第27章《相似》单元检测试卷(含答案)
人教版九年级数学下册《第27章相似》单元检测试卷【有答案】
人教版九年级数学下册《第27章相似》单元检测试卷【有答案】教版九年级数学下册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知x:y=2:5,下列等式中正确的是()A.(x+y):y=2:5B.(x+y):y=5:2C.(x+y):y=3:5D.(x+y):y=7:52.如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.23.如图,点D在BC上,∠ADC=∠BAC,下列结论中,正确的是()A.△ABC∽△DACB.△ABC∽△ADCC.△ABC∽△DABD.△ABD∽△ACD4.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC⋅BAC.AC2=AB⋅BCD.AC=2BC5.若三角形的每条边长都扩大为原来的5倍,则下列说法正确的是()A.每个角都扩大5倍B.周长扩大5倍C.面积扩大5倍D.无法确定6.如图,在△ABC中,DE // BC,下列比例式成立的是()A.AD DB =DEBCB.DEBC=ACECC.AD DB =AEECD.DBAD=AEEC7.下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①②B.②③C.③④D.②④8.下列命题错误的是()A.两个全等的三角形一定相似B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等9.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍10.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在梯形ABCD中,AB // DC,AB=18cm,DC=8cm,E,F分别是腰AD,BC上的点,且EF // AB,若梯形DEFC∽梯形EABF,那么EF=________cm.12.若△ABC∽△DEF,△ABC与△DEF的周长比为1:2,则△ABC与△DEF的面积比为________.13.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.14.如图,△AOB∽△DOC,且AO=3,OB=4,OD=6,则BC=________.AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于________.15.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=2316.如图,在△ABC中,DE // BC,AE:EC=3:5,则S△ADE:S△ABC=________.17.如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP⋅AB;④AB⋅CP=AP⋅CB,能满足△APC与△ACB 相似的条件是________(只填序号).18.如图,梯形ABCD中,AB // CD,∠B=∠C=90∘,点F在BC边上,AB=8,CD=2,BC=10,若△ABF与△FCD相似,则CF的长为________.19.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交A8于点F,AF=x(0.2≤x≤0.8),EC=y.则大致能反映y与x之闻函数关系的是________.20.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.22.如图,AB⊥MN,CD⊥MN,垂足分别为点B,D,AB=2,CD=4,BD=3,在直线MN上是否存在点P,能使△PAB与△PCD相似?如果存在,满足上述条件的点P有几个?说明点P与点B,D的距离,并作出图形.23.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.24.已知:线段a、b、c,且a2=b3=c4.(1)求a+bb 的值.(2)如线段a、b、c满足a+b+c=27.求a、b、c的值.25.已知△ABC∽△DEF,DEAB =23,△ABC的周长是12cm,面积是30cm2.(1)求△DEF的周长;(2)求△DEF的面积.26.如图,已知△ABC,AB=AC=1,∠A=36∘,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cosA的值(结果保留根号).答案1.D2.D3.A4.C5.B6.C7.D8.B9.D10.A11.1212.1:413.2√3cm14.1215.10或6.416.96417.①,②,③18.2或819.y=1x20.4.221.解:如图所示:△A′B′C′和△DEF即为所求.22.解:存在点P,能使△PAB与△PCD相似,满足上述条件的点P有4个.设PB=x,若点P在点B的左侧,如图1,∵∠PBA=∠PCD=90∘,∴当ABCD =PBPD时,△PBA∽△PDC,即24=xx+3,解得x=3,此时PD=6;当ABPD =PBCD时,△PBA∽△CDP,即2x+3=x4,解得x1=−3+√412,x2=−3−√412(舍去),此时PD=3+√412;若点P在线段BD上,如图2,∵∠PBA=∠PCD=90∘,∴当ABCD =PBPD时,△PBA∽△PDC,即24=x3−x,解得x=1,此时PD=2;当ABPD =PBCD时,△PBA∽△CDP,即23−x=x4,无解;若点P在D点右侧,如图3,∵∠PBA=∠PCD=90∘,∴当ABCD =PBPD时,△PBA∽△PDC,即24=xx−3,解得x=−3,舍去;当AB PD =PB CD 时,△PBA ∽△CDP ,即2x−3=x4,解得x 1=3+√412,x 2=3−√412(舍去),此时PD =−3+√413;综上所述,满足上述条件的点P 有4个,当PB =3时,PD =6;当PB =−3+√412时PD =3+√412;当PB =1时,PD =2;当PB =3+√412,PD =−3+√413.23.解:过点B 、B ′分别作BD ⊥x 轴于D ,B ′E ⊥x 轴于E , ∴∠BDC =∠B ′EC =90∘.∵△ABC 的位似图形是△A ′B ′C , ∴点B 、C 、B ′在一条直线上, ∴∠BCD =∠B ′CE , ∴△BCD ∽△B ′CE . ∴CD CE =BC B′C , 又∵BCB′C =12,∴CDCE =12,又∵点B ′的横坐标是2,点C 的坐标是(−1, 0), ∴CE =3,∴CD =32. ∴OD =52,∴点B 的横坐标为−52.24.解:(1)∵a 2=b3, ∴ab =23,∴a+bb =53,(2)设a 2=b 3=c4=k , 则a =2k ,b =3k ,c =4k , ∵a +b +c =27, ∴2k +3k +4k =27, ∴k =3,∴a =6,b =9,c =12.25.解:(1)∵DE AB =23,∴△DEF 的周长=12×23=8(cm);(2)∵DE AB =23, ∴△DEF 的面积=30×(23)2=1313(cm 2). 26.解:(1)∵AB =AC ,∠A =36∘,∴∠C =∠ABC =12(180∘−∠A)=72∘, ∵BD 平分∠ABC ,∴∠ABD=∠CBD=36∘=∠A,∴AD=BD,∵∠C=72∘,∠CBD=36∘,∴由三角形内角和定理得:∠BDC=72∘=∠C,∴BD=BC=AD,∵∠C=∠C,∠CBD=∠A,∴△ABC∽△BDC,∴BC CD =ACBC,∴BC2=AC×CD,∵AD=BD=BC,∴AD2=AC×CD=AC×(AC−AD),解关于AD的方程得:AD=√5−12AC=√5−12,即AD=√5−12;(2)如图,过点D作DE⊥AB于点E.由(1)知,AD=BD,则AE=12AB=12,∴cosA=AEAD,即12√5−12=√5+14,∴cosA的值是√5+14.。
第二十七章 相似单元测试卷(含答案)
人教版数学九年级下册第二十七章《相似》测试卷[时间:100分钟 满分:120分]一、选择题(每小题3分,共30分) 1. 下列说法正确的是( ) A. 所有的矩形都是相似形B. 有一个角等于100°的两个等腰三角形相似C. 对应角相等的两个多边形相似D. 对应边成比例的两个多边形相似2. 下列四条线段中,不是成比例线段的为( )A. a =3,b =6,c =2,d =4B. a =4,b =6,c =5,d =10C. a =1,b =2,c =6,d = 3D. a =2,b =5,c =15,d =2 3 3. 如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是( )A. 3B. 4C. 5D. 6第3题 第4题4. 如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是( ) A. 点A B. 点B C. 点C D. 点D5. 如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A. (2,2),(3,2)B. (2,4),(3,1)C. (2,2),(3,1)D. (3,1),(2,2)第5题第6题6. 如图,已知△ABC∽△DEF,AB∶DE=1∶2,则下列等式一定成立的是()A. BCDF=12B.AD的度数的度数=12C. ABCDEF的面积的面积=12错误!未找到引用源。
D.ABCDEF的周长的周长=127. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A. (6,0)B. (6,3)C. (6,5)D. (4,2)第7题第8题8. 如图,CD是☉O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A. AE>BEB. AD=BCC. ∠D=12∠AEC D. △ADE∽△CBE9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2 :3,连接AE,BE,BD,且AE,BD交于点F,则S△DEF:S△EBF:S△ABF的值是()A. 2 :5 :25B. 4 :9 :25C. 2 :3 :5D. 4 :10 :25第9题第10题10. 如图,△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM·AC;④若BP=PC,则PQ⊥AC.A. 只有①②B. 只有①③C. 只有①②③D. ①②③④二、填空题(每小题3分,共24分)11. 在比例尺为1∶40000的地图上,某条道路的长为7 cm,则该道路的实际长度是km.12. 如图,∠DAE=∠BAC=90°,请补充一个条件:________________,使Rt△ABC∽Rt△ADE.第12题第13题13. 如图,在ABCD中,E在DC上,若DE :EC=1 :2,则BF :BE=________.14. △OAB三个顶点的坐标分别为O(0,0),A(4,6),B(3,0),以O为位似中心,将△OAB缩小为原来的12,得到△OA′B′,则点A的对应点A′的坐标为.15. 如图,点D,E分别在AB,AC上,且∠ABC=∠AED.若DE=4,AE=5,BC=8,则AB的长为.第15题第16题16. 如图,一条4 m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为m2.17. 如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶3,点A 的坐标为(0,1),则点E的坐标是________.第17题第18题18.如图,A,B,C,D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A,D,E三点,且∠AOD=120°,设AB=x,CD=y,则y与x的函数关系式为________.三、解答题(共66分)19. (8分)如图,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.(1)求∠ACB的度数;(2)求CD的长.20.(8分)如图,在△ABC中,AB=AC=8,BC=6,点D为BC上一点,BD=2.过点D作射线DE交AC于点E,使∠ADE=∠B.求线段EC的长度.21. (8分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.22.(10分)如图,明珠大厦的顶部建有一直径为16 m的“明珠”,它的西面45 m处有一高16 m 的小型建筑CD,人站在CD的西面附近无法看到“明珠”的外貌,如果向西走到点F处,可以开始看到“明珠”的顶端B;若想看到“明珠”的全貌,必须往西至少再走12 m.求大厦主体建筑的高度AE(不含顶部的“明珠”部分的高度).23. (10分)(1)如图(1),△ABC内接于☉O,且AB=AC,☉O的弦AE交BC于D.求证:AB·AC=AD·AE;(2)在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,如图(2),上述结论是否还成立?若成立,请给予证明.若不成立,请说明理由.24.(10分)如图,AB,AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O 于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF,求证:AB⊥DE;(2)点D在劣弧AC的什么位置时,才能使AD2=DE·DF,为什么?25. (12分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2.如图2,若∠PBM=∠ACP,AB=3,求BP的长.。
第27章 相似单元测试卷(含答案)
第27章相似单元检测卷一、选择题.(每小题3分,共30分)1.下列四组线段中,不是成比例线段的为()A.a=3,b=6,c=2,d=4B.a=4,b=6,c=5,d=10C.a=1,b=2,c=6,d=3D.a=2,b=5,c=15,d=232.下列命题正确的是()A.所有的等腰三角形都相似B.所有的菱形都相似C.所有的正方形都相似D.有一个角是30°的两个等腰三角形相似3.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.12=DE BC B. =AD AEAB ACC.△ADE∽△ABCD.S△ADE∶S△ABC=1∶2第3题图第5题图第6题图4.如果两个相似三角形的面积比是1∶4,那么它们的周长比是()A.1∶16B.1∶4C.1∶6D.1∶25.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()6.(2016·安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.42C.6D.437.如图,在下列由位似变换得到的图形中,其相似比为2的是(点A是原图形上的点)()A.OA=OA′B.OA=AA′C.OA=12AA′D.OA′=2AA′8.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,下列结论:①△ABE∽△AEF;②AE⊥EF;③△ADF∽△ECF,其中正确的个数为()A.0个B.1个C.2个D.3个第8题图第9题图第10题图9.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.110.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E、F,则BFEF的值是()A. 2-1B.2+ 2C. 2+1D. 2二、填空题.(每小题3分,共24分)11.若△ABC∽△A′B′C′,AB=16cm,A′B′=4cm,AD平分∠BAC,A′D′平分∠B′A′C′,A′D′=3cm,则AD= cm.12.若△ABC的三边之比为2∶5∶6,与其相似的另一个△A′B′C′的最大边长为15cm,那么△A′B′C′的最小边长为.13.已知E(-3,3),F(-1,-1),以坐标原点O为位似中心,按相似比为2∶1把△EFO放大,则点E的对应点E′的坐标为.14.如图所示,等腰梯形ABCD中,AD∥BC,且AD=12BC,E为AD上一点,AC与BE交于点F,若AE∶DE=2∶1,则AEFCBFSSVV= .第14题图第15题图第16题图第17题图第18题图15.如图,路灯距离地面8m,身高1.6m的小明站在距离灯的底部(点O)16m的点A 处,则小明的影子AM长m.16.(2016·湖南娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)17.(2016·四川成都)如图,△ABC内接于⊙O,AH⊥BC于点H.若AC=24,AH=18,⊙O的半径OC=13,则AB= .18.如图,在△ABC中,∠B=90°,AB=6,BC=8,沿DE将△ABC折叠,使点C落在AB边上的C ′处,并且C ′D ∥BC ,则CD 的长是 .三、解答题.(共66分)19.(8分)(2016·广西南宁改编)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并求出111222A B C A B C S S V V 的值.20.(8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .求证:(1)△ACB ∽△DCE ;(2)EF ⊥AB .21.(8分)(2016·浙江杭州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且=AD DE AC CG . (1)求证:△ADF ∽△ACG ;(2)若12=AD AC ,求AF FG的值.22.(8分)如图,在△ABC 中,CD ⊥AB 于D ,BE ⊥AC 于E ,连接DE .求证:∠AED =∠ABC .23.(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD ,BC =20cm,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm.为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及厚度等忽略不计)24.(12分)如图,在直角坐标系xOy中,直线y=12x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作矩形ABCD,使得AD=5.过点D作DH⊥OA,垂足为H.(1)求证:△ADH∽△BAO;(2)求点D的坐标.25.(12分)(2016·湖北襄阳)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.。
人教版数学九年级下《第27章相似》单元检测题含答案
ABCPD(第6题图)(第3题图)(第4题图)A BCDEF(第7题图)九年级数学单元检测题(第27章)一、选择题1.已知△ABC ∽△A ′B ′C ′,且BC ∶B ′C ′= AC ∶A ′C ′,若AC =3,A ′C ′=1.8,则△ABC与△A ′B ′C ′的相似比是( ).A .2∶3B .3∶2C .5∶3D .3∶5 2. 下列说法正确的是( ).A .所有的矩形都是相似形B .所有的正方形都是相似形C .对应角相等的两个多边形相似D .对应边成比例的两个多边形相似 3. 若两个相似三角形的面积之比为1:4,则它们的周长之比为( ).A . 1:2B . 1:4C . 1:5D . 1:16 4. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( ). A .12m B .10m C .8m D .7m5.如图,已知△ABC 与△ADE 中,则∠C =∠E , ∠DAB =∠C A E,则下列各式①∠D =∠B , ② AF AC = AD AB , ③DEBC=AE AC ,④ AD AE = ABAC中,成立的个数是( ). A .1个 B .2个 C .3个 D .4个 6.如图, AB ∥CD ,AD 与BC 相交于点P ,AB =4, CD =7,AD =10,则AP 的长等于 ( ). A .7011 B .407 C .704D .40117.如图,若∠1=∠2=∠3,则图中相似的三角形有( ).A .1对B .2对C .3对D .4对 8.如图,∠ABD =∠BDC =90°,∠A =∠CBD ,AB =3,BD =2,(第7题图)(第13题图)ACBD E (第11题图) DCB A(第12题图) 则CD 的长为( ) A .43 B . 34C .2D .3 二、填空题9.若///C B A ABC ∆∆∽,且∠A =45°,∠B =30°,则∠C ′=_________ .10.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2:3,则△ABC 与△DEF 对应边上的中线的比为________. 10.在一张比例尺为1∶20的图纸上,某矩形零件的面积为12cm 2;则这个零件的实际面积为 cm 2.11.如图,在Rt △ABC 中,∠B =90°,点D 是AB 边上的一定点,点E 是AC 上的一个动点,若再增加一个条件就能使△ADE 与△ABC 相似,则这个条件可以是___________.12.如图,BC 平分∠ABD ,AB =12,BD =15,如果∠ACB =∠D ,那么BC 边的长为 . 13.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.三、解答题(本大题共5小题,共44分)15. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 为角平分线,DE⊥AB,垂足为E .写出图中一对相似比不为1的相似三角形并加以证明.16.已知△ABC ∽△ADE ,AB =30cm ,AD =18cm ,BC =20cm ,∠BAC =75°,∠ABC =40°.(1)求∠ADE 和∠AED 的度数; (2)求DE 的长.D ECA18.如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点. (1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.19.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =6,AF =4,求AE 的长.九年级数学单元检测题答案(第27章)一、选择题(本大题共8小题.每小题4分,共32分)1.C2.B3.A4. A5.C6.D7.D8.B二、填空题(本大题共6小题.每小题4分,共24分)•9.105 ° 10.2:3 11. 4800 12.DE AC⊥13.14. 22.5三、解答题(本大题共5小题,共44分)15. (6分)解:△ABC∽△BCD;证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵BD为角平分线,∴∠DBC=12∠ABC=36°=∠A.又∵∠C=∠C,∴△ABC∽△BCD.16. (8分)解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣40°=65°,∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC∽△ADE,∴AB:AD=BC:DE,即30:18=20:DE,解得DE=12cm.(2)解:∵△ACD∽△CBD,∴∠A=∠BCD.在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°.∴∠BCD+∠ACD=90°,即∠ACB=90°.18. (10分)(1)△A1B1C1如图所示,其中A1的坐标为:(0,1);(2)符合条件△A2B2C2有两个,如图所示.19. (12分) (1)证明:∵□ABCD ,∴AB ∥CD ,AD ∥BC , ∴∠C +∠B =180°,∠ADF =∠DEC . ∵∠AFD +∠AFE =180°,∠AFE =∠B , ∴∠AFD =∠C . ∴△ADF ∽△DEC .(2)解:∵□ABCD ,∴CD =AB =8. 由(1)知△ADF ∽△DEC ,∴DE AD =CD AF ,∴DE =AFCDAD ∙==12.在Rt △ADE 中,由勾股定理得:AE =22AD DE -=22)36(12-=6.。
人教版九年级数学下册《第27章相似》单元测试题【含答案】
人教版九年级数学下册《第27章相似》单元测试题【含答案】学校:___________姓名:___________班级:___________考号:___________第Ⅰ卷(选择题)评卷人得分一.选择题(每小题3分,共10小题)1.已知a=2b,则下列选项错误的是()A.a+c=c+2b B.a﹣m=2b﹣m C.D.2.如图,在△ABC中,点D、E分不在边AB、AC上,联结DE,如果AD:BD=2:3,那么下列条件中能判定DE∥BC的是()A.=B.=C.=D.=3.若△ABC∽△DEF,相似比为3:2,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:94.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于()A.1:2 B.1:3 C.1:4 D.1:55.如图,BE,CF为△ABC的两条高,若AB=6,BC=5,EF=3,则AE的长为()A.B.4 C. D.6.下列讲法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比7.如图,在菱形ABCD中,E为CD上一点,连接AE、BD,交于点O,若S△AOB:S△DOE=25:9,则C E:BC等于()A.2:5 B.3:5 C.16:25 D.9:258.如图,l1∥l2∥l3,BC=1,=,则AB长为()A.4 B.2 C.D.9.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,则S△ABE:S△ECF等于()A.1:2 B.4:1 C.2:1 D.1:410.如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分不交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是()A.①②③B.②③④C.①③④D.①②③④第Ⅱ卷(非选择题)评卷人得分二.填空题(每小题3分,共8小题)11.如图,在△ABC中,点D、E分不在AB、AC边上,DE∥BC,若=,AE=4,则EC等于.12.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.13.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分不在边AB、AC上,如果BC= 5,△ABC的面积是10,那么那个正方形的边长是.14.如图,△ABC中,D在BC上,F是AD的中点,连CF并延长交AB于E,已知=,则等于.15.从美学角度来讲,人的上身长与下身长之比为黄金比时,能够给人一种和谐的美感.某女老师上身长约61. 8cm,下身长约94cm,她要穿约cm的高跟鞋才能达到黄金比的美感成效(精确到1cm).16.如图,矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,延长AE与BC延长线交于点F,则F C:FB=.17.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D到线段AB的距离等于(结果保留根号).18.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.评卷人得分三.解答题(共7小题)19.已知如图所示,AF⊥BC,CE⊥AB,垂足分不是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.20.已知:△ABC在直角坐标平面内,三个顶点的坐标分不为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是平方单位.[来源:学科网ZXXK]21.如图,实验中学某班学生在学习完《利用相似三角形测高》后,利用标杆BE测量学校体育馆的高度.若标杆BE的高为1.5米,测得AB=2米,BC=14米,求学校体育馆CD的高度.22.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分不在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.23.如图,在正方形ABCD中,E、F分不是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.24.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)若AB=12,BE=3,求EF的长;(2)求∠EOF的度数;(3)若OE=OF,求的值.25.已知:正方形ABCD中,AB=4,E为CD边中点,F为AD边中点,AE交BD于G,交BF于H,连接D H.(1)求证:BG=2DG;(2)求AH:HG:GE的值;(3)求的值.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、因为a=2b,因此a+c=c+2b,正确;B、因为a=2b,因此a﹣m=2b﹣m,正确;C、因为a=2b,因此,正确;D、因为a=2b,当b≠0,因此,错误;故选:D.2.【解答】解:只有选项B正确,理由是:∵AD:BD=2:3,∴=,∵=,∴=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,按照选项A、C、D的条件都不能推出DE∥BC,故选:B.3.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应面积的比为()2=9:4,[来源:学#科#网Z#X#X#K][来源:学科网]故选:C.4.【解答】解:∵DE是△ABC的中位线,M是DE的中点,∴DM∥BC,DM=ME=BC.∴△NDM∽△NBC,==.∴=.故选:B.5.【解答】解:∵BE,CF为△ABC的两条高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴=,∵AB=6,BC=5,EF=3,∴=,∴AE=,故选:A.6.【解答】解:若两个多边形相似可知:①相似多边形对应边的比等于相似比;②相似多边形对应角平线的比等于相似比③相似多边形周长的比等于相似比,④对应面积的比等于相似比的平方,故选:D.7.【解答】解:∵四边形ABCD是菱形∴AB=BC=CD,CD∥AB∴△AOB∽△EOD∴S△AOB:S△DOE=(AB)2:(DE)2=25:9∴AB:DE=5:3∴设AB=5a,则DE=3a∴BC=CD=5a,EC=2a故选:A.8.【解答】解:∵l1∥l2∥l3,BC=1,=,∴==,∴AB=,故选:C.9.【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴S△ABE:S△ECF=AB2:CE2,∵E是BC的中点,∴BC=2CE=AB∴==,即S△ABE:S△ECF=4:1故选:B.10.【解答】解:①错误,假设∠BAD=∠ABC,则=,∵=,∴==,明显不可能,故①错误.②正确.连接OD.∵GD是切线,∴DG⊥OD,∴∠GDP+∠ADO=90°,∵OA=OD,∴∠ADO=∠OAD,∵∠APF+∠OAD=90°,∠GPD=∠APF,∴∠GPD=∠GDP,∴GD=GP,故②正确.③正确.∵AB⊥CE,∴=,∵=,∴=,∴∠CAD=∠ACE,∴PC=PA,∵AB是直径,∴∠ACQ=90°,∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,∴∠PCQ=∠PQC,∴PC=PQ=PA,∵∠ACQ=90°,∴点P是△ACQ的外心.故③正确.④正确.连接BD.∵∠AFP=∠ADB=90°,∠PAF=∠BAD,∴△APF∽△ABD,∴=,∴AP•AD=AF•AB,∵∠CAF=∠BAC,∠AFC=∠ACB=90°,∴△ACF∽△ABC,可得AC2=AF•AB,∵∠ACQ=∠ACB,∠CAQ=∠ABC,∴△CAQ∽△CBA,可得AC2=CQ•CB,∴AP•AD=CQ•CB.故④正确,故选:B.二.填空题(共8小题)11.【解答】解:∵DE∥BC,=,∴AE:AC=AD:AB=2:3,∴AE:EC=2:1.∵AE=4,∴CE=2,故答案为:2.12.【解答】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.13.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是10,∴BC•AH=10,∴AH=4,设正方形DEFG的边长为x,则GF=x,MH=x,AM=4﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.14.【解答】解:作DG∥CE,如图,∵DG∥CE,∴==,设BG=2x,则GE=3x,∵EF∥DG,∴==1,∴AE=EG=3x,∴==.故答案为:.15.【解答】解:设她要穿xcm的高跟鞋,由题意得,=0.618,解得x=6,故答案为:6.16.【解答】解:作EH⊥AB于H.∵四边形ABCD是矩形,∴∠D=∠DAH=∠EHA=90°,∴四边形AHED是矩形,∴AD=BC=EH,DE=AH,∵AB=2BC,设AD=BC=a,则AB=CD=2a,在Rt△AEH中,AE=AB=2a,EH=AD=a,∴AH==a,∴EC=BH=2a﹣a,∵EC∥AB,∴△FEC∽△FAB,∴===,故答案为17.【解答】解:∵△ABC∽△ADE,AB=2AD,∴=()2=4,∵S△ABC=,∴S△ADE=,∵△ABC是等边三角形,△ABC∽△ADE,∴△ADE是等边三角形,∴AD2=,∴AD=1.[来源:学科网ZXXK]如图,过点D作DH⊥AB于H.在△ADH中,∵∠HAD=45°,∴DH=AD•sin∠HAD=1×=.故答案为.18.【解答】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∵点M是AB边的中点,∴AM=BM=1,在Rt△ADM中,DM==,∵AM∥CD,∴=,∴DP=,∵PF=,∴DF=DP﹣PF=﹣=,∵∠EDF=∠PDC,∠DFE=∠DCP=45°,∴△DEF∽△DPC,∴,∴,∴DE=,∴CE=CD﹣DE=2﹣=.故答案为:,.三.解答题(共7小题)19.【解答】解:(1)∵AF⊥BC,CE⊥AB,∴∠AFB=∠CEB=90°,∵∠B=∠B,∴△BAF∽△BCE.(2)∵△BAF∽△BCE,∴=,∴=,∵∠B=∠B,∴△BEF∽△BCA.20.【解答】解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,(3)四边形AA2C2C的面积是=;故答案为:(1)(2,﹣2);(2)7.521.【解答】解:依题意得BE∥CD,∴△AEB∽△ADC,∴,即,则CD=12.22.【解答】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为x.∵△AEF∽△ABC,AD⊥BC,∴=,∴=,∴x=8,∴正方形的边长为8cm.23.【解答】(1)证明:设正方形的边长为4a,∵E为AD的中点,∴AE=ED=2a,∵FC=3DF,∴DF=a,FC=3a,∴=,=,∴=,又∠A=∠D=90°,∴△ABE∽△DEF;(2)∵AD=4,∴DE=2,∵AD∥BC,∴△EDF∽△GCF,∴==3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=×BG×AB=20.24.【解答】解:(1)设BF=x,则FC=BC﹣BF=12﹣x,∵BE=3,且BE+BF+EF=BC,∴EF=9﹣x,在Rt△BEF中,由BE2+BF2=EF2可得32+x2=(9﹣x)2,解得:x=4,则EF=9﹣x=5;(2)如图,在FC上截取FM=FE,连接OM,∵C△EBF的周长=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,∴BE=MC,∵O为正方形中心,∴OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,∵,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,∵,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.(3)证明:由(2)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.∴===,∴AE=OC,AO=CF,∵AO=CO,∴AE=×CF=CF,∴=.25.【解答】(1)证明:∵四边形ABCD是正方形,∵AB∥CD,AB=CD,∵DE=CE,∴==,∴BG=2DG.(2)解:∵∵AB∥CD,AB=CD,∵DE=CE,∴===,在Rt△ADE中,∵AD=4,DE=2,∴AE=2,∴EG=,同法可得BF=2,∵AB=AD,∠BAF=∠ADE,AF=DE,∴△BAF≌△ADE,∴∠ABF=∠DAE,∵∠DAE+∠BAH=90°,∴∠ABF+∠BAH=90°,∴∠AHB=90°,∴AE⊥BF,∴AH===,∴HG=2﹣﹣=,∴AH:HG:GE=::=6:4:5.(3)作DM⊥AE于M.由(2)可知:DM=AH=,∴EM==,∴HM=EH﹣EM=,∴DH=,∵BH==,∴==.。
人教版九年级下册数学《第27章相似》单元检测试卷含答案
第27章相似单元检测一、选择题1. 将下图中的箭头缩小到原来的12,得到的图形是( )A. B.C. D.2. 如图,AB //EF //CD ,BC 、AD 相交于点O ,F 是AD 的中点,则下列结论中错误的是( )A. AO AD =BO BCB. OB CE =OA DFC. EF CD =OE BED. 2BE AD =OE OF3. 下列各组数中,成比例的是( )A. −6,−8,3,4B. −7,−5,14,5C. 3,5,9,12D. 2,3,6,124. 不为0的四个实数a 、b ,c 、d 满足ab =cd ,改写成比例式错误的是( )A. a c =d bB. c a =b dC. d a =b cD. a b =c d5. 如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB ,添加一个条件,不正确的是( )A. AB BP =AC CBB. ∠APB =∠ABCC. APAB =ABACD. ∠ABP=∠C6.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=( )A. (−1):2B. (+1):2C. (3−:2D. (3+:27.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )A. 平移B. 旋转C. 轴对称D. 位似8.已知两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为( )A. 48 cmB. 54 cmC. 56 cmD. 64 cm9.下列各组图形不一定相似的是( )A. 两个等腰直角三角形B. 各有一个角是100∘的两个等腰三角形C. 各有一个角是50∘的两个直角三角形D. 两个矩形10.如图所示,△ABC中,DE//BC,AD=5,BD=10,DE=6,则BC的值为( )A. 6B. 12C. 18D. 24二、填空题11.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是______ .12.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么DEDF的值是______ .13.如果线段a、b、c、d满足ab =cd=13,那么a+cb+d=______ .14.已知线段a=3,b=6,那么线段a、b的比例中项等于______ .15.在△ABC中,点D、E分别在边AB、AC上,如果ADAB =23,AE=4,那么当EC的长是______ 时,DE//BC.三、解答题16.已知△ABC,作△DEF,使之与△ABC相似,且S△DEFS△ABC=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.17. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE //BC ,已知AE =6,AD BD =34,求CE 的长.18. 如图,在平行四边形ABCD 中,DE ⊥AB 于点E ,BF ⊥AD 于点F .(1)AB ,BC ,BF ,DE 这四条线段能否成比例?如不能,请说明理由;如能,请写出比例式;(2)若AB =10,DE =2.5,BF =5,求BC 的长.19.已知a3=b4=c5≠0,求2a−b+ca+3b的值.20.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,在△ABC中,AB>AC,点D位于边AC上.求作:过点D、与边AB相交于E点的直线DE,使以A、E为顶点的三角形与原三角形相似.【答案】1. A2. C3. A4. D5. A6. A7. D8. A9. D10. C11. 4:912. 3813. 1314. 315. 616. 解:(1)如图所示:△DEF即为所求;(2)∵△DEF∽△ABC,且S△DEFS△ABC=4,∴DEAB =DFAC=EFBC=12,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.17. 解:∵DE//BC,∴AEEC =ADBD=34,∵AE=6,∴CE=8.18. 解:(1)(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱A BCD=AB⋅DE=AD⋅BF,∴ADDE =ABBF;(2)∵AB⋅DE=AD⋅BF,∴10×2.5=5BC,解得:BC=5.19. 解:设a3=b4=c5=k,所以,a=3k,b=4k,c=5k,则2a−b+ca+3b =6k−4k+5k3k+12k=715.20. 解:如图1所示:△AED∽△ABC,如图2所示:△ADE∽△ABC,综上所述:直线DE即为所求.。
人教版九年级下册数学《第27章相似》单元测试含答案试卷分析解析
第27章相似一、选择题1.如果a=3,b=2,且b是a和c的比例中项,那么c=()A. B. C. D.2.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:23.已知△ABC∽△A′B′C′,sinA=m,sinA′=n,则m和n的大小关系为()A. m<nB. m>nC. m=nD. 无法确定4.已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A. 2:3B. 3:2C. 4:9D. 9:45.三角尺在灯泡的照射下在墙上形成的影子如图所示。
若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A. 5:2B. 2:5C. 4:25D. 25:46.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D.9.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3。
若S1+ S3=20,则S2的值为( )A. 8B. 10C. 12D.10.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A. 10B. 11C. 12D. 1311.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ∠E=∠CC.D.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A. 0.6mB. 1.2mC. 1.3mD. 1.4m二、填空题13.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是________ .14.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为________ cm.15. 已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是 ________.16.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为________ .17.如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是________ .18.在比例尺为1:6000的地图上,图上尺寸为1cm×2cm的矩形操场,实际尺寸为________.19.已知△ABC中的三边a=2,b=4,c=3,h a,h b,h c分别为a,b,c上的高,则h a:h b:h c=________.20.有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab=________ cm221.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.22. 勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1<BP1),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则AP n的长度是________.三、解答题(共3题;共15分)23.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G(1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°,AB=4,BG=3,求FG的长.24.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).25.又到了一年中的春游季节.某班学生利用周末去参观“三军会师纪念塔”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°;乙:我站在此处看塔顶仰角为30°;甲:我们的身高都是1.6m;乙:我们相距36m.请你根据两位同学的对话,计算纪念塔的高度.(精确到1米)26. 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27. 如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A ﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?参考答案一、选择题C D C A B B B D A D D D二、填空题13.1:314.415.(﹣6,0)、(3,3)、(0,﹣3)16.317.6或818.60m×120m19.6:3:420.5421.222.三、解答题23.证明:(1)∵∠DME=∠A=∠B=α,∴∠AMF+∠BMG=180°﹣α,∵∠A+∠AMF+∠AFM=180°,∴∠AMF+∠AFM=180°﹣α,∴∠AFM=∠BMG,∴△AMF∽△BGM;(2)解:当α=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2,∵△AMF∽△BGM,∴,∴AF===,AC=BC=4•cos45°=4,∴CF=AC﹣AF=4﹣=,CG=BC﹣BG=4﹣3=1,∴FG== =.24.解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=45°,DC=8,∴DQ=QC=8sin45°=8×=4,在Rt△DQE中,QE=≈9.8(米)∴BE=BC+CQ+QE≈35.5(米)在Rt△ABE中,AB=BEtan30°≈20(米)答:旗杆的高度约为20米.25.解:如图,CD=EF=BH=1.6m,CE=DF=36m,∠ADH=30°,∠AFH=30°,在Rt△AHF中,∵tan∠AFH=,∴FH=,在Rt△ADH中,∵tan∠ADH=,∴DH=,而DH﹣FH=DF,∴﹣=36,即﹣=36,∴AH=18,∴AB=AH+BH=18+1.6≈33(m).答:纪念塔的高度约为33m.26.(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴=1.27.(1)解:△DOE是等腰三角形.理由如下:过点A作AM⊥BC于M,∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,AC=AB= a,∴S△ABC= BC•AM= a2,∴P在边AB上时,y= •S△ABC= ax,P在边AC上时,y= •S△ABC= a2﹣ax,作DF⊥OE于F,∵AB=AC,点P以1cm/s的速度运动,∴点P在边AB和AC上的运动时间相同,∴点F是OE的中点,∴DF是OE的垂直平分线,∴DO=DE,∴△DOE是等腰三角形(2)解:由题意得:∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,∴AB= a,∴D(a,a2),∵DO=DE,AB=AC,∴当且仅当∠DOE=∠ABC时,△DOE∽△ABC,在Rt△DOF中,tan∠DOF= = = a,由a=tan30°= ,得a= ,∴当a= 时,△DOE∽△ABC.第11页共11页。
第27章 相似单元测试(含答案)-
第27章 相似单元测试一.选择题:(每小题3分,共30分)1. 下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形 ;⑥两个正五边形. 其中一定相似的有( ).A. 2组B. 3组C. 4组D. 5组2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )3、Rt ABC 中,CD 是斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F 。
图中共有8个三角形,如果把一定相似的三角形归为一类,那么图中的三角形可分为( )A .2类B .3类C .4类D .5类4、如图4,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的 ( ) A .F B.G C.H D.K5、厨房角柜的台面是三角形,如图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是( )A .14B .41C .13D .34第5题 第6题6、(06枣庄)在△MBN 中,BM=6,点A,C,D 分别在MB 、NB 、MN 上,四边形ABCD 为平行四边形,∠NDC=∠MDA 则□ABCD 的周长是 ( ) A.24 B.18 C.16 D.127、下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81中,正确的有( )A 、1个B 、2个C 、3个D 、4个图 4A第3题A B C D EFO B NA QPNMDCBADC B A8、如图,点M 在BC 上,点N 在AM 上,CM=CN ,CMBMAN AM =,下列结论正确的是( ) A .∆ABM ∽∆ACB ; B .∆ANC ∽∆AMB ; C .∆ANC ∽∆ACM ; D .∆CMN ∽∆BCA第8题 第9题 第10题9、如图,要判断△ABC 的面积是△DBC 的面积的几倍,只有一把仅有刻度的直尺,需要度量的次数最少是( )A. 3次以上B. 3次C. 2次D. 1次10、(06淄博)如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度( )A .增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米 二、填空题:(30分)11、如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= .D CB ADCB ME BA第11题 第12题 第13题 第14题 12、如图,将①∠BAD = ∠C ;②∠ADB = ∠CAB ;③BC BD AB ⋅=2;④DBABAD CA =;⑤DA AC BA BC =;⑥ACDABA BC =中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(注:填序号)13、如图,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
最新人教版九年级数学下册《第27章相似》单元检测试卷(含答案解析)
第27章相似单元检测试卷一、单选题(共10题;共30分)1.若△ABC∽△A΄B΄C΄,∠A=40°,∠B=110°,则∠C΄=().A. 40°B. 110°C. 70°D. 30°2.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A. ;B. ;C. ;D. .3.下列4组条件中,能判定△ABC∽△DEF的是()A. AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°B. ∠A=45°,∠B=55°;∠D=45°,∠F=75°C. BC=4,AC=6,AB=9;DE=18,EF=8,DF=12D. AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°4.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.5.如果x:(x+y)=3:5,那么的值是()A. B. C. D.6.如图,已知===,且△ABC的周长为15cm,则△ADE的周长为()A. 6cmB. 9cmC. 10cmD. 12cm7.如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是()A. 1:2B. 1:4C. 1:8D. 1:168.如图,在△ABC中,D、E分别是AB、AC的点,且DE∥BC,如果AD=2cm,DB=1cm,DE=1.6cm,则BC=()A. 0.8cmB. 2cmC. 2.4cmD. 3.2cm9.将两个长为a cm,宽为b cm的矩形铁片加工成一个长为c cm,宽为d cm的矩形铁片,有人就a,b,c,d的关系写出了如下四个等式,但是有一个写错了,它是( )A. B. C. D.10.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…,按这样的规律进行下去,第2013个正方形的面积为()A. B. C. D.二、填空题(共10题;共30分)11.如图,在△ABC中,D,E分别为AB,AC上的点,若DE∥BC, ,则=________.12.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B的坐标是________.13.在△ABC中,AB=5,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D,E均与端点不重合),如果△CDE与△ABC相似,那么CE=________14.已知= ,那么的值是________.15.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.16.在直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________17.有一块三角形的草地,它的一条边长为25m.在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.18.如图,在△ABC中,D、E分别为边AB、AC上的点.= ,点F为BC边上一点,添加一个条件:________,可以使得△FDB与△ADE相似.(只需写出一个)19.已知等腰直角三角形ABC中,∠C=90°,AC=BC=4,点D在直线AC上,且CD=2,连接BD,作BD的垂直平分线交三角形的两边于E、F,则EF的长为________ .20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.已知:如图,△ABC∽△ADE ,∠A=45°,∠C=40°.求:∠ADE的度数.22.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,求证:△ABE∽△DEF.24.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.26.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.27.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是什么?;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=,且AF:FD=1:2时,求线段DG的长.28.(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.答案解析部分一、单选题1.【答案】D【考点】相似三角形的性质【解析】【解答】∵∠A=40°,∠B=110°,∴∠C=180°-∠A-∠B=180°-40°-110°=30°又∵△ABC∽△A΄B΄C΄,∴∠C΄=∠C=30°.故选D .【分析】根据相似三角形的性质:相似三角形的对应角相等,即可解答.2.【答案】B【考点】比例的性质【解析】【解答】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故答案为:B.【分析】利用比例的性质进行等式变形即可。
第27章_相似_单元检测试卷【有答案】
人教版九年级数学上册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若,则A. B. C. D.2.已知四条线段,,,是成比例线段,即,下列说法错误的是()A. B.C. D.3.若,与的相似比为,且的周长为,则的周长为()A. B. C. D.4.已知台湾省基隆市与高雄市的实际距离是,而在某张地图上量得基隆与高雄的图上距离约,则此地图的比例尺为()A. B.C. D.5.点为线段的黄金分割点,若,则线段的长约为()A. B. C. D.6.下列说法中:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的等腰直角三角形都相似;④所有的直角三角形都相似;其中正确的是()A ①②B ②③C ③④D ①④7.如图,与相交于点,.若,,,则的长度是()A. B. C. D.8.如图,已知平行四边形中,是边的中点,交于点,、把它分成的四部分的面积分别为,下面结论:①只有一对相似三角形② ③ 其中正确的结论是()A ①③B ③C ①D ①②9.下列图形一定是相似图形的是()A.两个矩形B.两个正方形C.两个直角三角形D.两个等腰三角形10.已知如图,一张矩形报纸的长,宽,、分别为、的中点.若矩形与矩形相似,则等于()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在中,、分别在、上,且,如果,且,则________.12.两个相似三角形的相似比为,它们的面积和为,那么这两个三角形的面积分别为________和________.13.已知、分别是的边、上的点,若要使与相似,则只需添加一个条件:________即可(只需填写一个).14.如果,相似比为,若它们的周长的差为厘米,则的周长为________厘米.15.如图,中,,,取边中点,作,,得到四边形,它的面积记作;取中点,作,,得到四边形,它的面积记作.照此规律作下去,则________.16.如图,中,点在边上,满足,若,,则________.17.如图,为斜边上任意一点(除、外),过点作直线截,使截得的新三角形与相似,满足这样条件的直线的作法共有________种.18.如图,在平面直角坐标系中,四边形是边长为的正方形,、分别是边、上的两个动点,且,当最小时,________.19.如图,在中,点是边的中点,交对角线于点,则________.20.为了测量被池塘隔开的、两点之间的距离,根据实际情况,作出如图所示的图形,其中,,交于,在上.有四位同学分别测量出以下四组数据:① ,;② ,,;③ ,,;④ ,,.根据所测数据,能出,间距离的有________(填上所有能求出、间距离的序号)三、解答题(共 6 小题,每小题 10 分,共 60 分)21.将图中的作下列变换,画出相应的图形:以点为位似中心,将放大到倍.点对应的点的坐标________.22.如图,在中,,,,点是上的一个动点,交于点,若点从点处开始向点方向运动,速度为每秒个单位.当运动秒时,求的长;如果记运动的时间为秒,的长度为个单位,请你写出与的函数关系式,并写出的取值范围.23.如图所示,在距树米的地面上平放一面镜子,人退后到距镜子米的处,在镜子里恰巧看见树顶,若人眼距地面米.求树高;(2)和是位似图形吗?若是,请指出位似中心;若不是,请说明理由.24.如图,在中,平分,交于点.求证:;若,,求的长.25.已知:如图,点、、分别在的边、、上,,,.求证:;联结,当时,求证:.26.课本中有一道作业题:有一块三角形余料,它的边,高.要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在,上.加工成的正方形零件的边长是多少?如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图,此时,这个矩形零件的两条边长又分别为多少?请你计算.如果原题中所要加工的零件只是一个矩形,如图,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.答案1.A2.C3.B4.D5.C6.B7.C8.B9.B10.A11.12.13.14.15.16.17.18.19.①②③21.解:如图:根据题意,位似中心已知为,则延长,,根据相似比,确定所作的位似图形的关键点、,再顺次连接所作各点,即可得到放大一倍的图形;图中点的坐标为.22.解:当运动秒时,,所以;记运动的时间为秒,则,则,∵ ,∴,即,∴.23.树高为米;(2)和不是位似图形.理由如下:∵点的对应点为,点的对应点为,点的对应点为,而不经过点,∴ 和不是位似图形.24.证明:∵ ,∴ ,,∴ ,∴,∵ ,∴ ,∵ 平分,∴ ,∴ ,∴ ,∴,即; ∵ ,∴ ,∴,∵由知,∴,解得,∵ ,∴ .25.证明: ∵ ,,∴,又∵ ,∴,∴.,∴ ; ∵ ,,∴ ,∴,又∵ ,,∴,,∴,∴ ,即.26.解:如图,设正方形的边长为,则,∴ ,∵ ,∴ ,∴,即,解得.∴加工成的正方形零件的边长是;如图,设,则,,∵ ,∴ ,∴,即,解得:,∴,∴这个矩形零件的两条边长分别为,;如图,设,矩形的面积为,由条件可得,∴,即,解得:.则,故的最大值为,此时,.。
【单元练】人教版初中九年级数学下册第二十七章《相似》测试卷(含答案解析)
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4C 解析:C【分析】根据题意易得ADF AEG ABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABC S S =,最后即可求出结果.【详解】∵DF ∥EG ∥BC ,∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEG ABC S S =.∵21411993AEG ABC ABC ABC S S S S S S =-=-=,34599ABC AEG ABC ABC ABC S S S S S S =-=-=. ∴123115::::1:3:5939ABC ABC ABC S S S S S S ==.故选C .【点睛】 本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键. 2.如图,ABC 中,DE ∥BC ,AD:BD=1:3,则OE :OB=( )A .1:3B .1:4C .1:5D .1:6B解析:B【分析】 先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】解:∵DE ∥BC ,∴ADE ∽ABC , ∴=AD DE AB BC, 又∵1=3AD BD , ∴1=4AD DE AB BC =, ∵DE ∥BC ,∴ODE ∽OCB ,∴1=1:44OE DE OB CB ==. 故选:B .【点睛】 本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.3.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A 2B 3C .1D .1.5D解析:D【分析】先求出AC,进而求出OA,再证明△AOE∽△ADC,得到AE OAAC AD=,即可求解.【详解】解:∵四边形ABCD是矩形,∴∠ABC=∠ADC=90°,AD=BC=2,CD=AB=2,OA=OC=12AC,∴AC=226AB BC+=,∴OA=62,∵OE⊥AC,∴∠AOE=90°,∴∠AOE=∠ADC,又∵∠OAE=∠DAC,∴△AOE∽△ADC,∴AE OAAC AD=,即6226AE=,∴AE=1.5.故选:D.【点睛】本题考查了矩形的性质,勾股定理,相似三角形的性质与判定等知识,能根据已知条件判定△AOE∽△ADC是解题关键.4.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依次类推,若各种开本的矩形都相似,那么ADAB等于()A2B 2C51-D.2A解析:A 【分析】首先根据相似的性质,可得对应边成比例,即为AD ABAB BF=,又根据12BF AD=,可得出2212AD AB =,据此进行求解即可. 【详解】∵各种开本的矩形都相似,∴矩形ABCD 与矩形BFEA 相似, ∴AD AB AB BF =, ∴AD•BF=AB•AB ,又∵12BF AD =, ∴2212AD AB =, ∴2AD AB=, 故选A .【点睛】本题考查了相似多边形的的性质,相似多边形对应边之比等于相似比,准确识图,熟练掌握和灵活运用相关知识是解题的关键.5.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .49C 解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S△AEH=19S△ABC, S△AFG=4 S△AEH,S阴影= S△AFG- S△AEH=3 S△AEH=3×19S△ABC=13S△ABC.故选择:C.【点睛】本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH的关系,由△AEH与△ABC的关系来转化解决问题.6.已知如图,DE是△ABC的中位线,AF是BC边上的中线,DE、AF交于点O.现有以下结论:①DE∥BC;②OD=14BC;③AO=FO;④AODS=14ABCS.其中正确结论的个数为()A.1 B.2 C.3 D.4C解析:C【分析】①根据三角形中位线定理进行判断;②根据三角形中位线定理进行判断;③根据三角形中位线定理进行判断;④由相似三角形△ADO∽△ABF的面积之比等于相似比的平方进行判断.【详解】∵DE是△ABC的中位线,∴DE∥BC,故①正确;∴DE=12BC,∴OD=12BF,∵AF是BC边上的中线,∴BF=12BC,∴OD=12BF=14BC,故②正确;∵DE是△ABC的中位线,∴AD=DB,DE∥BC,∴AO=FO,故③正确;④∵DE ∥BC ,即DO ∥BF ,∴△ADO ∽△ABF , ∴22ADO ABF 1124S AD S AB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 又∵AF 是BC 边上的中线,∴ABF ABC 12SS =, ∴ADO ABC18S S =,故④错误. 综上所述,正确的结论是①②③,共3个.故选:C .【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质.本题利用了“相似三角形的面积之比等于相似比的平方”的性质.正确的识别图形是解题的关键.7.如图,△ABC 、△FGH 中,D 、E 两点分别在AB 、AC 上,F 点在DE 上,G 、H 两点在BC 上,且DE ∥BC ,FG ∥AB ,FH ∥AC ,若BG :GH :HC=4:6:5,则△ADE 与△FGH 的面积比为何?( )A .2:1B .3:2C .5:2D .9:4第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案D解析:D【解析】分析:只要证明△ADE ∽△FGH ,可得2⎛⎫= ⎪⎝⎭△△FGH ADE S DE S GH ,由此即可解决问题. 详解:∵BG :GH :HC=4:6:5,可以假设BG=4k ,GH=6k ,HC=5k ,∵DE ∥BC ,FG ∥AB ,FH ∥AC ,∴四边形BGFD 是平行四边形,四边形EFHC 是平行四边形,∴DF=BG=4k ,EF=HC=5k ,DE=DF+EF=9k ,∠FGH=∠B=∠ADE ,∠FHG=∠C=∠AED , ∴△ADE ∽△FGH ,∴2299=64ADEFGH S DE k S GH k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 故选D .点睛:本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.8.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:2C解析:C【分析】 为了便于计算,可设AF =2x ,BF =3x ,BC =2y ,CD =y ,利用AG ∥BD ,可得△AGF ∽△BDF ,从而可求出AG ,那么就可求出AE :EC 的值. 【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF ,∴AG BD =AF BF∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.9.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,延长至点G ,连接BG ,过点A作AF ⊥BG ,垂足为F ,AF 交CD 于点E ,则下列错误的是( )A .AD AC AC AB = B .AD CD CD BD =C .DE CD CD DG = D .EG BD EF BG =D 解析:D【分析】通过证明△ACD ∽△ABC ,可得AD AC AC AB =,通过证明△ACD ∽△CBD ,可得AD CD CD BD =,通过△ADE ∽△GDB ,△ACD ∽△CBD ,可得DE CD CD DG=,通过证明△GEF ∽△GBD ,可得=EG BG EF BD,即可求解. 【详解】解:∵CD ⊥AB ,∴∠ADC =∠CDB =90°,∴∠BCD +∠ABC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∴∠ACD =∠ABC ,又∵∠ACB =∠ADC =90°,∴△ACD ∽△ABC , ∴AD AC AC AB=, 故A 选项不合题意;∵∠ACD =∠ABC ,∠ADC =∠BDC ,∴△ACD ∽△CBD , ∴AD CD CD BD= 故B 选项不合题意;∵AF ⊥BG ,∴∠AFB =90°,∴∠FAB +∠GBA =90°,∵∠GDB =90°,∴∠G +∠GBA =90°,∴∠G =∠FAB ,又∵∠ADE =∠GDB =90°,∴△ADE ∽△GDB , ∴=AD DE GD BD , ∴AD •BD =DE •DG ,∵△ACD ∽△CBD , ∴=AD CD CD BD, ∴CD 2=AD •BD ,∴CD 2=DE •DG ,∴DE CD CD DG=, 故C 选项不合题意;∵∠G =∠G ,∠EFG =∠GDB =90°,∴△GEF ∽△GBD ,∴=EG BG EF BD故D 选项符合题意,故选:D .【点睛】本题主要考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定方法及其性质.10.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B 5C .22D .3B解析:B【分析】 如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=OA OF BD BH,即可解决问题.【详解】解:如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=10,面积为80,∴AB•DH=80,∴DH=8,在Rt △ADH 中,226AH AD DH =-=, ∴HB=AB-AH=4,在Rt △BDH 中,2245BD DH BH +=, 设⊙O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF ⊥AB ,OJ ⊥AD ,OF=OJ , ∴OA 平分∠DAB ,∵AD=AB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴=OA OF BD BH , ∴445OF , ∴5故选:B .【点睛】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题11.如果x :y =3:2,那么x y x-的值是__.【分析】根据已知条件得出再把化成然后代值计算即可得出答案【详解】∵∴∴故答案为:【点睛】此题考查了比例的性质熟练掌握比例的性质是解题的关键 解析:13【分析】 根据已知条件得出23y x =,再把x y x -化成1y x -,然后代值计算即可得出答案. 【详解】∵:3:2x y =, ∴23y x =, ∴211133x y y x x -=-=-=. 故答案为:13. 【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键.12.如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .【分析】根据平行线分线段成比例定理由AB ∥GH 得出由GH ∥CD 得出将两个式子相加即可求出GH 的长【详解】解:即①即②①②得解得故答案为:【点睛】本题考查了平行线分线段成比例定理熟练运用等式的性质进行解析:65【分析】根据平行线分线段成比例定理,由AB ∥GH ,得出GH CH AB BC=,由GH ∥CD ,得出3GH BH BC=,将两个式子相加,即可求出GH 的长. 【详解】解://AB GH ,GH CH AB BC∴=, 即2GH CH BC=①, //GH CD ,GH BH CD BC∴=, 即3GH BH BC=②, ①+②,得23GH GH CH BH BC BC +=+,CH BH BC +=,123GH GH ∴+=, 解得65GH =. 故答案为:65【点睛】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中. 13.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB 根据相似三角形的性质即可列出y 与x 之间的关系式需要注意的是x 的范围【详解】解:∵四边形ABCD 为正方形∴∠BAD =∠ABC =90°∴∠ 解析:(16442y x x =<< 【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD +∠BAP =90°,∠BAP +∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB .∴=AD DE AP AB ,即4=4y x ∴(16442y x x =<<.故答案为:()16442y x x =<< 【点睛】 本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.14.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -484807 【分析】 根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.15.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB =,则此三角形平移距离'CC 的长度是_________.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:236【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB :2:1,推出6,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD ,∴21()2A BDABC S A B S AB ''∆∆==, ∴AB :2:1,∵AB=23∴6,∴AA′=23-6.由平移可得' 'CC AA =∴' 236CC =- 故答案为:236-.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形. 16.已知:如图,ABC 内接于O ,且BC 是O 的直径,AD BC ⊥于D ,F 是弧BC 中点,且AF 交BC 于E ,6AB =,8AC =.则CD =_________________.AF =_________________.【分析】根据直径所对的圆周角是直角求出BC 的长再用等面积法求出AD 长在用勾股定理求出CD 的长然后连接OF 证明利用对应边成比例求出DE 和OE 的长再利用两次勾股定理分别求出AE 和EF 的长最终得到AF 的长解析:32572【分析】根据直径所对的圆周角是直角,求出BC 的长,再用等面积法求出AD 长,在Rt ACD △用勾股定理求出CD 的长,然后连接OF ,证明ADE FOE ,利用对应边成比例求出DE 和OE 的长,再利用两次勾股定理分别求出AE 和EF 的长,最终得到AF 的长.【详解】解:∵BC 是O 的直径,∴90BAC ∠=︒,∵6AB =,8AC =,∴10BC =,利用等面积法,求出245AB AC AD BC ⋅==, 在Rt ACD △中,22325CD AC AD =-=, 如图,连接OF ,∵F 是弧BC 的中点,∴OF BC ⊥,∵AD BC ⊥,∴//OF AD ,∴ADE FOE , ∴AD DE FO OE =, ∵327555DO CD OC =-=-=, ∴设DE x =,75OE x =-, ∴245755x x =-,解得2435x =, ∴2435DE =,57OE =, 在Rt ADE △中,222427AE AD DE =+=, 在Rt EFO 中,222527EF EO FO =+=, ∴2422527277AF AE EF =+=+=.故答案是:325;2. 【点睛】 本题考查圆周角定理,垂径定理,相似三角形的性质和判定,解题的关键是掌握这些性质定理进行证明求解.17.已知13x y =,则x y y-的值为______【分析】可得y=3x 代入所求式子可得结论【详解】解:∵∴y=3x ∴=故答案是:【点睛】本题主要考查了比例的性质解题时注意:内项之积等于外项之积解析:23- 【分析】 可得y=3x ,代入所求式子可得结论.【详解】解:∵13x y =, ∴y=3x ,∴x y y -=3233x x x -=-, 故答案是:23-. 【点睛】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.18.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.【分析】由EC ∥ABEB ∥DC 可得∠A=∠CED ∠AEB=∠D 证得△ABE 与△ECD 相似由△ABE 的面积为5△CDE 的面积为1可得AB :CE=:1又由EC ∥AB 可得△ABE 与△BCE 等高然后由等高三5【分析】由EC ∥AB ,EB ∥DC ,可得∠A=∠CED ,∠AEB=∠D ,证得△ABE 与△ECD 相似,由△ABE 的面积为5,△CDE 的面积为1,可得AB :51又由EC ∥AB ,可得△ABE 与△BCE 等高,然后由等高三角形的面积比等于对应底的比,求得△BCE 的面积.【详解】∵EC ∥AB ,∴∠A=∠CED ,∵EB ∥DC∴∠AEB=∠D ,∴△ABE ∽△ECD ,∴22ABE ECD 551S BE AB CD CE S ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭, ∴5AB CE=5AB CE =,∵△ABE 以AB 为底边的高与△BCE 以CE 为底的高相等, ∴ABE BCE 5S AB S CE ==, 555BCE S ∴== 故答案为:5.【点睛】本题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.19.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______. 【分析】连接ADBC 后可知△AOD ∽△BOC 再由相似三角形的性质和已知条件可以得到问题解答【详解】解:如图连接ADBC 则在△AOD 和△BOC 中∴△AOD ∽△BOC (cm )故答案为15cm 【点睛】本题解析:15cm【分析】连接AD 、BC 后可知△AOD ∽△BOC ,再由相似三角形的性质和已知条件可以得到问题解答.【详解】解:如图,连接AD 、BC ,则在△AOD 和△BOC 中,AO DO BO CO DOA BOC ⎧=⎪⎨⎪∠=∠⎩,∴△AOD ∽△BOC ,233,1015322AD AO BC AD BC BO ====⨯=(cm ), 故答案为15cm .【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定及性质并灵活运用是解题关键. 20.已知b c c a a b a b c+++===k ,则k =______.参考答案2或-1【分析】此题分情况考虑:①当a+b+c≠0时根据比例的等比性质求得k 的值;②当a+b+c=0时即a+b=-c 求得k 的值【详解】解析:2或-1.【分析】此题分情况考虑:①当a+b+c≠0时,根据比例的等比性质,求得k 的值;②当a+b+c=0时,即a+b=-c ,求得k 的值.【详解】①当a+b+c≠0时,由等比性质得k=2()a b c a b c++++=2; ②当a+b+c=0时,即a+b=-c(或a+c=-b 或b+c=-a),得k=c c-=-1. 故答案为2或-1.【点睛】 此题考查比例的等比性质,解题时要注意等比性质的条件.三、解答题21.如图,王华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行12 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6 m ,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?解析:(1)18;(2)3.6【分析】(1)依题意得到△APM ∽△ABD ,得到MP AP BD AB =再由它可以求出AB ; (2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F 则BF 即为此时他在路灯AC 的影子长,容易知道△EBF ∽△CAF ,再利用它们对应边成比例求出现在的影子.【详解】 解:(1)由对称性可知AP =BQ ,设AP =BQ =x m ,∵MP ∥BD ,∴△APM ∽△ABD ,∴MP AP BD AB = , ∴1.69.6=212x x +, 解得x =3,∴AB =2x +12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,则BF 即为此时他在路灯AC 下的影子长,设BF =y m ,∵BE ∥AC ,∴△FEB ∽△FCA ,∴BE BF AC FA = ,即1.69.6=18y y +, 解得y =3.6,当王华同学走到路灯BD 处时,他在路灯AC 下的影子长3.6米.【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例.22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽;(2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.解析:(1)见解析;(2)532BD =【分析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AE AB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△. ∴AC AE AB AD=. ∵EAC BAD ∠=∠,∴BAD CAE ∽.(2)∵90ACB ∠=︒,4BC =,3AC =, ∴2222435AB BC AC =+=+=.∵A ABC DE ∽△△, ∴AC AB AE AD=. ∴52AB AE AD AC ⋅==. 将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴2222555322BD AB AD ⎛⎫=-=-= ⎪⎝⎭. 【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定方法及相似性质是解题的关键.23.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.解析:(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y=4代入反比例函数y=6x中,得x=32,∴D(32,4),∴BD=32,∴S△ACD=S△ABD+S△BCD=4.5;(3)存在.当∠BAE=90°时,如图①,∵∠BAE=∠BOA=90°,∠ABE=∠OBA,∴△AOB∽△EAB,∴AB BOEB BA=,∵AB=222425+=,∴BE=5,∴OE=1,∴E(0,-1);当∠ABE=90°时,如图②,∵∠ABE=∠AOB=90°,∠OAB=∠BAE,∴△AOB∽△ABE,∴AB AOAE BA=∴AE=2ABAO=10,∴OE=AE-AO=10-2=8,∴E(8,0).∴存在点E(除点O外),使得△ABE与△AOB相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.24.如图,ABC中,中线AD,BE交于点F,//EG BC交AD于点G.(1)求AG GF的值. (2)如果3BD =4DF =,请找出与BDA 相似的三角形,并挑出一个进行证明. 解析:(1)3;(2)BDA FGE ∽△△,证明见解析【分析】(1)先证明AGE ADC △∽△,再证明GEF DBF ∽△△,得到2DF GF =,则问题可解; (2)根据题意分别证明BDA FDB ∽△△,BDA FGE ∽△△问题可证.【详解】解:(1)D 是BC 的中点,E 是AC 的中点,BD CD ∴=,AE CE =,//GE BC ,AGE ADC ∴∽△△,12AG GE AE AD CD AC ∴===, AG GD ∴=,2GE CD BD ==,//GE BC ,GEF DBF ∴∽△△,12GE GF BD DF ∴==, 2DF GF ∴=,3AG DG GF ∴==,3AG GF ∴=. (2)当43BD =4DF =时,由(1)可得122GF DF ==,36AG DG GF ===,212AD AG ==, 1232GE BD ==, 433BD DF ==343AD BD ==,AD BD BD DF ∴=, 又BDG ADB ∠=∠,BDA FDB ∴∽△△,3GE GF=,12343AD BD ==, AD GE BD GF∴=, //GE BC ,ADB EGF ∴∠=∠,BDA FGE ∴∽△△.【点睛】本题考查了相似三角形的性质和判定,解答关键是根据题意选择适当方法证明三角形相似. 25.如图,在正方形网格中建立平面直角坐标系,已知点()0,0O ,()1,3A -,()4,0B ,连接OA ,OB ,AB .(1)若将OAB 向上平移4个单位长度,再向右平移5个单位长度,得到111O A B △,点O ,A ,B 的对应点分别为1O ,1A ,1B ,画出111O A B △并写出顶点1A 的坐标; (2)画出22OA B △,使22OA B △与OAB 关于原点对称,点A ,B 的对应点分别为2A ,2B ;(3)以点O 为位似中心,在给定的网格中将OAB 放大2倍得到33OA B ,点A ,B 的对应点分别为3A ,3B ,画出33OA B 并直接写出33A B 的长度.解析:(1)作图见解析,()16,1A ;(2)作图见解析;(3)作图见解析,33A B 的长度为62【分析】(1)先根据平移作图画出点111,,O A B ,再顺次连接即可得111O A B △,然后根据点坐标的平移变换规律即可得点1A 的坐标;(2)先根据关于原点对称的点坐标变换规律得出点22,A B 的坐标,再画出点22,A B ,然后顺次连接点22,,O A B 即可得;(3)先根据位似的性质得出33,A B 的坐标,再画出点33,A B ,然后顺次连接点33,,O A B 即可得33OA B ,最后利用两点之间的距离公式即可得33A B 的长度.【详解】(1)先画出点111,,O A B ,再顺次连接即可得111O A B △,如图所示:由点坐标的平移变换规律得:()115,34A +-+,即()16,1A ;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,()()1,3,4,0A B -,()()221,3,4,0A B ∴--,先画出点22,A B ,再顺次连接点22,,O A B 即可得22OA B △,如图所示:(3)()()1,3,4,0A B -,()()3312,32,42,02A B ⨯-⨯⨯⨯∴,即()()332,6,8,0A B -, 2332(82)(06)62A B ∴=-++=,先画出点33,A B ,再顺次连接点33,,O A B 即可得33OA B ,如图所示:【点睛】本题考查了平移作图、关于原点对称的点坐标变换规律、位似画图等知识点,熟练掌握各画图方法和点坐标的变换规律是解题关键.26.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)当x 为何值时,PQ //BC ;(2)当13BCQABC S S ∆∆=时,求S △BPQ :S △ABC 的值; (3)△APQ 能否与△CQB 相似?若能,求出时间x 的值;若不能,说明理由. 解析:(1)103x =;(2)29;(3)109x =或x=5. 【分析】(1)当PQ ∥BC 时,根据平行线分线段成比例定理,可得出关于AP ,PQ ,AB ,AC 的比例关系式,我们可根据P ,Q 的速度,用时间x 表示出AP ,AQ ,然后根据得出的关系式求出x 的值.(2)我们先看当13BCQABC S S ∆∆=时能得出什么条件,由于这两个三角形在AC 边上的高相等,那么他们的底边的比就应该是面积比,由此可得出CQ :AC=1:3,那么CQ=10cm ,此时时间x 正好是(1)的结果,那么此时PQ ∥BC ,由此可根据平行这个特殊条件,得出三角形APQ 和ABC 的面积比,然后再根据平行得出 AP :PB 的值,从而得出三角形PBQ 与三角形APQ 的面积,即可求解.(3)本题要分两种情况进行讨论.可以证明∠A 和∠C 相等,那么就要分成AP 和CQ 对应成比例以及AP 和BC 对应成比例两种情况来求x 的值.【详解】(1)当AP AQ PB QC=时,PQ//BC 43032043x x x x-∴=- 180600x ∴= 解得:103x =(2)当13BCQABC S S ∆∆=时 13CQ AC = 13CQ AC ∴=13303x =⨯ 103x ∴= 由(1)得103x =时, 20,10AQ CQ ==202303AQ AC == AQP ACB ∆∆49AQPACB S S ∆∆∴= 设4AQP S a ∆=则9ACB S a ∆=2AP PB =122BPQ AQP S S a ∆∆∴== 22:99BPQ ABC a S S a ∆∆∴==. (3)当APQ CQB ∠=∠时∵AB=BC,∴∠A=∠C,∴APQ CQB ∆∆AQ AP BC CQ ∴= 3034203x x x-∴= 解得109x =当CBQ APQ ∠=∠时 ∵AB=BC,∴∠A=∠C,∴CBQ APQ ∆∆CQ BC AQ AP ∴= 3203034x x x∴=-解得:125,10x x ==-(舍去)经检验,x=5是原分式方程的解. 综上所述,当109x =或x=5时相似. 【点睛】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.27.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .解析:见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.28.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD :AB =3:1,CE 垂直y 轴于点E .(1)求证:CDE DAO ∽△△;(2)直接写出点B 和点C 的坐标.解析:(1)见解析;(2)B(5,1),C(2,7)【分析】(1)由题意易得∠DCE=∠ADO,根据判定定理可得结论(2)利用相似三角形的性质求得DE、CE可得C点坐标,从而可得B点的坐标【详解】解:(1)证明:∵四边形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO.(2)解:∵△CDE∽△DAO,∴CEOD =DEOA=CDAD,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=13,∴CE=13OD=2,DE=13OA=1,∴OE=7,∴C(2,7),利用平移的性质可得B(5,1)..【点睛】本题主要考查相似三角形的判定及性质,熟练掌握三角形相似的判定定理及性质是解决本题的关键。
九年级数学下册《第二十七章-相似》单元检测卷及答案-人教版
九年级数学下册《第二十七章 相似》单元检测卷及答案-人教版一、选择题1.下列各组图形,一定相似的是( )A .两个等腰梯形B .两个正方形C .两个菱形D .两个矩形2.若线段a =2cm ,线段b =8cm ,则a ,b 的比例中项c 为( )A .4cmB .5cmC .6cmD .32cm3.如图,已知ABC EDC ∽,23AC EC =::若AB 的长度为6,则DE 的长度为( )A .4B .9C .12D .13.54.如图,它是物理学中小孔成像的原理示意图,已知物体30AB =,根据图中尺寸()AB CD ,则CD 的长应是( )A .15B .30C .20D .105.如图,五边形ABCDE 与五边形A B C D E '''''是位似图形,O 为位似中心12OD OD ='则A B AB '':为( )A .2:3B .3:2C .1:2D .2:16.在ABC 中,点D 、E 分别在AB 、AC 上,如果AD :1BD =:3,那么下列条件中能够判断//DE BC 的是( )A .14DE BC = B .14AD AB = C .14AE AC = D .14AE EC = 7.如图,ABC 为等边三角形,点D ,E 分别在边BC ,AB 上60ADE ∠=︒,若4BD DC =和2.4DE =则AD 的长为( )A .1.8B .2.4C .3D .3.28.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高为1.5m ,测得AB =3m ,BC =7m ,则建筑物CD 的高是( )mA . 3.5B .4C .4.5D .59.如图,ABC 是等边三角形,ABD 是等腰直角三角形90BAD ∠=︒,AE BD ⊥于点E ,连接CD 分别交AE ,AB 于点F ,G 过点A 作AH CD ⊥分别交CD ,BD 于点P ,H 则下列结论不正确的是( )A .4BAC ADC ∠=∠B .DF AH =C .2BH PF =D .若23CG BG =,则32AG FG =10.如图,小明在边长均为1的正方形网格中,分别作了ABC 和111A B C ,其中ABC 三个顶点坐标分别为()01A ,,()22B ,和()31C ,,若ABC 和111AB C 是以原点O 为位似中心的位似图形,则11ABA B =( )A .14B .13C .12D .32二、填空题11.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A B C D E ''''',已知5cm OA =10cm OA '=五边形ABCDE 的周长为50cm ,则五边形A B C D E '''''的周长是 cm .12.如图,直线AD ,BC 交于点O ,AB EF CD 若2AO =,1OF =和2FD =.则BEEC的值为 .13.如图,点P 在反比例函数()0ky k x=>的图象上,PA x ⊥轴于点A PB y ⊥,轴于点B PA PB =,一次函数1y x =+与PB 交于点D ,若D 为PB 的中点,则k 的值为 .14.为了测量校园水平地面上一棵不可攀爬的树的高度,小明利用物理学中“光的反射定律”做了如下的探索:如图,找一面很小的镜子放在合适的位置(点E 处),小明站在点D 处刚好能在镜子里看到树梢顶点,此时小明看镜子的视线与地面的夹角为30︒(即30CED ∠=︒),镜子到大树的水平距离BE 为30米,则树的高度为 米(注:反射角等于入射角,结果若有根号则保留根号).三、解答题15.如图,四边形ABCD∽四边形A 1B 1C 1D 1,∽A =80°,∽B =75°,∽C =125°,求x ,∽D 1.16.如图,ABC 是O 的内接三角形,点D 是AC 的中点,弦BD 交AC 于点E.CDE 与BDC相似吗?为什么?17.如图,小树AB 在路灯O 的照射下形成投影BC .若树高2m AB =,树影3m BC =,树与路灯的水平距离4m BP =,求路灯的高度OP .18.已知:∽ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)( 1 )画出∽ABC 向下平移4个单位得到的∽A 1B 1C 1;( 2 )以B 为位似中心,在网格中画出∽A 2BC 2,使∽A 2BC 2与∽ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;( 3 )∽A 2BC 2的面积是 平方单位.四、综合题19.如图,ABCD 中,BAD ∠的平分线交BC 于点E ,ABC ∠的平分线交AD 于点F .(1)求证:ABEF 是菱形: (2)若ABCD FDCE ∽,则BCCD的值为 . 20.如图,AB 为∽O 的直径,E 为∽O 上一点,点C 为EB 的中点,过点C 作CD∽AE ,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是∽O 的切线;(2)若DE=1,DC=2,求∽O 的半径长.21.如图,已知点()36B -,,()30C -,以坐标原点O 为位似中心,在第四象限将OBC 缩小为原来的三分之一(即新图形与原图形的相似比为13:).(1)画出缩小后的图形; (2)写出B 点的对应点坐标;(3)如果OBC 内部一点M 的坐标为()x y ,,写出点M 经位似变换后的对应点坐标.22.如图,O 是ABC 的外接圆,BC 是O 的直径,点D 是O 外一点,AC 平分BCD ∠,过点A 作直线CD 的垂线,垂足为点D ,连接AD ,点E 是AB 的中点,连接OE .(1)求证:AD 是O 的切线;(2)若O 的直径为10,3OE =,求CD 的长.参考答案与解析1.【答案】B【解析】【解答】解:A 、两个等腰梯形不一定相似,故A 不符合题意;B 、两个正方形一定相似,故B 符合题意;C 、两个菱形不一定相似,故C 不符合题意;D 、两个矩形不一定相似,故D 不符合题意; 故答案为:B【分析】等腰梯形不一定相似,可对A 作出判断;正方形的四个角相等,四条边相等,所有的正方形都相似,可对B 作出判断;菱形的四边相等,两个菱形不一定相似,可对C 作出判断;矩形的四个角相等,两个矩形不一定相似,可对D 作出判断.2.【答案】A 【解析】【解答】解:c 是a b ,的比例中项,且0c >,2c ab ∴=, 28a b ==,, 216c ∴=,4c ∴=, (负根舍去) 故答案为:A【分析】由c 是a b ,的比例中项,可得2c ab =,继而求解.3.【答案】B【解析】【解答】解:∵ABC EDC ∽∴23AB AC ED EC == ∵AB 的长度为6 ∴DE=9 故答案为:B【分析】根据相似三角形的性质即可求解。
人教版九年级下册《第27章相似》单元评估检测试卷(有答案)-(数学)
人教版九年级数学下册第27章相似单元评估检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知3x =25,则x的值是()A.103B.152C.310D.2152. 如图,C是线段AB上的一点,且AC:CB=2:3,那么AB:BC等于()A.2:3B.5:3C.3:2D.3:53. 如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.24. 如图所示,点C是线段AB的黄金分割点,且AC<BC,AC=mBC,则m的值是()A.√5−12B.√5+12C.3−√52D.√5−25. 如图,∠PAQ=∠MBN=30∘,∠MBN的顶点B在射线AP上,射线BM和射线BN分别交射线AQ于点C、D,当∠MBN绕点B转动时.若AB=2√3,则CA⋅CD的最小值是()A.3B.√3C.4D.126. 如图,△ABC中,D为BC边上一点,且BD:DC=1:2,E为AD中点,则S△ABE:S△ABF=()A.2:1B.1:2C.1:3D.2:37. 已知两个相似三角形周长分别为8和6,则它们的面积比为()A.4:3B.16:9C.2:√3D.√3:√28. 如图L1 // L2 // L3,AB=4,DE=3,EF=6,则BC的长()A.4B.6C.8D.109. 如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是()A.△ABE∽△CBDB.∠EBD=∠EDBC.AD=BFD.sin∠ABE=AEDE10. 把矩形ABCD对折,折痕为MN,且矩形DMNC与矩形ABCD相似,则矩形ABCD的长AD与宽AB的比为()A.1:√3B.1:√2C.√3:1D.√2:1二、填空题(本题共计 8 小题,每题 3 分,共计24分,)11. 如果两个相似多边形面积的比为4:9,那么这两个相似多边形周长的比是________.12. 若两个相似三角形的面积比是4:9,则这两个三角形的周长比为________;对应边上的中线的比为________.13. 如图,在矩形ABCD中,点E在AD上,EF⊥BE交CD于F,连接BF,则图中与△ABE一定相似的三角形是________.14. 在△ABC中,AB>BC>AC,D是AC的中点,过点D作直线L,使截得的三角形与原三角形相似,这样的直线L有________条.15. 在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米,同时另一名同学测得一棵树落在学校墙壁上的影长为1.2米,此树落在地面上的影长为2.4米,则此树的高为________米.16. 如图,在△ABC中,AB=AC,∠A=36∘,BD平分∠ABC交AC于点D,下列结论中:①BD=BC=AD;②S△ABD:S△BCD=AD:DC;③BC2=CD⋅AC;④若AB=2,则BC=√2−1,其中正确结论的个数是________个.17. 如图所示,为了测量操场上的树高,小明拿来一面小镜子,平放在离树根部12m的地面上,然后他沿着树根和镜子所在直线后退,当他退了4m时,正好在镜中看见树的顶端.若小明的目高为1.6m,则树的高度是________.18. 在四边形ABCD中,E是对角线AC上的一点,EF // AB,EG // CD,求EFAB +EGCD=________.三、解答题(本题共计 6 小题,共计66分,)19.(10分) 如图,AD是直角三角形△ABC斜边上的高(1)若AD=6cm,CD=12cm,求BD的长;(2)若AB=15cm,BC=25cm,求BD的长.20.(10分) 如图,在直角坐标系中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).(1)在第一象限内找一点P,以格点P、A、B为顶点的三角形与△ABC相似但不全等,请写出符合条件格点P的坐标;(2)请用直尺与圆规在第一象限内找到两个点M、N,使∠AMB=∠ANB=∠ACB.请保留作图痕迹,不要求写画法.21.(10分) 如图所示,在矩形ABCD中,对角线AC,BD相交于点O.(1)过点O作0E⊥BC于点E,连接DE交OC于点F,作FG⊥BC于G点,则△ABC与△FGC是位似图形吗?若是,请说出位似中心,并求出位似比;若不是,请说明理由.(2)连接DG交AC于点H,作HI⊥BC于I,试确定CIBC的值.22.(12分) 如图,有三条线段AB、BD、DC,AB=6,BD=8,DC=2,且AB // DC.点E和点F分别为BD上的两个动点,且DFBE =13.(1)求证:△ABE∽△CDF;(2)当EF=2时,求BE的长度;(3)在以上2个问题的解题过程中,概括(或者描述)你所用到数学基本知识(定义、定理等)或者是利用的数学思想方法.(共写出2点即可)23. (12分)如图是几组三角形的组合图形,图①中,△AOB ∽△DOC ;图②中,△ABC ∽△ADE ;图③中,△ABC ∽△ACD ;图④中,△ACD ∽△CBD .小Q 说:图①、②是位似变换,其位似中心分别是O 和A .小R 说:图③、④是位似变换,其位似中心是点D .请你观察一番,评判小Q ,小R 谁对谁错.24.(12分) 如图1,点C 将线段AB 分成两部分,如果AC AB =BC AC ,那么称点C 为线段AB 的黄金分割点,某教学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似的给出“黄金分割线”的定义:“一直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图2,在△ABC 中,∠A =36∘,AB =AC ,∠C 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线,并证明你的结论;(2)如图3,在边长为1的正方形ABCD 中,点E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.答案1. B2. B3. D4. A5. A6. D7. B8. C9. A10. D11. 2:312. 2:32:313. △DEF14. 415. 4.216. 417. 4.8m18. 119. 解:(1)∵AD是直角三角形△ABC斜边上的高,∴AD2=CD⋅BD,∴BD=6212=3(cm);(2)∵AD是直角三角形△ABC斜边上的高,∴AB2=BD⋅BC,∴BD=15225=9(cm).20. 解:(1)如图所示:P(1, 4)或P′(3, 4);(2)作△ABC的外接圆,在ACB^上取两点M,N即可.21. 解:(1)∵FG⊥BC,AB⊥BC,∴FG // AB,∴△ABC∽△FGC,△ABC与△FGC对应顶点的连线相交于一点,对应边互相平行或重合,∴△ABC与△FGC是位似图形,位似中心是点C,∵BO=OD,OE // CD,∴DCOE =BDOB=2∴CFFO =DCOE=2,∴CGCE =23,∴CGCB =13,则△ABC与△FGC的位似比为3;(2)由(1)得,EGEC =13,FG // CD,∴FGCD =EGEC=13,∴CICG =CHCF=34,又CGCE=23,∴CICE =12,∴CIBC =14.22. (1)证明:∵AB // CD∴∠B=∠D,又∵CDAB =13,DEBE=13,∴△ABE∽△CDF.(2)解:设BE=x,则DF=13x,又∵BD=8,∴x+13x=8−2,解得:x=92,∴BE的长度为:92.(3)解:①两直线平行,内错角相等②相似三角形对应边成比例③两边对应成比例,且夹角相等的两个三角形相似④分类讨论思想⑤数形结合思想⑥方程思想(列方程解决实际问题).23. 解:根据位似图形的定义得出:小Q 对,①,②都可以看成位似变换,位似中心分别为O 、A ,③、④虽然都存在相似三角形,但对应顶点的连线不相交于一点,而且对应边也不平行,所以③、④不是位似变换.24. 解:(1)直线CD 是△ABC 的黄金分割线.理由:如图2,∵AB =AC ,∠A =36∘,∴∠ABC =∠ACB =180∘−36∘2=72∘. ∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36∘, ∴∠BDC =72∘=∠B ,∠A =∠ACD ,∴BC =DC ,AD =DC ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC BA ,∴BD DA =DA BA .∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB , ∴S △BCDS △ADC =S △ADC S △ABC ,∴直线CD 是△ABC 的黄金分割线;(2)设BE =x ,如图3,∵正方形ABCD 的边长为1,∴S △ABE =12AB ⋅BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1−12x .∵直线AE 是正方形ABCD 的黄金分割线,∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD , ∴S 四边形ADCE 2=S △ABE ⋅S 正方形ABCD ,∴(1−12x)2=12x ⋅1,整理得:x 2−6x +4=0,解得:x 1=3+√5,x 2=3−√5.∵点E 是边BC 上一点,∴x <1,∴x =3−√5,∴BE 长为3−√5.。
人教版数学九年级下册:第27章 相似 单元测试(附答案)
第27章 相似 单元测试(全卷总分150分,考试时间120分钟)一、选择题(每小题4分,共40分) 1.下列图形中,不是相似图形的是( )A B C D 2.下列四条线段中,不是成比例线段的为( )A .a =3,b =6,c =2,d =4B .a =4,b =6,c =5,d =10C .a =1,b =2,c =6,d = 3D .a =2,b =5,c =15,d =2 3 3.如图,已知直线l 1∥l 2∥l 3,AB =4,BC =6,DE =3,则EF 为( )A .2B .4.5C .6D .8第3题图 第5题图 第6题图 第7题图 第8题图4.下列说法中正确的有( )①位似图形都相似;②两个等腰三角形一定相似;③若两个相似多边形的面积比为4∶9,则周长的比为16∶81;④若一个三角形的三边分别比另一个三角形的三边长2 cm ,则这两个三角形一定相似.A .1个B .2个C .3个D .4个5.已知△ABC 在平面直角坐标系中的位置如图所示,以O 为位似中心,把△ABC 放大2倍得到△A ′B ′C ′,那么A ′的坐标为( )A .(-8,-4)B .(-8,4)C .(8,-4)D .(-8,4)或(8,-4)6.如图,在△ABC 中,D ,E 分别为边AB ,AC 的中点,已知△ADE 的面积为4,那么△ABC 的面积是( )A .8B .12C .16D .207.如图所示,△ABC 中,若DE ∥BC ,EF ∥AB ,则下列比例式正确的是 )A.AD DB =DE BC B.BF BC =EF AD C.AE EC =BF FC D.EF AB =DEBC8.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,下列条件中不能判断△ABC ∽△AED 的是( )A .∠AED =∠B B .∠ADE =∠C C.AD AE =AC AB D.AD AB =AE AC9.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )10.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过P 点的直线交AB 于点Q ,若以A ,P ,Q 为顶点的三角形和以A ,B ,C 为顶点的三角形相似,则AQ 的长为( )A .3B .3或43C .3或34 D.43二、填空题(每小题3分,共30分)11.若两个相似多边形的对应边分别为4 cm 和8 cm ,则它们的相似比为 .12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是 .第12题图 第15题图 第16题图13.在比例尺为1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm ,那么甲、乙两个城市之间的实际距离应为 km.14.在△ABC 和△A ′B ′C ′中,∠C =∠C ′=90°,AC =12,AB =15,A ′C ′=8,则当A ′B ′= 时,△ABC ∽△A ′B ′C ′.15.如图,已知AD AB =DEBC ,请添加一个条件,使△ADE ∽△ABC ,这个条件可以是 .(写出一个条件即可)16.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是 . 17.如图,若五边形ABCDE 与五边形A ′B ′C ′D ′E ′位似,对应边CD =2,C ′D ′=3.若位似中心O 到A 的距离为6,则O 到A ′的距离为9.第17题图 第18题图 第19题图 第20题图18.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A(1,0)与A ′(-2,0)是对应点,△ABC 的面积是32,则△A ′B ′C ′的面积是 .19.如图,甲、乙两楼楼顶上的点A 和点E 与地面上的点C 这三点在同一条直线上,点B ,D 分别在点E ,A 的正下方且D ,B ,C 三点在同一条直线上,B ,C 相距30米,D ,C 相距50米,乙楼高BE 为18米,则甲楼高AD 为 . 20.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为 米. 三、(本大题12分)21.如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:AD BE =ACBC.四、(本大题12分)22.已知:△ABC 在平面直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是1个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2∶1,点C 2的坐标是 ; (3)△A 2B 2C 2的面积是 平方单位.五、(本大题14分)23.如图,在锐角△ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE ∽△ABC ; (2)若AD =3,AB =5,求AFAG 的值.六、(本大题14分)24.如图所示,在⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于点D,OC交AB于点E.(1)求∠D的度数;(2)求证:AC2=AD·CE.七、(本大题12分)25.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3 m,标杆与旗杆的水平距离BD =15 m,人的眼睛到地面的高度EF=1.6 m,人与标杆CD的水平距离DF=2 m(如图),求旗杆AB的高度.八、(本大题16分)26.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于点F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)点P在何处时,△PFD∽△BFP,并说明理由.参考答案:一、选择题(每小题4分,共40分)二、填空题(每小题3分,共30分)11. 1∶2.12. 16.13. 800 .14. 10 .15.答案不唯一,如:∠D=∠B.16. 2∶3.17. 9.18.6.19.30米.20.9.5.三、(本大题12分)21.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°.又∵∠ACD=∠BCE,∴△ACD∽△BCE.∴ADBE=ACBC.四、(本大题12分)22.(1)(2,-2);(2)(1,0);(3)10.五、(本大题14分)23.解:(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°.∵∠EAF=∠GAC,∴∠AED=∠ACB.又∵∠EAD=∠BAC,∴△ADE∽△ABC.(2)由(1)可知:△ADE ∽△ABC , ∴AD AB =AE AC =35. 由(1)可知:∠AFE =∠AGC =90°, 又∵∠EAF =∠GAC , ∴△EAF ∽△CAG. ∴AF AG =AE AC .∴AF AG =35. 六、(本大题14分) 24.解:(1)连接OA.∵∠ABC =15°, ∴∠AOC =2∠ABC =30°.∵OA =OC ,∴∠OAC =∠OCA =180°-30°2=75°.∵∠BAC =45°,∠ABC =15°,∴∠ACB =120°. ∴∠OCB =∠ACB -∠OCA =120°-75°=45°. ∵OC ∥AD ,∴∠D =∠OCB =45°.(2)证明:∵∠ABC =15°,∠OCB =45°,∴∠AEC =∠ABC +∠OCB =60°. ∵∠ACB =120°,∴∠ACD =60°.∴∠AEC =∠ACD =60°. 又∵∠D =∠BAC =45°,∴△ACE ∽△DAC. ∴AC AD =CE AC,即AC 2=AD ·CE. 七、(本大题12分) 25.解:过点E 作BD 的平行线EH ,分别交CD ,AB 于G ,H. ∵CD ⊥BF ,AB ⊥BF ,∴CG ∥AH.∴△ECG ∽△EAH. ∴CG AH =EG EH ,即1.4AH =217.解得AH =11.9. ∴AB =AH +BH =11.9+1.6=13.5. 答:旗杆AB 高13.5 m.八、(本大题16分)26.解:(1)根据题意得:PD =PE ,∠DPE =90°,∴∠APD +∠QPE =90°.∵四边形ABCD 是正方形,∴∠A =90°. ∴∠ADP +∠APD =90°. ∴∠ADP =∠QPE.∵EQ ⊥AB ,∴∠A =∠Q =90°. 在△ADP 和△QPE 中, ⎩⎪⎨⎪⎧∠A =∠Q ,∠ADP =∠QPE ,PD =EP ,∴△ADP ≌△QPE(AAS).∴PQ =AD =1. (2)∵△PFD ∽△BFP ,∴PF BF =PD BP ,即PB BF =DP PF .∵∠ADP =∠EPB ,∠CBP =∠A ,∴△DAP ∽△PBF. ∴PD FP =AP BF ,AP BF =PBBF.∴PA =PB. ∴PA =12AB =12.故当PA =12时,即点P 是AB 的中点时,△PFD ∽△BFP.。
人教版数学九年级下学期第27章《相似》单元考试测试卷(配答案)
人教版数学九年级放学期期第 27 章《相像》单元测试卷(配答案)(满分120 分,限时120 分钟)一、选择题(每题 3 分,共 30 分 )1.以下四条线段为成比率线段的是( B )A .a= 10,b= 5, c=4, d= 7B . a= 1, b= 3,c=6, d= 2C. a= 8, b=5, c= 4,d= 3 D . a=9, b=3,c= 3, d= 62.两个相像多边形的面积比是9∶ 16,此中较小多边形的周长为36 cm,则较大多边形的周长为( A )A .48 cm B. 54 cm C. 56 cm D. 64 cm3.如图,△ABC 中,∠ A = 78°,AB = 4,AC = 6.将△ ABC 沿图示中的虚线剪开,剪下的暗影三角形与原三角形不相像的是( C )4.如图,为估量某河的宽度,在河对岸边选定一个目标点 A ,在近岸取点B, C,D ,使得 AB ⊥BC ,CD⊥ BC ,点 E 在 BC 上,而且点 A, E, D 在同一条直线上.若测得BE = 20 m, EC= 10 m, CD = 20 m,则河的宽度AB 等于 ( B )A .60 mB .40 m C. 30 m D . 20 m,第 4 题图 )5.如图, E(- 4,2) ,F(- 1,- 1),以,第 5 题图 )O 为位似中心,按比率尺1∶2 把△ EFO,第 6 题图 )减小,则点 E 的对应点 E′的坐标为( A )A .(2,- 1)或 (- 2,1)B . (8,- 4)或 (- 8, 4) C. (2,-1) D . (8,- 4)6.如图,若∠ 1=∠ 2=∠ 3,则图中的相像三角形有( D )A .1 对B. 2 对C.3 对D. 4 对7.如图,在平行四边形 ABCD 中,点 E 在边 DC 上, DE ∶ EC= 3∶1,连结 AE 交 BD 于点 F,则△ DEF 的面积与△ BAF 的面积之比为 ( B )A .3∶ 4 B. 9∶16 C. 9∶ 1 D . 3∶ 1,第 7 题图 ),第 8 题图 ),第 9 题图 ),第 10 题图 )8.如图,在平面直角坐标系的4× 4 的正方形方格中,△ABC是格点三角形(三角形的三个极点是小正方形的极点 ),若以格点 P, A , B 为极点的三角形与△ABC 相像 (全等除外 ),则格点 P 的坐标是 ( D )A .(1, 4) B. (3, 4) C.(3 ,1)D. (1, 4)或 (3, 4)9.如图,在四边形 ABCD 中,∠ B= 90°,AC = 4, AB ∥CD , DH 垂直均分 AC ,点 H 为垂足.设AB = x, AD =y,则 y 对于 x 的函数关系用图象大概能够表示为 ( D )10.如图,在四边形ABCD 中, AD ∥ BC,∠ABC = 90°, E 是 AB 上一点,且 DE ⊥CE.若 AD = 1,BC =2, CD= 3,则 CE 与 DE 的数目关系正确的选项是( B )A .CE=3DEB .CE=2DE C. CE=3DE D. CE= 2DE二、填空题 (每题 3 分,共 24 分 )3.6 厘米,那么A, B 两地的实质距离11.假如在比率1∶ 2000000 的地图上,A ,B 两地的图上距离为为__72__千米.12.如图,已知∠ A =∠ D,要使△ ABC ∽△ DEF ,还需增添一个条件,你增添的条件是 __AB ∥ DE (答案不独一 )__.(只要写一个条件,不增添协助线和字母 ),第 12 题图 ),第 13题图 ),第 14 题图 ),第 15 题图 )13.如图,在△ ABC 中,点 D,E,F 分别在 AB ,AC ,BC 上,DE ∥BC, EF∥ AB. 若 AB = 8,BD = 3,12BF =4,则 FC 的长为 __ 5 __.14.如图,在△ ABC 中, AB = 2, AC = 4,将△ ABC 绕点 C 按逆时针方向旋转获得△ A ′ B′ C,使CB ′∥ AB ,分别延伸 AB , CA ′订交于点 D,则线段 BD 的长为 __6__.2 15.如图,矩形 EFGH 内接于△ ABC ,且边 FG 落在 BC 上,若 AD ⊥BC ,BC=3,AD = 2,EF=3EH,3那么 EH 的长为 __ __.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池 ABCD ,东边城墙 AB 长 9 里,南边城墙 AD 长 7 里,东门点E,南门点 F 分别是 AB ,AD 的中点,EG⊥ AB ,FH⊥ AD ,EG= 15 里,HG 经过 A 点,则 FH= __1.05__ 里.,第 16 题图 ),第 17 题图 ),第 18题图 )17. 如图,点 M 是 Rt △ ABC 的斜边 BC 上异于 B , C 的一点 ,过 M 点作直线截△ ABC ,使截得的三角形与△ ABC 相像,这样的直线共有 __3__条.18. 如图,在矩形 ABCD 中, E 是 AD 边的中点 , BE ⊥ AC 于点 F ,连结 DF ,剖析以下四个结论:①△AEF ∽△ CAB ;② CF = 2AF ;③ DF = DC ;④ S 四边形 CDEF = 5S △ABF .此中正确的结论有 __①②③④ __.(填序号 )2三、解答题 (共 66 分)19. (8 分 )图,△ ABC 三个极点的坐标分别为 A(0 , - 3), B(3 , - 2), C(2, - 4),正方形网格中 ,每个小正方形的边长是 1 个单位长度.(1)画出△ ABC 向上平移 6 个单位获得的△ A 1B 1C 1;(2)以点 C 为位似中心 ,在网格中画出△ AB C ,使△ A B C 与△ ABC 位似,且△ A B C 与△ ABC 的2 222 2 2 2 2 2相像比为 2∶ 1,并直接写出点 A 2 的坐标.解: (1)图略(2)图略, A 2(-2, - 2)20. (8 分 )如图,已知 AB ∥ CD , AD ,BC 订交于点 E , F 为 BC 上一点 ,且∠ EAF =∠ C.求证: (1)∠ EAF =∠ B ; (2)AF 2 = FE · FB.解: (1)∵ AB ∥CD , ∴∠ B =∠ C ,又∠ C =∠ EAF , ∴∠ EAF =∠ BAFFE , ∴ AF 2= FE · FB(2)∵∠ EAF =∠ B ,∠ AFE =∠ BFA , ∴△ AFE ∽△ BFA ,则 BF=FA21.(9 分 )如图 ,已知 B ,C ,E 三点在同一条直线上 ,△ ABC 与△ DCE 都是等边三角形 ,此中线段 BD 交AC 于点 G ,线段 AE 交 CD 于点 F.求证: (1)△ ACE ≌△ BCD ; (2) AG GC = AFFE .解: (1)∵△ ABC 与△ CDE 都是等边三角形 ,∴ AC = BC , CE = CD , ∠ ACB =∠ DCE = 60° ,∴∠ ACB +∠ ACD =∠ DCE +∠ ACD ,即∠ ACE =∠ BCD ,可证△ ACE ≌△ BCD (SAS) (2)∵△ ACE ≌△ BCD , ∴∠ AEC =∠ BDC ,可证△ GCD ≌△ FCE (ASA ),∴ CG =CF ,∴△ CFG 为等边三角形 ,∴∠ CGF =∠ ACB= 60° , ∴ GF ∥ CE , ∴AG= AFGC FE22. (9 分 )王亮同学利用课余时间对学校旗杆的高度进行丈量直搁置于旗杆一侧的地面上 ,测得标杆底端距旗杆底端的距离为正直漂亮不到旗杆顶端时为止 ,测得此时人与标杆的水平距离为,他是这样丈量的:把长为 3 m 的标杆垂15 m ,而后往退后 ,直到视野经过标杆顶2 m ,已知王亮的身高为1.6 m ,请帮他计算旗杆的高度. (王亮眼睛距地面的高度视为他的身高)解:依据题意知 AB ⊥ BF , CD ⊥ BF , EF ⊥ BF , EF = 1.6 m ,CD = 3 m , FD =2 m , BD = 15 m ,过 E点作 EH ⊥ AB ,交 AB 于点 H ,交 CD 于点 G ,则 EG ⊥CD , EH ∥FB ,EF = DG = BH , EG = FD ,CG =EGCG 2 3- 1.6 , ∴AH = 11.9m ,因此 AB = AH + HB = AH CD - EF , ∴△ ECG ∽△ EAH , ∴ EH = AH ,即2+ 15=AH +EF =11.9+ 1.6= 13.5(m),即旗杆的高度为 13.5 m23.(10 分 )如图 ,在△ ABC 中,以 AC 为直径的⊙ O 与边 AB 交于点 D ,点 E 为⊙ O 上一点 ,连结 CE 并延伸交 AB 于点 F ,连结 ED.(1)若∠ B +∠ FED = 90° ,求证: BC 是⊙ O 的切线; (2)若 FC = 6, DE = 3,FD = 2,求⊙ O 的直径.解: (1)∵∠ A +∠ DEC =180° ,∠ FED +∠ DEC = 180° , ∴∠ FED =∠ A , ∵∠ B +∠ FED = 90° ,∴∠ B +∠ A = 90° ,∴∠ BCA = 90° ,∴ BC 是⊙ O 的切线 (2)∵∠ CFA =∠ DFE , ∠ FED =∠ A , ∴△DFDE 2 3,解得 AC = 9,即⊙ O 的直径为 9FED ∽△ FAC , ∴FC =AC , ∴6= AC24. (10 分 )如图 ,在平行四边形 ABCD 中,过点 A 作 AE ⊥ BC ,垂足为 E ,连结 DE ,F 为线段 DE 上一点 ,且∠ AFE =∠ B.(1)求证:∠ DAF =∠ CDE ; (2)△ ADF 与△ DEC 相像吗?为何?(3)若 AB = 4,AD = 3 3, AE = 3,求 AF 的长.解: (1)∵∠ AFE =∠ DAF +∠ FDA ,又∵四边形ABCD 为平行四边形,∴∠ B =∠ ADC =∠ ADF +∠CDE ,又∵∠ AFE =∠ B ,∴∠ DAF =∠ CDE (2)△ ADF ∽△ DEC ,原因:∵四边形ABCD 是平行四边形,∴AD ∥ BC ,∴∠ ADF =∠ CED ,由 (1)知∠ DAF =∠ CDE ,∴△ ADF ∽△ DEC (3)∵四边形ABCD是平行四边形,∴ AD ∥ BC ,CD = AB = 4,又∵ AE ⊥ BC ,∴ AE ⊥AD ,在Rt △ ADE 中, DE =AD 2+ AE 2=( 33)2+ 32= 6,∵△ ADFAD AF3 3∽△ DEC ,∴ DE = CD ,∴ 6=AF4 ,∴ AF = 2 325. (12 分 )如图① ,在 Rt△ ABC 中,∠BAC =90°, AD ⊥ BC 于点 D,点 O 是 AC 边上一点,连结BO 交 AD 于点 F, OE⊥ OB 交 BC 边于点 E.(1)求证:△ ABF ∽△ COE;AC= 2 时,如图② ,求OF的值;(2)当 O 为 AC 的中点,AB OEAC= n 时,请直接写出OF 的值.(3)当 O 为 AC 边中点,AB OE解: (1)∵ AD ⊥ BC ,∴∠ DAC +∠ C= 90° .∵∠ BAC = 90°,∴∠ DAC +∠ BAF = 90°,∴∠ BAF =∠C. ∵ OE⊥ OB ,∴∠ BOA +∠ COE = 90°,∵∠ BOA +∠ ABF =90°,∴∠ ABF =∠ COE ,∴△ ABF ∽△COE ( 2)过 O 作 AC 的垂线交 BC 于点 H ,则 OH ∥ AB ,由 (1)得∠ ABF =∠ COE ,∠BAF =∠ C ,∴∠ AFB =∠ OEC ,∴∠ AFO =∠ HEO ,而∠ BAF =∠ C ,∴∠ FAO =∠ EHO ,∴△ OEH ∽△ OFA ,∴OA ∶1 1 OH = OF ∶ OE ,又∵ O 为 AC 的中点, OH ∥AB ,∴ OH 为△ ABC 的中位线,∴ OH =2AB , OA = OC =2 AC OF OFAC ,而AB = 2,∴ OA ∶ OH =2∶ 1,∴ OF ∶ OE = 2∶ 1,即OE = 2 (3)OE = n。
人教版九年级下数学《第27章相似》单元检测卷含答案
第27章相似单元检测卷姓名:__________ 班级:__________一、选择题(每小题3分;共36分)1.如果=,那么的值是()A. B. C. D.2.已知线段a=2,b=8,线段c是线段a、b的比例中项,则c=()A. 2B. ±4C. 4D. 83.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A. 10B. 11C. 12D. 164.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C. 2 D. 35.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C. D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A. 30°B. 50°C. 40°D. 70°7.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm28.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A. AE:EC=AD:DBB. AD:AB=DE:BCC. AD:DE=AB:BCD. BD:AB=AC:EC9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S为()四边形EFBCA. 2:5B. 4:25C. 4:31D. 4:3510.下列两个图形一定相似的是()A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形11.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC 的面积为2,那么四边形ABED的面积是()A. B. C. D.12.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A. 16:9B. 4:3C. 2:3D. 256:81二、填空题(共9题;共27分)13.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABC的面积为a,则△ACD的面积为________ .14.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15.若= ,则=________.16.如图,在△ABC中,若DE∥BC ,,DE=4cm,则BC的长为________cm.17.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________18.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=________ .19. 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.20.已知= ,则的值是________.21.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB=,则此三角形移动的距离AA′=________.三、解答题(共4题;共37分)22.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?24.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;当AD=4,BE=1时,求CF的长.25.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.参考答案一、选择题C C C BD A B A C A A B二、填空题13.14.9 15.16.12 17.618 . 6 19.9 20.21.-1三、解答题22.解:∵矩形ABCD∽矩形ECDF,∴,即∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴23.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.24.解:(1)∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴,∴,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3,∴,∴,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴,∴,∴CF=4.25.(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.。
第27章 相似单元试卷(含答案)
第二十七章 相似单元试卷(考试时间:100分钟 满分100分 命题:林年生)班级 座号 姓名一、填空题(每小题2分,共24分) 1、若3a=4b ,则a:b= 。
2、□ABCD 的对角线AC 与BD 交于点O ,E 为OA 的中点,则AE:AC= 。
3、如果两个三角形相似,其中一个三角形两个内角分别是40°、60°,那么另一个三角形的最大角为 。
4、如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点(DE 不平行于BC ),当 时,△ADE 与△ABC 相似。
EDCBA DCB A(第4题图) (第5题图) 5、如图,BC 平分∠ABD ,AB=12,BD=15,如果∠ACB= 6、如图,在直角坐标系中,有两个点A (4,0)、B 与点A 不重合),当点C 坐标为 时,使得由B 、O 、C 三点组成的三角形和△AOB 相似。
7、如图,在平行四边形ABCD 中,找出一对是位似图形的三角形: 。
8、两个相似多边形最长边分别为10cm 和25cm ,它们的周长之差为60cm ,则这两个多边形的周长分别是 。
9、如图,若∠B=∠C ,则图中的相似三角形有 。
10、如图,AB 是斜靠在墙脚的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm ,则梯子长为 。
(第9题图) 11、如图,E 、P 、F 分别是AB 、AC 、AD 的中点,则四边形AEPE 与四边形ABCD(填“是”或“不是” )位似图形。
12、在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形。
如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使△A 1B 1C 1与格点三角形ABC 相似(相似比不为1)。
二、选择题(每小题3分,共18分)13、在△ABC 和△A ′B ′C ′中,若∠A=68°,∠B=40°,∠A ′=68°,∠C ′=72°,则这两个三角形( )A 、既全等又相似B 、相似C 、全等D 、无法确定14、一个运动场的实际面积是6400m 2,那么其在比例尺1:1000的地图上的面积是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知x:y=2:5,下列等式中正确的是()A.(x+y):y=2:5B.(x+y):y=5:2C.(x+y):y=3:5D.(x+y):y=7:52.如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.23.如图,点D在BC上,∠ADC=∠BAC,下列结论中,正确的是()A.△ABC∽△DACB.△ABC∽△ADCC.△ABC∽△DABD.△ABD∽△ACD4.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC⋅BAC.AC2=AB⋅BCD.AC=2BC 5.若三角形的每条边长都扩大为原来的5倍,则下列说法正确的是()A.每个角都扩大5倍B.周长扩大5倍C.面积扩大5倍D.无法确定6.如图,在△ABC中,DE // BC,下列比例式成立的是()A.ADDB=DEBCB.DEBC=ACECC.ADDB=AEECD.DBAD=AEEC7.下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①②B.②③C.③④D.②④8.下列命题错误的是()A.两个全等的三角形一定相似B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等9.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍10.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在梯形ABCD中,AB // DC,AB=18cm,DC=8cm,E,F分别是腰AD,BC上的点,且EF // AB,若梯形DEFC∽梯形EABF,那么EF=________cm.12.若△ABC∽△DEF,△ABC与△DEF的周长比为1:2,则△ABC与△DEF的面积比为________.13.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.14.如图,△AOB∽△DOC,且AO=3,OB=4,OD=6,则BC=________.15.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=23AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于________.16.如图,在△ABC中,DE // BC,AE:EC=3:5,则S△ADE:S△ABC=________.17.如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP⋅AB;④AB⋅CP=AP⋅CB,能满足△APC与△ACB相似的条件是________(只填序号).18.如图,梯形ABCD中,AB // CD,∠B=∠C=90∘,点F在BC边上,AB=8,CD= 2,BC=10,若△ABF与△FCD相似,则CF的长为________. 19.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交A8于点F,AF=x(0.2≤x≤0.8),EC=y.则大致能反映y与x之闻函数关系的是________.20.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.22.如图,AB⊥MN,CD⊥MN,垂足分别为点B,D,AB=2,CD=4,BD=3,在直线MN上是否存在点P,能使△PAB与△PCD相似?如果存在,满足上述条件的点P有几个?说明点P与点B,D的距离,并作出图形.23.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.24.已知:线段a、b、c,且a2=b3=c4.(1)求a+bb的值.(2)如线段a、b、c满足a+b+c=27.求a、b、c的值.25.已知△ABC∽△DEF,DEAB=23,△ABC的周长是12cm,面积是30cm2.(1)求△DEF的周长;(2)求△DEF的面积.26.如图,已知△ABC,AB=AC=1,∠A=36∘,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cosA的值(结果保留根号).参考答案1.D2.D3.A4.C5.B6.C7.D8.B9.D10.A11.1212.1:413.2√3cm14.1215.10或6.416.96417.①,②,③18.2或819.y=1x20.4.221.解:如图所示:△A′B′C′和△DEF即为所求.22.解:存在点P,能使△PAB与△PCD相似,满足上述条件的点P有4个.设PB=x,若点P在点B的左侧,如图1,∵∠PBA=∠PCD=90∘,∴当ABCD=PBPD时,△PBA∽△PDC,即24=xx+3,解得x=3,此时PD=6;当ABPD=PBCD时,△PBA∽△CDP,即2x+3=x4,解得x1=−3+√412,x2=−3−√412(舍去),此时PD=3+√412;若点P在线段BD上,如图2,∵∠PBA=∠PCD=90∘,∴当ABCD=PBPD时,△PBA∽△PDC,即24=x3−x,解得x=1,此时PD=2;当ABPD=PBCD时,△PBA∽△CDP,即23−x=x4,无解;若点P在D点右侧,如图3,∵∠PBA =∠PCD =90∘,∴当ABCD =PBPD 时,△PBA ∽△PDC ,即24=xx−3,解得x =−3,舍去; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x−3=x4,解得x 1=3+√412,x 2=3−√412(舍去),此时PD =−3+√413;综上所述,满足上述条件的点P 有4个,当PB =3时,PD =6;当PB =−3+√412时PD =3+√412;当PB =1时,PD =2;当PB =3+√412,PD =−3+√413.23.解:过点B 、B ′分别作BD ⊥x 轴于D ,B ′E ⊥x 轴于E , ∴∠BDC =∠B ′EC =90∘. ∵△ABC 的位似图形是△A ′B ′C , ∴点B 、C 、B ′在一条直线上, ∴∠BCD =∠B ′CE , ∴△BCD ∽△B ′CE . ∴CDCE =BCB ′C , 又∵BCB ′C =12, ∴CDCE =12,又∵点B ′的横坐标是2,点C 的坐标是(−1, 0), ∴CE =3, ∴CD =32.∴OD =52,∴点B 的横坐标为−52.24.解:(1)∵a2=b3,∴a b =23, ∴a+b b=53,(2)设a 2=b 3=c4=k ,则a =2k ,b =3k ,c =4k , ∵a +b +c =27, ∴2k +3k +4k =27, ∴k =3,∴a =6,b =9,c =12. 25.解:(1)∵DEAB =23,∴△DEF 的周长=12×23=8(cm);(2)∵DEAB =23,∴△DEF 的面积=30×(23)2=1313(cm 2). 26.解:(1)∵AB =AC ,∠A =36∘, ∴∠C =∠ABC =12(180∘−∠A)=72∘, ∵BD 平分∠ABC ,∴∠ABD =∠CBD =36∘=∠A ,∴AD=BD,∵∠C=72∘,∠CBD=36∘,∴由三角形内角和定理得:∠BDC=72∘=∠C,∴BD=BC=AD,∵∠C=∠C,∠CBD=∠A,∴△ABC∽△BDC,∴BCCD =ACBC,∴BC2=AC×CD,∵AD=BD=BC,∴AD2=AC×CD=AC×(AC−AD),解关于AD的方程得:AD=√5−12AC=√5−12,即AD=√5−12;(2)如图,过点D作DE⊥AB于点E.由(1)知,AD=BD,则AE=12AB=12,∴cosA=AEAD ,即12√5−12=√5+14,∴cosA的值是√5+14.。