.求△BED 的面积.(2)如图,将边长为12厘米的正方形ABCD 折叠,使得点A 落在边CD 上的E 点,然后压平得折痕FG .若FG 的长为13厘米.求线段CE 的长.GFED CBA(3)如图,点M 、N 为矩形ABCD 一组对边的中点,将矩形的一角向折叠,使点B 落在直线MN 上,得到落点B`和折痕AE ,延长EB`交AD 于F.判断△AEF 是什么三角形,并说明理由.(4)把一正方形纸片ABCD 从中间对折后仍然摊平,得折痕为EF ,如图(1)所示.接着,使点C 不动,把B 点处的纸向右上方折起来使B 点落在EF 上,得落点为B`,折痕为GC ,如图(2)所示.连AB`,问图中∠GAB`是多少度?求∠GAB'相当于求∠AB'E 显然三角形CGB 和三角形CGB'是全等的,因为是对折得到的, 所以CB'=CB=1/2CF又因为EF 垂直于BC ,所以∠FB'C=30° 假设正方形边长为1,算出B'F=(根号3)/2 所以B'E=1-(根号3)/2所以tan ∠AB'E=AE/B'E=(1/2)÷(1-(根号3)/2)=2+根号3 所以∠AB'E=75°=∠GAB'7.(梯形的平移辅助线)(1) 已知:如图2,在梯形ABCD 中,DC BC AD A CD AB ==︒=∠,60,//.求证:CD AB 2=.(2)已知:如图3,在梯形ABCD 中,BD AC CD AB =,//.求证:梯形ABCD 是等腰梯形.(3)已知:如图7,在梯形ABCD 中,M B A CD AB ,90,//︒=∠+∠、N 分别是DC 、AB 的中点.求证:)(21CD AB MN -=.几何综合1.如图1,在□ABCD 中,AE ⊥BC 于E ,E 恰为BC 的中点,2tan =B . (1)求证:AD =AE ;(2)如图2,点P 在BE 上,作EF ⊥DP 于点F ,连结AF . 求证:AF EF DF 2=-;(3)请你在图3中画图探究:当P 为射线E C 上任意一点(P 不与点E 重合)时,作EF ⊥DP 于点F ,连结AF ,线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.E B C A D E BC ADE C B A DF PF E Q PNMD CB A 21H GQ P N M D C B A2.如图,在平面直角坐标系xOy 中,一次函数333+=x y 的图象与x 轴交于点A ,与y 轴交于点B ,点C 的坐标为(3,0),连结BC .(1)求证:△ABC 是等边三角形;(2)点P 在线段BC 的延长线上,连结AP ,作AP 的垂直平分线,垂足为点D ,并与y 轴交于点D ,分别连结EA 、EP .①若CP =6,直接写出∠AEP 的度数; ②若点P 在线段BC 的延长线上运动(P 不与点C 重合),∠AEP 的度数是否变化?若变化,请说明理由;若不变,求出∠ADP 的度数;(3)在(2)的条件下,若点P 从C 点出发在BC 的延长线上匀速运动,速度为每秒1个单位长度. EC 与AP 于点F ,设△AEF 的面积为S 1,△CFP 的面积为S 2,y =S 1-S 2,运动时间为t (t >0)秒时,求y 关于t 的函数关系式.3.已知:如图1,点P 在线段AB 上(AP >PB ),C 、D 、E 分别是AP 、PB 、AB 的中点,正方形CPFG 和正方形PDHK 在直线AB 同侧. (1)求证:△EHG 是等腰直角三角形;(2)若将图1中的射线PB 连同正方形PDHK 绕点P 顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG 还是等腰直角三角形吗?请说明理由.4.如图,正方形ABCD 的对角线AC 与BD 相交于点M ,正方形MNPQ 与正方形ABCD 全等,射线MN 与MQ 不过A 、B 、C 、D 四点且分别交ABCD 的边于E 、F 两点. (1)求证:ME=MF ;(2)若将原题中的正方形改为矩形,且24BC AB ==,其他条件不变,探索线段ME 与线段MF 的数量关系.yO A B C 1 1 xFGHD'C B EF GH D'C DB E 5. 如图10-1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: (1)①请直接写出图10-1中线段BG 、线段DE 的数量关系及所在直线的位置关系; ②将图10-1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图10-2、如图10-3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图10-2证明你的判断.(2)将原题中正方形改为矩形(如图10-4~10-6),且kb CG ka CE b BC a AB ====,,, )0,( k b a ≠ ,试判断(1)①中得到的结论哪个成立,哪个不成立?并写出你的判断,不必证明.(3)在图10-5中,连结DG 、BE ,且21,2,4===k b a ,则22BE DG += . 1.如图,在边长为8的正方形ABCD 中,E 是BC 边上任意一点,把正方形沿着GH 折叠,使A 与E 重合,D 与D ’重合,ED ’与边CD 交于点F 。

相关文档
最新文档