动能定理的综合应用
高二物理动能定理及其应用
成,圆半径比细管的内径大得多),底端与水平地面相切.弹射
装置将一个小物体(可视为质点)以va=5 m/s的水平初速度 由a点弹出,从b点进入轨道,依次经过“8002”后从p点水平 抛出.小物体与地面ab段间的动摩擦因数μ =0.3,不计其他 机械能损失.已知ab段长L=1.5 m,数字“0”的半径R=0.2 m, 小物体质量m=0.01 kg,取g=10 m/s2.求:
后小球继续做圆周运动,经过半个圆周恰好能通过最高点,
则在此过程中小球克服空气阻力所做的功为( ) A.mgR/4 C.mgR/2 B.mgR/3 D.mgR
解析:小球在圆周最低点时,设速度为v1,则 7mg-mg=mv21/R① 设小球恰能通过最高点的速度为v2,则 mg=mv22/R② 设转过半个圆周过程中小球克服空气阻力做的功为W,由动能 定理得
m/s,在这段时间内水平力对物体所做的功为(
A.0 B.8 J C.16 J D.32 J
)
解析:由动能定理知合外力做的功等于动能的变化,又因动能 是标量,没有方向,所以选A. 答案:A
易错点二仅凭经验不按物理规律解题导致出错 自我诊断2如图5-2-2所示,一物块以6 m/s的初速度从曲面A点 下滑,运动到B点速度仍为6 m/s,若物体以5 m/s的初速度仍
答案:1 m
解析:设小物块的质量为m,过A处时的速度为v,由A到D经历的 时间为t,根据动能定理得: 1 v 1 2 m2 mv0 2mgR 2 2 t 由平抛运动规律得: 2 R 1 g 2 x=vt③
v2 m , R
设这一过
1 W f mv 2 . 由动能定理可得: 2
1 可解得:Wf kmgR 2
.
答案:D
题型研练
动能定理和机械能守恒定律的综合应用
(1)小球在A点时的速度大小; 答案 2gh
小球在 A 点时,根据牛顿第二定律得 mg=mv2Ah2 解得 vA= 2gh
12345
(2)小球从C点抛出时的速度大小; 答案 3 2gh
12345
小球恰好水平进入圆轨道内侧运动,小球经过B点时 对轨道的压力9mg,由牛顿第三定律可得,小球经 过B点时圆轨道对小球的支持力为9mg, 根据牛顿第二定律可得 9mg-mg=mv2Bh2 解得 vB=4 gh,从 C 点到 B 点根据机械能守恒定律得12mvC2=12mvB2 +mgh,解得 vC=3 2gh;
12345
(3)要使赛车能通过圆轨道最高点D后沿轨道回到水平赛道EG,轨道半径 R需要满足什么条件? 答案 0<R≤2456 m
12345
当赛车恰好通过最高点 D 时,设轨道半径为 R0,有:mg=mvRD02 从 C 到 D,由动能定理可知:-mgR0(1+cos 37°)=12mvD2-12mvC2,解 得 R0=2456 m 所以轨道半径 0<R≤4265 m.
二、动能定理和机械能守恒定律的综合应用
动能定理和机械能守恒定律,都可以用来求能量或速度,但侧重不同, 动能定理解决物体运动,尤其计算对该物体的做功时较简单,机械能守 恒定律解决系统问题往往较简单,两者的灵活选择可以简化运算过程.
例1 如图,足够长的光滑斜面倾角为30°,质量相等的甲、乙两物块通过 轻绳连接放置在光滑轻质定滑轮两侧,并用手托住甲物块.使两物块都静 止,移开手后,甲物块竖直下落,当甲物块下降0.8 m时,求乙物块的速 度大小(此时甲未落地,g=10 m/s2).请用机械能守恒定律和动能定理分 别求解,并比较解题的难易程度. 答案:2 m/s
(3)小球通过BC后压缩弹簧,压缩弹簧过程中弹簧弹
高三物理教案动能定理及其应用(5篇)
高三物理教案动能定理及其应用(5篇)高三物理教案动能定理及其应用(5篇)作为一位兢兢业业的人民教师,前方等待着我们的是新的机遇和挑战,有必要进行细致的教案准备工作,促进思维能力的发展。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的教案范文。
欢迎分享!高三物理教案动能定理及其应用(精选篇1)1、研究带电物体在电场中运动的两条主要途径带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析:(1)力和运动的关系--牛顿第二定律根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系--动能定理根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.2、研究带电物体在电场中运动的两类重要方法(1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算高三物理教案动能定理及其应用(精选篇2)1、与技能:掌握运用动量守恒定律的一般步骤。
2、过程与:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
动能定理的综合应用含答案
动能定理的综合应用1.如右图所示,半径R=2m 的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h=1.25m ,现将一质量m=0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点并以v=5m/s 的速度水平飞出(g 取10m /s 2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B 点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。
2.如图所示,质量为m =5kg 的摆球从图中A 位置由静止开始摆下,当小球摆至竖直位置到达B 点时绳子遇到B 点上方电热丝而被烧断。
已知摆线长为L =1.6m ,OA 与OB 的夹角为60o ,C 为悬点O 正下方地面上一点,OC 间的距离h =4.8m ,若不计空气阻力及一切能量损耗,g =10m/s 2,求: (1)小球摆到B 点时的速度大小;(2)小球落地点D 到C 点之间的距离; (3)小球的落地时的速度大小3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。
转动中小球运动到最低点时绳子突然断了,求(1)绳子断时小球运动的角速度多大?(2)绳断后,小球落地点与抛出点间的水平距离。
(取g =10m/s 2) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。
轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。
取g=10m/s 2则:(1)试通过计算判断小球能否滑到B 点?(2)若小球能通过B 点,求此时它对轨道的压力为多大。
5.如图所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。
动能定理的综合应用
普遍定理的综合应用举例例13-7 图13.1所示滚轮重3P ,半径为2r ,对质心的回转半径为C ρ,半径为1r 的轴颈沿AB 作无滑动滚动。
滑轮重2P ,半径为r ,回转半径为ρ,物块重1P 。
求:(1)物块的加速度;(2)EF 段绳的张力;(3)D 处约束力。
解:(1)系统在任意位置的动能 设 1()T C =常量222222331222111112222C C C P P v P P T v v g g g g r ρωρ=+++式中112,C r vv v r r r ω==+,代入上式2222331212222121212()()C P P P P r T v g g r g r r g r r ρρ⎡⎤=+++⎢⎥++⎣⎦令222331212221212()()C P P P P r M g g g g r r r r r ρρ=+++++(当量质量或折合质量), 则 2212T Mv =由动能定理2112T T W -=,有21112Mv T Ps -= 两边对时间t 求导数,得1Mva Pv =所以重块的加速度为1122211232212()C P P a g Mr P P P r r r ρρ==++++(2)假想将EF 段绳子剪断,以滑轮与重物为研究对象,如图13.所示。
由动量矩定理2211T d d P P rv Pr F r t g g ρω⎛⎫+=- ⎪⎝⎭图13.1图13.19绳子张力为221T 12P P F P a g g rρ⎛⎫=-+ ⎪⎝⎭ (3)以滚轮为分析对象,受力图如图13.2所示。
由质心运动定理,有3T N 30C P a F FgF P⎧=-⎪⎨⎪=-⎩得:331T T 12C P P rF F a F a g g r r =-=-+N 3F P =例13-8 如图13.3所示,三个均质轮B 、C 、D 具有相同的质量m 和相同的半径R ,绳重不计,系统从静止释放。
动量、动能定理、机械能守恒、能量守恒综合运用
图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
高一物理动能定理的综合应用试题
高一物理动能定理的综合应用试题1.如图所示,在地面上以速度抛出质量为m的物体,抛出后物体落在比地面低h的海平面上,若以地面为零势能参考面,且不计空气阻力。
则:A.物体在海平面的重力势能为mghB.重力对物体做的功为mghC.物体在海平面上的动能为D.物体在海平面上的机械能为【答案】BC【解析】以地面为零势能面,海平面低于地面h,所以物体在海平面上时的重力势能为,选项A错误;重力做功与路径无关,至于始末位置的高度差有关,抛出点与海平面的高度差为h,并且重力做正功,所以整个过程重力对物体做功为mgh,选项B正确;由动能定理,有,选项C正确;整个过程机械能守恒,即初末状态的机械能相等,以地面为零势能面,抛出时的机械能为,所以物体在海平面时的机械能也为,选项D错误。
【考点】考查了动能定理,机械能守恒2.在国际泳联大奖赛罗斯托克站中,中国选手彭健烽在男子3米板预赛中总成绩排名第一,晋级半决赛。
若彭健烽的质量为m,他入水后做减速运动,加速度大小为a,设水对他的作用力大小恒为f,当地重力加速度为g,他在水中重心下降高度h的过程中()A.重力势能增加了 mgh B.机械能减少了fhC.机械能减少了 mah D.动能减少了m(g+a)h【答案】B【解析】运动员在水中重心下降高度h的过程中,重力势能减少了 mgh,选项A 错误;机械能减少量等于除重力以外的其它力做功,即克服阻力做功fh,选项B正确,C错误;根据动能定理,动能减少量等于合外力做功,即mah,选项D 错误。
【考点】动能定理;能量转化规律。
=22m/s的初速度竖直向上抛出一质量m=0.5kg的物3.(12分)在距沙坑表面高h=8m处,以v体,物体落到沙坑并陷入沙坑d=0.3m深处停下。
若物体在空中运动时的平均阻力是重力的0.1倍(g=10m/s2)。
求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?【答案】(1)H=30m (2)F=455N【解析】(1)物体上升到最高点时离抛出点h,由动能定理得2/2 ①-(mg+f)h=0-mvf=0.1mg ②由①②并代入数据得h=22m离开沙坑的高度H=8+h=30m(2)物体在沙坑中受到的平均阻力为F,从最高点到最低点的全过程中:mg(H+d)—fH—Fd=0代入数据得F=455N【考点】本题考查动能定理的应用。
第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律
第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt =解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/53.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.在某电视台举办的冲关游戏中,AB是处于竖直平面内的光滑圆弧轨道,半径R=1.6m,BC是长度为L1=3m的水平传送带,CD是长度为L2=3.6m水平粗糙轨道,AB、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g取10m/s2.求:(1)参赛者运动到圆弧轨道B处对轨道的压力;(2)若参赛者恰好能运动至D点,求传送带运转速率及方向;(3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N,方向竖直向下(2)顺时针运转,v=6m/s(3)720J【解析】(1) 对参赛者:A到B过程,由动能定理mgR(1-cos60°)=12m2Bv解得v B=4m/s在B处,由牛顿第二定律N B-mg=m2 B v R解得N B=2mg=1 200N根据牛顿第三定律:参赛者对轨道的压力N′B=N B=1 200N,方向竖直向下.(2) C到D过程,由动能定理-μ2mgL2=0-1 2 m2Cv解得v C=6m/sB到C过程,由牛顿第二定律μ1mg=ma解得a=4m/s2(2分)参赛者加速至v C历时t=C Bv va-=0.5s位移x1=2B Cv v+t=2.5m<L1参赛者从B到C先匀加速后匀速,传送带顺时针运转,速率v=6m/s.(3) 0.5s内传送带位移x2=vt=3m参赛者与传送带的相对位移Δx=x2-x1=0.5m传送带由于传送参赛者多消耗的电能E=μ1mgΔx+12m2Cv-12m2Bv=720J.5.如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B时的速度大小v B;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh2)222v ghglμ-=(3)(222m v gh-【解析】试题分析:(1)滑块在由A到B的过程中,由动能定理得:212Bmgh mv-=,解得:2Bghν=(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mv02−12mv B2,解得,222v ghgLμ-=;(3)产生的热量:Q=μmgL 相对,()2200(2)2B gh L g相对=νννμ--=(或200(2) gh L ν-), 解得,201(2)2Q m gh ν-=; 考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.6.如图甲所示,静止在水平地面上一个质量为m =4kg 的物体,其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g =10m/s 2.求:(1)运动过程中物体的最大加速度大小为多少; (2)距出发点多远时物体的速度达到最大; (3)物体最终停在何处?【答案】(1)20m/s 2(2)3.2m (3)10m 【解析】 【详解】(1)物体加速运动,由牛顿第二定律得:F -μmg =ma当推力F =100N 时,物体所受的合力最大,加速度最大,代入数据得:2max 20m/s Fa g mμ=-=, (2)由图象得出,推力F 随位移x 变化的数值关系为:F =100 – 25x ,速度最大时,物体加速度为零,则F=μmg=20N ,即x = 3.2m(3)F 与位移x 的关系图线围成的面积表示F 所做的功,即01200J 2F W Fx ==对全过程运用动能定理,W F −μmgx m =0代入数据得:x m =10m7.如图所示,倾角 θ=30°的斜面足够长,上有间距 d =0.9 m 的 P 、Q 两点,Q 点以上斜面光滑,Q 点以下粗糙。
动能定理的综合应用:动能定理与平抛和圆周运动的综合问题
动能定理的综合应用:动能定理与平抛和圆周运动的综合问题【例1】下面关于运动物体所受合外力、合外力做功和动能变化的说法,正确的是( )A.如果物体所受合外力为零,那么物体的动能一定不变B.如果合外力对物体做的功为零,那么合外力一定为零C.物体在合外力作用下做变速运动,物体的动能一定变化D.物体的动能保待不变,该物体所受合外力不一定为零【例2】关于做功和物体动能变化的关系,不正确的是( )A.只有动力对物体做功,物体动能增加B.只有物体克服阻力做功,它的动能减少C.外力对物体做功的代数和等于物体的末动能与初动能之差D.动力和阻力都对物体做功,物体的动能一定变化【例3】质量为m的物体,静止于倾角为α的光滑斜面底端,用平行于斜面方向的恒力F作用于物体上使之沿斜面向上运动。
当物体运动到斜面中点时撤去外力,物体刚好能滑行到斜面顶端,则恒力F的大小为( ) A.2mg(1-sinα) B.2mgsinαC.2mgcosα D.2mg(1+sinα)【例4】如图所示,质量为m的物体被用细绳经过光滑小孔而牵引在光滑的水平面上做匀速圆周运动,拉力为某个值F时转动半径为R,当外力逐渐增大到6F时,物体仍做匀速圆周运动,半径为R/2。
则外力对物体所做的功为( )A.0 B.FR C.3FR D.5/2FR【例5】运动员用200N 的力,把一个静止的质量为1kg 的球以10m/s 的速度踢出,球在水平面上运动60m 后停止,则运动员对球所做的功为( ) A .50J B .200J C .12000J D .2000J【例6】质量为m 的跳水运动员,从离地面高h 的跳台上以速度v 1斜向上跳起,跳起高度离跳台为H ,最后以速度v 2进入水中,不计空气阻力,则运动员起跳时所做的功( )A .2112mv B .mgH C .+mgH mgh D .2112+mv mgh E .2212-mv mgh【例7】一质量m =0.5kg 的物体,以v 0=4m/s 的初速度沿水平桌面上滑过x =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离x 1=1.2m ,求物体与桌面间的摩擦系数是多少?(g 取10m/s 2)【例8】如图所示,质量为2kg 的物体从A 点沿半径为R 的粗糙半球内表面以10m/s 的速度开始下滑,到达B 点时的速度变为2m/s ,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【例9】物体从高出地面H 处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑深h 处停止。
动能定理与动量守恒的综合应用
动能定理、机械能守恒、动量守恒综合应用一、动能定理:合力对物体所做的功等于物体动能的变化 2022121mv mv W -=合注:W 合为合力做功,一般有两种求法:①是物体所有力做功的代数和W 总 = W 1+W 2+…+W n ; ②是先求合力然后用功的定义式:θLCOS F W 合= 二、机械能守恒定律:1、两种表述方法:①在只有重力和弹力(弹簧)做功的情况下,物体的动能和势能发生相互转化,但机械能总量保持不变。
222121v m h mg mv mgh '+'=+ 即 k p k p E E E E '+'=+ ②如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
减增E E ∆=∆2、解题步骤:①明确研究对象和它的运动过程。
②分析研究对象的受力情况,判断机械能是否守恒。
③确定对象运动的起始和终了状态,选定零势能参考平面,确定物体在始、末两状态的机械能 ④选定一种表达式,统一单位,列式求解三、动量守恒定律1、定律内容及公式:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
22112211v m v m v m v m '+'=+ 即:p 1+p 2=p 1/+p 2/ 或:Δp 1= -Δp 2 2、动量守恒定律成立的条件①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
④全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
经典习题在光滑地面上,有一质量为M的长板A,A的一端有一个质量为m的小物块B,如图所示。
现,已知物块与长板之间的摩擦因数为μ,假设长板足够长,试问B 在个小物块一个初速度V在A的表面最多滑多远?V0BA【能量守恒观点的建立】1. 如图所示,光滑的水平面上有质量为M 的滑块,其中AB 部分为光滑的1/4圆周,半径为r ,BC 水平但不光滑,长为。
牛顿第二定律与动能定理的综合应用
感应电动势 ε = Bdv
感应电流
I′=
ε R
安培力 F′= BI′d
由牛顿第二定律,在 t 到 t + Δt 时间内,有
Δv
=
F m
Δt
则∑Δv =∑éëg sv1
=
gt1
sin
a
-
2B2 d3 mR
解得 t1 =
2m(BIld
-
2mgd
sin
a)
+
2B2 d3 R
W ,由动能定理,有 mg sin α × 4d + W - BIld = 0
且 Q = -W ,解得 Q = 4mgd sin α - BIld
(2)设线框刚离开磁场下边界时的速度为 v1 ,则
接着向下运动
2d
,有
mg
sin
α
×
2d
-
BIld
=
0
-
1 2
mv12
装置在磁场中运动时受到的合力
F = mg sin a - F′
导体棒
I I
B
绝缘杆
线框
2d
d
d
α
图3
(1)装置从释放到开始返回的过程中,线框中产
生的焦耳热 Q ;
(2)线框第一次穿越磁场区域所需的时间 t1 ; (3)经过足够长时间后,线框上边与磁场区域下
边界的最大距离 xm . 解析 (1)设装置由静止释放到导体棒运动到磁
场 下 边 界 的 过 程 中 ,作 用 在 线 框 上 的 安 培 力 做 功 为
mg sin a
(3)经过足够长时间后,线框在磁场下边界与最
大距离 xm 之间往复运动
由动能定理,有 mg sin α × xm - BIl(xm - d) = 0
高考物理动量定理和动能定理综合应用
图1高考物理动量定理和动能定理综合应用1. 动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值。
(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s 。
分别应用动量定理和动能定理求出平均力F 1和F 2的值。
(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x 。
分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的。
(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=程中物块所受合力对时间t 的平均值。
2.对于一些变化的物理量,平均值是衡量该物理量大小的重要的参数。
比如在以弹簧振子为例的简谐运动中,弹簧弹力提供回复力,该力随着时间和位移的变化是周期性变化的,该力在时间上和位移上存在两个不同的平均值。
弹力在某段时间内的冲量等于弹力在该时间内的平均力乘以该时间段;弹力在某段位移内做的功等于弹力在该位移内的平均值乘以该段位移。
如图1所示,光滑的水平面上,一根轻质弹簧一端和竖直墙面相连,另一端和可视为质点的质量为m 的物块相连,已知弹簧的劲度系数为k ,O 点为弹簧的原长,重力加速度为g 。
该弹簧振子的振幅为A 。
(1)①求出从O 点到B 点的过程中弹簧弹力做的功,以及该过程中弹力关于位移x 的平均值的大小F x ̅;②弹簧振子的周期公式为2π√mk ,求从O 点到B 点的过程中弹簧弹力的冲量以及该过程中弹力关于时间t 的平均值的大小F t ̅;(2)如图2所示,阻值忽略不计,间距为l 的两金属导轨MN 、PQ 平行固定在水平桌面上,导轨左端连接阻值为R 的电阻,一阻值为r 质量为m 的金属棒ab 跨在金属导轨上,与导轨接触良好,动摩擦因数为μ,磁感应强度为B 的磁场垂直于导轨平面向里,给金属棒一水平向右的初速度v 0,金属棒运动一段时间后静止,水平位移为x ,导轨足够长,求整个运动过程中,安培力关于时间的平均值的大小F t ̅。
专题03 应用动能定理处理曲线运动问题-高中物理动能定理的综合应用
曲线运动:运动轨迹为曲线的运动。
物体做曲线运动的条件:①物体做一般曲线运动的条件:物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。
②物体做平抛运动的条件:物体只受重力,初速度方向为水平方向。
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。
③物体做圆周运动的条件:物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。
曲线运动的分类曲线运动与动能相结合考查方式分析:与动能定理相结合考查的曲线运动主要有两种:①抛体运动;②圆周运动。
抛体运动:含斜抛运动和平抛运动平抛运动在处理时遵从运动的分解,将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动竖直平面内圆周运动中的绳模型与杆模型问题绳模型(无支撑)过最高点的临界条件:2mv mg v r=⇒=临由。
杆模型(有支撑)过最高点的临界条件:由小球恰能做圆周运动得v 临=0。
常考问题分类:①求位移(或路程);②求速度。
1.如图所示,某同学利用斜面研究抛体运动的示意图,已知斜面AB 的倾角为α=45°,高为h=1m 。
斜面的底端A 处有一弹性发射器(大小不计),发射器可将小木块以一定的初速度沿斜面弹出,小木块冲出斜面后即做斜抛运动.若发射器将小木块弹出时的初速度为v 0=8m/s ,小木块与斜面之间的动摩擦因数μ=0.4,不计空气阻力,g 取10m/s 2,求:(1)小木块飞离底面的最大高度;(2)小木块落地时的速度大小。
分析:由于动能定理的计算式为标量式,因此对于求解物体做曲线运动时的相关问题时,具有明显的优越性,关键是分清楚哪些过程力做功,并确定处、末状态的动能。
解析:(1)设小木块到达斜面顶端时的速度为v B ,有动能定理得:22011cos sin 22B h mg mgh mv mv μαα--=-g ,代入数据解得v B = v=6m/s ,竖直分速度的大小sin By B v v α== m/s 。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图,固定在竖直平面内的倾斜轨道AB ,与水平光滑轨道BC 相连,竖直墙壁CD 高0.2H m =,紧靠墙壁在地面固定一个和CD 等高,底边长0.3L m =的斜面,一个质量0.1m kg =的小物块(视为质点)在轨道AB 上从距离B 点4l m =处由静止释放,从C 点水平抛出,已知小物块在AB 段与轨道间的动摩擦因数为0.5,达到B 点时无能量损失;AB段与水平面的夹角为37.(o 重力加速度210/g m s =,sin370.6=o ,cos370.8)o =(1)求小物块运动到B 点时的速度大小; (2)求小物块从C 点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值. 【答案】(1) 4/m s (2)115s (3) 0.15J 【解析】 【分析】(1)对滑块从A 到B 过程,根据动能定理列式求解末速度;(2)从C 点画出后做平抛运动,根据分位移公式并结合几何关系列式分析即可; (3)动能最小时末速度最小,求解末速度表达式分析即可. 【详解】()1对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,解得:B v 4m /s =;()2设物体落在斜面上时水平位移为x ,竖直位移为y ,画出轨迹,如图所示:对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 解得:1t s 15=; ()3对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 从A 到碰撞到斜面过程,根据动能定理有:21mglsin37μmgcos37l mgy mv 02-⋅+=-oo联立解得:22125y 9H 18H mv mg 21616y 16⎛⎫=+- ⎪⎝⎭,故当225y 9H 1616y =,即3y H 0.12m 5==时,动能k E 最小为:km E 0.15J =; 【点睛】本题是力学综合问题,关键是正确的受力分析,明确各个阶段的受力情况和运动性质,根据动能定理和平抛运动的规律列式分析,第三问较难,要结合数学不等式知识分析.3.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J4.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。
动能定理及其应用(一)
【例3】 如图所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
答案:-6J2.应用动能定理简解多过程问题。
物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。
【例4】 如图所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为s 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?答案: (S 0tan α+V 02/2gcos α)/μ 3.利用动能定理巧求动摩擦因数【例5】 如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。
已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
答案: μ=h/s本讲实练:10.如图所示,质量为m 1、长为L 的木板置于光滑的水平面上,一质量为m 的滑块放置在木板左端,滑块与木板间滑动摩擦力的大小为f ,用水平的恒定拉力F 作用于滑块.当滑块从静止开始运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木板速度为v 2,下列结论中正确的是( ).A .滑块克服摩擦力所做的功为f (L +s )B .上述过程满足(F -f )(L +s )=12mv 12+12m 1v 22C .其他条件不变的情况下,F 越大,滑块到达右端所用时间越长D .其他条件不变的情况下,f 越大,滑块与木板间产生的热量越多 答案:AD6(2010·江苏卷)8.如图所示,平直木板AB 倾斜放置,板上的P 点距A 端较近,小物块与木板间的动摩擦因数由A 到B 逐渐减小,先让物块从A 由静止开始滑到B 。
第4讲 动能定理与动量定理的综合应用
[解析] 由动量定理得 ,其中 ,解得末速度 ;
(4) 若水平力 ( 为力作用后运动的速度, 为常量),求末速度 .
[答案]
[解析] 由动能定理得 ,其中 ,解得末速度 .
▶ 角度1 应用动能定理解决多过程问题
应用动能定理解题的基本步骤
图4-4
例3 (16分)如图4-4所示,水平轨道 的左端与竖直固定的光滑 圆轨道相切于 点,右端与一倾角为 的光滑斜面轨道在 点平滑连接(即物体经过 点时速度
[答案]
[解析] 滑块由 至 过程,由动能定理可得 (2分)解得 (2分)
(2) 整个过程中弹簧具有最大的弹性势能为多少?
[答案]Байду номын сангаас
[解析] 滑块第一次到 点时,弹簧具有最大的弹性势能,滑块由 至 过程,由动能定理可得 (2分)解得 (2分)故弹簧的最大弹性势能 (2分)
图4-2
1.如图4-2甲所示,弹簧一端固定在墙壁上,光滑水平地面上的物体压缩弹簧至弹簧长度为 后释放,某同学研究该弹簧的弹力和弹簧长度时得到的部分数据如图乙所示,则物体离开弹簧时动能约为( )
A
A. B. C. D.
[解析] 根据题图乙中描出的点作出 图像如图甲所示,由图可知,弹簧原长为 ,压缩到长度为 后释放,则弹簧弹力 与弹簧形变量 的关系图像如图乙所示,弹簧对物体做的功等于 图像中图线与 轴围成的面积,即 ,由动能定理得,物体离开弹簧时的动能 ,故A正确.
表达式
标矢性
矢量式
标量式
应用场景
力的时间累积
力的空间累积
共同点
在分析和研究多运动过程问题时,可以全程列式,也可以分过程列式
例1 [2022·湖北卷] 一质点做曲线运动,在前一段时间内速度大小由 增大到 ,在随后的一段时间内速度大小由 增大到 .前后两段时间内,合外力对质点做功分别为 和 ,合外力的冲量大小分别为 和 .下列关系式一定成立的是( )A. , B. , C. , D. ,
动能定理
二、动能定理 1. . 内容: 外力对物体所做的总功等于物体动能的变化量. 内容: 外力对物体所做的总功等于物体动能的变化量. 变化量 2.公式表达:W 总=∆Ek .公式表达: 3.应用动能定理解题的步骤 . (1)确定研究对象和研究过程; 确定研究对象和研究过程; 确定研究对象和研究过程 (2)对研究对象进行受力分析,求出外力做的总功; 对研究对象进行受力分析,求出外力做的总 对研究对象进行受力分析 外力做的 (3)对研究过程进行分析,求出过程的初、末动能; 对研究过程进行分析,求出过程的初、末动能; 对研究过程进行分析 (4)利用动能定理列式并解答. 利用动能定理列式并解答. 利用动能定理列式并解答
[解析 设小物块的质量为 m, A 处时的速度为 vA, 解析] 解析 , 经 的过程, 对物块由 D 到 A 的过程,由动能原理有 1 2 1 2 -µmgx-mg·2R=2mvA-2mv0 - = 设物块由 A 到 D 做平抛运动经历的时间为 t,对此过程, ,对此过程, 有 1 2 2R= gt =2 x=vAt = 由以上各式并代入数据得 µ=0.25 =
动能定理
1.动能定理是功能关系中的一个重要规律, 动能定理是功能关系中的一个重要规律, 是高考必考的内容,是重点也是难点. 是高考必考的内容,是重点也是难点.高考命 题常以选择题和计算题的形式命题,计算题常 题常以选择题和计算题的形式命题, 结合其他知识点命制. 结合其他知识点命制.
2.本讲复习动能定理,要求能够熟练应用动 本讲复习动能定理, 能定理解题. 能定理解题. 题型一:应用动能定理求变力的功. 题型一:应用动能定理求变力的功. 题型二: 题型二:应用动能定理处理多阶段运动问题 题型三:动能定理的综合应用. 题型三:动能定理的综合应用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理的综合应用
1. 如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道
的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑
块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出2
(g取10m/s)•求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;
(2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。
2•如图所示,质量为m= 5kg的摆球从图中A位置由静止开始摆下,当小球摆至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。
已知摆线长为L =
1.6m , OA与0B的夹角为60o, C为悬点O正下方地面上一点,OC间的距离
h = 4.8m,若不计空气阻力及一切能量损耗,g= 10m/s2,
求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离;
(3)小球的落地时的速度大小
3、(14分)如图所示,一个人用一根长1m只能承受46N拉力的绳子,拴着一个
质量为1kg的小球,在竖直平面内作圆周运动,已知圆心O离地面h = 6m。
转动
中小球运动到最低点时绳子突然断了,求
(1)绳子断时小球运动的角速度多大?
(2)绳断后,小球落地点与抛出点间的水
平距离。
(取g = 10m/s2)
J
/
4. 在光滑的水平面桌上有质量为m=0.2kg的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。
轻弹簧
原来处于静止状态,具有弹性势能E P=10.6J,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为
为R=0.625m的竖直放置的光滑半圆形轨道。
取g=10m/s2则:
(1) 试通过计算判断小球能否滑到B点?
(2) 若小球能通过B点,求此时它对轨道的压力为多大。
5. 如图所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端
点A。
一质量m=0.10kg的小球,以初速度v o=3.Om/s在水平地面上向左作加速度a=2.0m/s2的匀加速直线运动,运动4.0m后,冲上竖直半圆环,(取重力加速度g=10m/s2)。
求:(1)通过计算判断小球能否冲上最高点
(2)若能到达最高点,则小球受到轨道的压力是多少(3)小球落在水平地面处与A点的距离是多少
6. 如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道合与之相切的圆形轨道连接而成,圆形轨道的
半径为R。
一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆
形轨道的最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。
求物块初始位置相对于圆
形轨道底部的高度h的取值范围。
7. 如图所示,倾角9=37°的斜面底端B 平滑连接着半径r=0.40m的竖直光滑圆轨道。
质量m=0.50kg的小物块,从距地面h=2.7 m处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数
2
cos37° =0.8,g=10m/s
(1)物块滑到斜面底端B时的速度大小。
(2)物块运动到圆轨道的最高点A时,对圆轨道的压力大小。
8. 如图所示,一玩滑板的小孩(可视为质点)质量为
m=30kg,他在左侧平台上滑行一段距离后平抛出平台,恰能沿圆弧切线从A点进入光滑竖直圆弧轨道,A、B为圆弧两端点,其连线水平。
已知圆弧半径为R=1.0m,
对应圆心角为9 =106°,平台与AB连线的高度差为h=0.8m°(计
算中取g=10m/s2,sin 53°=0.8 ,cos 53°=0.6 )
求:(1)小孩平抛的初速度;
(2)小孩运动到圆弧轨道最低点O时对轨道的压力。
O
动能定理的综合应用答案
1. ( 1) W f 1.5J
(2)N B 4.5(N)
由牛顿第三定律知:小滑块经过B点时对圆轨道的压力大小为 4.5N。
(3)V t = 5,2 m/s
2. ( 1)4 m/s
(2)x = vt== 3.2 m
(3)落地时竖直方向的速率:Vy gt 8m/s
落地的速度:V V; V245m/s
3. (1) 6rad/s
(2) x=6m
4. (1)因W > V B0,故能通过最高点
(2) N =23.92N
由牛顿第三定律,知小球对轨道的压力为23.92N
5. (1) 因为v B> v B1,所以小球能通过最高点B。
(2) N = 1.25 N
2m
⑶s AC =「
6. h的取值范围是: 2.5R< h< 5R
7. (1) V B 6m /s
(2) N=20N
据牛顿第三定律,物块对轨道的压力大小为20N ,方向竖直向上
8 .解:(1) 3 m/s
⑵根据牛顿第三定律F N F N1290N。