人教版数学七下 实际问题和三元一次方程组 练习 (含答案)
七年级数学三元一次方程组的解法(人教版)(基础)(含答案)
C.10 D.11
答案:A
解题思路:
通过观察各方程的特征,知①+②+③,
得 ,即 .
故选A.
试题难度是( )
A. B.
C. D.
答案:C
解题思路:
由①得, ,即 ,
由②得, ,即 ,
将④和⑤代入③,得 ,
解得 ,
将 分别代入④和⑤,得 ,
三元一次方程组的解法(人教版)(基础)
一、单选题(共8道,每道12分)
1.下列是三元一次方程组的是( )
A. B.
C. D.
答案:D
解题思路:
为三元一次方程组,
故选D
试题难度:三颗星知识点:解三元一次方程组
2.解方程组 ,把上面的三元一次方程组消元转化成下面的二元一次方程组 ,需要经历如下的步骤,请你选出正确的步骤( )
∴原三元一次方程组的解为 .
故选C.
试题难度:三颗星知识点:观察特征
6.方程组 的解是( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:解三元一次方程组
7.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A. B.
C. D.
答案:A
解题思路:
①+②得5x+y=7,①×2+③得8x-y=6,故A正确;
①+②得5x+y=7,②×2-3得2x+3y=8,故B错误;
①+②得5x+y=7,①×2-③得-11y+8z=2,故C错误;
七年级数学(下)第八章《三元一次方程组的解法》练习题含答案
七年级数学(下)第八章《三元一次方程组的解法》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中是三元一次方程组的是A.212x yy zxz⎧-=⎪+=⎨⎪=⎩B.111216yxzyxz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩C.123a b c da cb d+++=⎧⎪-=⎨⎪-=⎩D.1812m nn tt m+=⎧⎪+=⎨⎪+=⎩【答案】D2.解方程组3423126①②③x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩时,第一次消去未知数的最佳方法是A.加减法消去x,将①-③×3与②-③×2 B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个【答案】C【解析】观察所给方程组,可以发现z的系数最简单,故可通过加减法消去z,故选C.3.已知方程组2334823x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=-⎩①②③,若消去z,得二元一次方程组不正确的为A.531153x yx y+=⎧⎨-=⎩B.53115+719x yx y+=⎧⎨=⎩C.535+719x yx y-=⎧⎨=⎩D.5+35+719x yx y=⎧⎨=⎩【答案】D【解析】在方程组2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③中,①+②得5311x y +=④,①×2+③得53x y -=⑤,②×2-③得5719x y +=⑥,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故选D .4.三元一次方程组32522x y x y z z -⎧=++==⎪⎨⎪⎩的解是A .112x y z ===⎧⎪⎨⎪⎩B .112x y z ⎧==-=⎪⎨⎪⎩C .112x y z ⎧=-==⎪⎨⎪⎩D .112x y z ⎧=-=-=⎪⎨⎪⎩【答案】B【解析】32522①②x y x y z z -=⎧⎪++=⎨⎪=⎩,把z =2代入②得:x +y =0③,①+③×2得:5x =5,即x =1,把x =1代入③得:y =-1,则方程组的解为112x y z =⎧⎪=-⎨⎪=⎩,故选B .5.已知方程组35223x y k x y k +=+⎧⎨+=⎩,x 与y 的值之和等于2,则k 的值为A .4B .4-C .3D .3-【答案】A【解析】35223x y k x y k +=+⎧⎨+=⎩①②,①×2-②×3得:y =2(k +2)-3k =-k +4,把y =-k +4代入②得:x =2k -6,又x 与y 的值之和等于2,所以x +y =-k +4+2k -6=2,解得k =4,故选A .6.三元一次方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为A .无数多个B .1C .2D .0【答案】A【解析】在方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩①②③中,③-②得6x y -=④,即①与④相同,所以方程组有无数个解.故选A.7.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2∶3,三种球共41个,则篮球的个数为A.21 B.12 C.8 D.35【答案】A【解析】设篮球有x个,排球有y个,足球有z个,根据题得232341y xz yx y z-=⎧⎪=⎨⎪++=⎩∶∶,解得21128xyz=⎧⎪=⎨⎪=⎩,所以篮球有21个.故选A.8.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有A.2种B.3种C.4种D.5种【答案】B9.已知方程组35204522x yx y zax by z-=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by zx y z cx y-+=⎧⎪++=⎨⎪+=-⎩有相同的解,则a、b、c的值为A.231abc=-⎧⎪=-⎨⎪=⎩B.231abc=-⎧⎪=⎨⎪=⎩C.231abc=⎧⎪=-⎨⎪=-⎩D.231abc=⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组3520234x yx y zx y-=⎧⎪+-=⎨⎪+=-⎩,解得12xyz=⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a ba bc-=-⎧⎪+=⎨⎪-=⎩,解得231abc=⎧⎪=⎨⎪=-⎩,故选D.二、填空题:请将答案填在题中横线上. 10.若x +y +z ≠0且222y z x y z xk x z y+++===,则k =__________. 【答案】3 【解析】∵222y z x y z x k x z y+++===,∴2y z kx +=,2x y kz +=,2z x ky +=,∴2y z ++2x +2y z x kx ky kz ++=++,即3()()x y z k x y z ++=++,又∵0x y z ++≠,∴3k =,故答案为:3.11.在等式y =ax 2+bx +c 中,当x =1时,y =-2;当x =-1时,y =20;当32x =与13x =时,y 的值相等,则a =__________,b =__________,c =__________. 【答案】6;-11;3【解析】根据题意,可得方程组29311429320①②③a b c a b c a b c a b c ++=-⎧⎪⎪++=++⎨⎪⎪-+=⎩,由②得11a +6b =0④,③-①得-2b =22,解得b =-11,将b =-11代入④得a =6,再将a =6,b =-11代入①得c =3.故原方程组的解为6113a b c =⎧⎪=-⎨⎪=⎩,故答案为:6;-11;3.12.已知方程组237x y y z z x +=⎧⎪+=⎨⎪+=⎩,则x +y +z =__________.【答案】6【解析】将三个方程相加,得2x +2y +2z =12,所以x +y +z =6,故答案为:6.13.如图,表中各行、各列及两条对角线上三个数的和都相等,则a +b +c +d +e +f 值是__________ .【答案】21【解析】由题意得4-1+a =d +3+a ,解得d =0,∵4+b +0=b +3+c ,解得c =1,又∵4-1+a =a +1+f ,解得f =2,∴a =6,b =5,e =7,则a +b +c +d +e +f =6+5+1+0+7+2=21.故答案为:21. 三、解答题:解答应写出文字说明、证明过程或演算步骤.14.解方程组2923103243①②③x y z x y z x y z -+=⎧⎪++=⎨⎪+-=-⎩.所以原三元一次方程组的解为322x y z =⎧⎪=-⎨⎪=⎩.15.有三个数,第一个数的3倍比第二个数的5倍小90,而第一个数的4倍与第二个数的6倍之差等于第三个数的20倍的相反数,同时,第三个数比4大1.求这三个数. 【解析】设第一个数为x ,第二个数为y ,第三个数为z ,由题意得:3590462041x y x y z z -=-⎧⎪-=-⎨⎪-=⎩,解得20305x y z =⎧⎪=⎨⎪=⎩, 答:这三个数依次是20,30,5.16.已知方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式437x y -=成立.(1)求原方程组的解;(2)求代数式221m m -+的值.【解析】(1)根据题意得,734521x y x y m +=⎧⎨-=-⎩①②,+①②,得1111x =,解得1x =,把1x =代入①得,1y =-,∴原方程组的解为11x y =⎧⎨=-⎩.(2)将1x =,1y =-代入521x y m -=-,得8m =, 将8m =代入2221828149m m -+=-⨯+=. ∴代数式221m m -+的值为49.17.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?【解析】设种植水稻x 公顷,棉花y 公顷,蔬菜为z 公顷,由题意得26748530051x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,解得:152016x y z =⎧⎪=⎨⎪=⎩,答:种植水稻15公顷,棉花20公顷,蔬菜为16公顷.。
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (34)
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案)阅读下列解方程组的过程:解方程组:123x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③由①+②+③,得2(x +y +z )=6,即x +y +z =3.④ 由④-①,得z =2;由④-②,得x =1;由④-③,得y =0.则原方程组的解为102x y z =⎧⎪=⎨⎪=⎩按上述方法解方程组:215216217x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩【答案】345x y z =⎧⎪=⎨⎪=⎩【解析】【分析】三个方程相加可得x+y+z=12,然后用减法进行计算即可得答案.【详解】215216217x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩①②③, ①+②+③得:4x+4y+4z+48,即x+y+z=12④,①-④得:x=3,②-④得:y=4,③-④得:z=5,∴方程组的解为:45y z ⎪=⎨⎪=⎩. 【点睛】本题考查解三元一次方程组,三个方程相加求出x+y+z 的值是解题关键.32.解方程组:6321234x y z x y z x y z ++=⎧⎪-+=⎨⎪--=-⎩【答案】312x y z =⎧⎪=⎨⎪=⎩【解析】【分析】先把三元一次方程组化为二元一次方程组,然后再通过消元、移项、系数化为1,求出二元一次方程组的解,从而求出三元一次方程组的解【详解】6321234x y z x y z x y z ++=⎧⎪-+=⎨⎪--=-⎩①②③ ①+②得:4x+3z=18④,①+③得:2x-2z=2,即x-z=1⑤,④+⑤×3得7x=21,解得:x=3,把x=3代入⑤得:z=2,把x=3,z=2代入①得:y=1,∴方程组的解为12y z ⎪=⎨⎪=⎩. 【点睛】本题考查解三元一次方程组,解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,将“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.33.解方程组:(1)1310224x y x y ⎧+=⎪⎨⎪-=⎩; (2)64239318a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩【答案】(1)32x x =⎧⎨=⎩ ;(2)123a b c =⎧⎪=-⎨⎪=⎩. 【解析】【分析】(1)利用加减消元法进行求解即可;(2)先消去c ,得到关于a 、b 的二元一次方程组,解二元一次方程组求得a 、b 的值,继而求得c 的值即可.【详解】 (1)1310224x y x y ⎧+=⎪⎨⎪-=⎩①②, ①×2+②,得8x=24,解得:x=3,把x=3代入②,得6-y=4,解得;y=2,所以方程组的解为2x ⎨=⎩; (2)64239318a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩①②③, ②-①,得3a+3b=-3④,③-①,得8a-2b=12⑤,④÷3+⑤÷2,得5a=5,解得a=1,把a=1代入④,得3+3b=-3,解得b=-2,把a=1,b=-2代入①,得1+2+c=6,解得c=3,所以方程组的解为123a b c =⎧⎪=-⎨⎪=⎩. 【点睛】本题考查了解二元一次方程组,解三元一次方程组,熟练掌握和灵活运用加减消元法、代入消元法是解题此类问题的关键.34.根据下面的等式,求出妈妈买回来的鱼、鸭、鸡各花了多少钱. 鸡+鸭+鱼=35.4元,鸡+鱼=20.4元,鸭+鱼=21.4元.【答案】妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.【解析】【分析】设买鱼花了x 元,买鸭花了y 元,买鸡花了z 元,根据题意列出三元一次方程组,即可求解.设买鱼花了x 元,买鸭花了y 元,买鸡花了z 元.由题意列出方程组得35.4,20.4,21.4.x y z x z y x ++=⎧⎪+=⎨⎪+=⎩解得 6.41514.x y z =⎧⎪=⎨⎪=⎩,, 答:妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.【点睛】此题主要考查三元一次方程的应用,解题的关键是根据题意找到等量关系列出方程.35.已知方程4360x y z --=与方程330x y z --=有相同的解,求::x y z .【答案】()3:2:3-【解析】【分析】联立两方程组成方程组,把z 看做已知数表示出x 与y ,即可求出x :y :z 的值.【详解】联立得:43633x y z x y z -=⎧⎨-=⎩①②, ①-①得:33x z =,即x z =,把x z =代入①得:23y z =-, 则()2::::3:2:33x y z z z z ⎛⎫=-=- ⎪⎝⎭.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.36.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?【答案】应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z,再利用共花费346元,分别得出x,y,z的取值范围,进而得出z的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z.易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即346245zx-= .∵x,y,z均为正整数,346-24z≥0,即0<z≤14 ∴z只能取14,9和4.①当z为14时,346242,228.445zx y z x y z-====++=。
人教版七年级下册数学课时练《8.4 三元一次方程组的解法》试卷含答案
人教版七年级数学下册 第八章 二元一次方程组8.4 三元一次方程组的解法 课后练习一、选择题1.下列方程组是三元一次方程组的是( )A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩2.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组 3.已知代数式2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当x =2时,其值为25;则当3x =时,其值为( ).A .4B .8C .62D .524.若实数,,x y z 满足41233x y z x y z -+=⎧⎨-+=⎩,则6x y z ++=( ) A .3- B .0 C .3 D .不能确定值 5.已知三个实数a 、b 、c 满足a+b+c =0,a ﹣b+c =0,则下列结论一定成立的是( ) A .a+b≥0 B .a+c >0 C .b+c≥0 D .b 2﹣4ac≥06.如果方程组864x y y z z x +=⎧⎪+=⎨⎪+=⎩的解使代数式kx +2y ﹣3z 的值为8,则k =( )A .13B .﹣13C .3D .﹣37.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A .11支B .9支C .7支D .5支 8.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )A .1个B .2个C .3个D .4个 9.小明妈妈到文具店购买三种学习用品,其单价分别为2元、4元、6元,购买这些学习用品需要56元,经过协商最后以每种单价均下调0.5元成交,结果只用了50元就买下了这些学习用品,则小明妈妈有几种不同的购买方法.( )A .6B .5C .4D .310.一个宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团25人准备同时租用这三种客房共9间,如果每个房间都住满,则租房方案共有( )A .4种B .3种C .2种D .1种二、填空题11.已知2234x y y z x z +++===-,则2x y z ++=________. 12.已知3203340x y z x y z -+=⎧⎨--=⎩,则::x y z =___________. 13.对于实数x ,y 定义新运算x y ax by cxy ⋅=++其中a ,b ,c 为常数,若123,234⋅=⋅=,且有一个非零常数d ,使得对于任意的x ,恒有x d x ⋅=,则d 的值是____.14.有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.15.重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.三、解答题16.解方程:(1)11425x y x y z x y z =+⎧⎪++=⎨⎪+-=⎩(2)3743225x y y z x z -=-⎧⎪+=⎨⎪-=-⎩ (3)1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩(4)::3:4:536x y z x y z =⎧⎨++=⎩ 17.已知方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式23x y z -+的值等于-10,求a 的值.18.在等式2y ax bx c =++中,当1x =时,2y =-;当1x =-时,20y =;当32x =与13x =时,y 的值相等.求a ,b ,c 的值.19.在等式2y ax bx c =++中,当1x =-时,0y =;当5x =时,60y =;当x =0时,5y =-,求222a ab c ++的值.20.已知y =ax 2+bx +c ,当x =1时,y =8;当x =0时,y =2;当x =﹣2时,y =4. (1)求a ,b ,c 的值;(2)当x =﹣3时,求y 的值.21.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:18x y =⎧⎨=⎩就是方程3x +y =11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组206x y z x y z -+=⎧⎨++=⎩的一组“好解”. (1)求方程x +2y =5的所有“好解”;(2)关于x ,y ,k 的方程组155327x y k x y k ++=⎧⎨++=⎩有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.22.某工程由甲、乙两队合作需6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合作需10天完成,厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23,此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由.23.若一个四位正整数abcd 满足:a +d =b +c ,我们就称该数是“心想事成数”.比如:对于四位数5263,∵5+3=2+6,∵5263是“心想事成数”,对于四位数1276,∵1+6≠2+7,∵1276不是“心想事成数”.(1)直接写出最小的“心想事成数”和最大的“心想事成数”;(2)判断3625是否为“心想事成数”,并说明理由;(3)若一个“心想事成数”,满足个位上的数字是百位上的数字的两倍,且千位上的数字与十位上的数字之和能被8整除,请求出所有满足条件的“心想事成数”.参考答案1.A 2.C 3.D 4.A 5.D 6.A 7.D 8.C 9.D 10.B 11.-1012.9:5:313.414.1815.1或516.(1)653xyz=⎧⎪=⎨⎪=⎩;(2)2112xyz⎧⎪=-⎪=⎨⎪⎪=⎩;(3)683xyz=⎧⎪=⎨⎪=⎩;(4)91215xyz=⎧⎪=⎨⎪=⎩17.53a=-.18.6113abc=⎧⎪=-⎨⎪=⎩19.2220.(1)731132abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩;(2)1221.(1)5xy=⎧⎨=⎩或31xy=⎧⎨=⎩或12xy=⎧⎨=⎩(2)有,96xyk=⎧⎪=⎨⎪=⎩或1014xyk=⎧⎪=⎨⎪=⎩或1122xyk=⎧⎪=⎨⎪=⎩或123xyz=⎧⎪=⎨⎪=⎩22.(1)甲、乙、丙各队单独完成全部工程分别需10天,15天,30天.;(2)由乙队单独完成此工程花钱最少.23.(1)最小的“心想事成数”为1010;最大的“心想事成数”为9999;(2)四位数3625是“心想事成数”,理由见解析;(3)所有满足条件的“心想事成数”有:3254,2468,7294,4040,8080。
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (50)
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需元.【答案】(1)x的值为800,y的值为3.(2)至少要卖334件.(3)150.【解析】【分析】(1)通过理解题意可知此题存在两个等量关系,即小丽的基本工资+提成=1400元,小华的基本工资+提成=1250元,列方程组求解即可;(2)根据小丽基本工资+每件提成×件数=1800元,求得件数即可;(3)理解题意可知,计算出甲、乙、丙各购买4件共多少钱即可.【详解】(1)设营业员的基本工资为x元,买一件的奖励为y元.由题意得20014001501250 x yx y+=⎧⎨+=⎩解得8003 xy=⎧⎨=⎩即x的值为800,y的值为3.(2)设小丽当月要卖服装z件,由题意得:800+3z=1800解得,z=333.3由题意得,z为正整数,在z>333中最小正整数是334.答:小丽当月至少要卖334件.(3)设一件甲为x元,一件乙为y元,一件丙为z元.则可列3231523285 x y zx y z++=⎧⎨++=⎩将两等式相加得4x+4y+4z=600,则x+y+z=150答:购买一件甲、一件乙、一件丙共需150元.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;第三问的难点就在于思考的方向对不对,实际上,方向对了,做起来就方便多了.92.已知方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩的解使代数式x -2y +3z 的值等于-10,求a 的值.【答案】a =-53. 【解析】【分析】根据题意,用含a 的代数式表示出方程组的解23x a y a z a =⎧⎪=⎨⎪=⎩将方程组的解代入x -2y +3z=-10中即可求解.【详解】解法1:②-②,得z -x =2a.②②+②,得2z =6a ,z =3a.把z =3a 分别代入②和②,得y =2a ,x =a.②23x a y a z a =⎧⎪=⎨⎪=⎩将其代入x -2y +3z =-10,得a -2×2a +3×3a =-10,解得a =-53. 解法2(技巧解法):②+②+②,得2(x +y +z)=12a ,即x +y +z =6a.②②-②,得z =3a ;②-②,得x =a ;②-②,得y =2a.②23x a y a z a =⎧⎪=⎨⎪=⎩以下同解法1.【点睛】本题考查了三元一次方程组的求解与一次方程的计算,中等难度,解法1求出方程组的解是解题关键,解法2认真观察找到方程组与x+y+z的关系是解题关键.93.为确保信息安全,信息需加密传输,发送方由明文―→密文(加密),接收方由密文―→明文(解密).已知加密规则为明文x,y,z对应密文2x+3y,3x+4y,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,请你求出解密得到的明文.【答案】解密得到的明文是3,2,9.【解析】【分析】根据题意表示出方程组,求解三元一次方程组即可解题.【详解】依题意,得23123417327x yx yz+=⎧⎪+=⎨⎪=⎩解得329xyz=⎧⎪=⎨⎪=⎩答:解密得到的明文是3,2,9.【点睛】本题考查了三元一次方程组的实际应用,属于简单题,正确表示出方程组,求解方程组是解题关键.94.某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的14,甲组植树的株数恰是乙组与丙组的和,问每组各植树多少株?【答案】甲、乙、丙三个小组分别植树25棵、10棵和15棵.【解析】【分析】根据题意表示出方程组,求解三元一次方程组即可解题.【详解】设甲、乙、丙三个小组分别植树x棵、y棵和z棵.根据题意,得501()4x y zy x z x y z++=⎧⎪⎪=+⎨⎪=+⎪⎩解得251015 xyz=⎧⎪=⎨⎪=⎩答:甲、乙、丙三个小组分别植树25棵、10棵和15棵.【点睛】本题考查了三元一次方程组的实际应用,属于简单题,正确表示出方程组,求解方程组是解题关键.95.解下列方程组:(1)2333215x y zx y zx y z+-=⎧⎪-+=-⎨⎪--=⎩;(2)2362125x y zx y zx y z++=⎧⎪-+=-⎨⎪+-=⎩.【答案】(1)32xyz=⎧⎪=-⎨⎪=-⎩;(2)211xyz=⎧⎪=⎨⎪=-⎩.【解析】【分析】根据三元一次方程求解方法即可解题,见详解.(1)233 3215x y zx y zx y z+-=⎧⎪-+=-⎨⎪--=⎩,①+③,得3x-4z=8.④②-③,得2x+3z=-6⑤联立④⑤,得348236x zx z-=⎧⎨+=-⎩解得2xz=⎧⎨=-⎩把x=0,z=-2代入③,得y=-3.所以原方程组的解是32 xyz=⎧⎪=-⎨⎪=-⎩(2)2362125 x y zx y zx y z++=⎧⎪-+=-⎨⎪+-=⎩③+①,得3x+5y=11.④③×2+②,得3x+3y=9.⑤④-⑤,得2y=2,解得y=1.将y=1代入⑤,得3x=6,解得x=2. 将x=2,y=1代入①,得z=-1.所以原方程组的解为211 xyz=⎧⎪=⎨⎪=-⎩【点睛】本题考查求解三元一次方程组,中等难度,熟悉解题方法是解题关键.96.已知方程组23{32x yx y m+=-=的解也满足方程x+y=1,求m的值.【解析】【分析】由方程组2332x y x y m +=⎧⎨-=⎩与方程x+y=1的解相同,然后将它与另外两个方程联立,组成一个关于x 、y 、m 的三元一次方程组,解此方程组即可求出x ,y ,m 的值即可.【详解】∵方程组2332x y x y m +=⎧⎨-=⎩的解也满足方程x +y =1, ∴23321x y x y m x y +=⎧⎪-=⎨⎪+=⎩, 解得218x y m =⎧⎪=-⎨⎪=⎩,∴m =8. 【点睛】本题考查了二元一次方程的解及三元一次方程组的解法.解题的关键是联立成三元一次方程组.97.解下列方程(组): (1)123123x x +--= (2)5325273193218x y x y z x y z +=⎧⎪+-=⎨⎪+-=⎩【答案】(1)x =79;(2)503x y z =⎧⎪=⎨⎪=-⎩. 【解析】【分析】(1)根据解一元一次方程组的方法可以解答此方程;(2)根据解三元一次方程组的方法可以解答此方程.【详解】(1)123123x x +--= 方程两边同乘以6,得3(x+1)-2(2-3x )=6,去括号,得3x+3-4+6x=6,移项及合并同类项,得9x=7,系数化为1,得 x=79; (2)5325273193218x y x y z x y z +⎧⎪+-⎨⎪+-⎩=①=②=③ ③×3-②,得7x-y=35④①+④×3,得26x=130,解得,x=5,将x=5代入①,得y=0,将x=5,y=0代入③,得z=-3,∴原方程组的解是503x y z ⎧⎪⎨⎪-⎩===. 【点睛】本题考查解一元一次方程、解三元一次方程组,熟练掌握加减消元法是解答本题的关键.98.解三元一次方程组:126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩【答案】1097x y z =⎧⎪=⎨⎪=⎩【解析】【分析】由题意通过消元、移项将三元一次方程组化为二元一次方程组,然后再根据二元一次方程组的解法,求出其解,从而求出三元一次方程组的解.【详解】1? 26?218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩①②③ 将方程①+②得:2x +z =27…④将方程②+③得:3x +2z =44…⑤将④×3﹣⑤×2得:z =7将z 值代入⑤得:x =10把x=10代入①得:y=9,∴三元一次方程组的解为1097xyz=⎧⎪=⎨⎪=⎩.【点睛】本题考查了三元一次方程的解法.通过消元,先把三元一次方程化为二元一次方程组,然后求解即可.99.解方程组:(1)32 3813 x y x y=+⎧⎨-=⎩(2)1229 310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩.【答案】(1)12xy=-⎧⎨=-⎩;(2)185235195xyz⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【解析】【分析】(1)先把二元一次方程组转化成一元一次方程,求出方程的解,再求出x 即可;(2)把三元一次方程组转化成二元一次方程组,求出方程组的解,再求出z即可.【详解】(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.【点睛】本题考查了解三元一次方程组和解二元一次方程组,能够消元是解此题的关键.掌握把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.100.甲、乙、丙三人共解出100道数学题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题,试问:难题多还是容易题多?(多的比少的)多几道题?【答案】难题多20道【解析】【分析】本题有三个未知数:难题个数、容易题个数、正好两人解出的题(中等难度的题)的个数,有两个等量关系:(1)难度题个数+容易题个数+中等难度题个数=100.(2)难题个数+容易题个数×3+中等难度题个数×2=60×3.【详解】设难题x 道,容易题y 道,中等难度题z 道,则有10032180x y z x y z ++=⎧⎨++=⎩①②, 由①×2-②,得20x y -=.所以难题比容易题多20题.【点睛】本题考查三元一次方程组的应用.有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知敷辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求”.。
人教版七年级数学下册 8-4 三元一次方程组的解法(同步练习)
第8章二元一次方程组*8.4三元一次方程组的解法班级:姓名:知识点1三元一次方程组的概念及解1.写一个三元一次方程组,使它的解为x=1,y=1,z=1,这个三元一次方程组为.2.以下方程中,属于三元一次方程组的是()A.ìíîïï2x +3y =4,2y +z =5,x 2+y =1 B.ìíîïïïï1x +1y +1z =16,3x -4y =3,x +z =2C.ìíîïïx +y +z =2,x -2y =3,y -6z =9D.ìíîïïx -y =2,2x -3y =4,2x -2y =43.三元一次方程组{x +y =1,y +z =5,z +x =6的解是()A.{x =1,y =0,z =5 B.{x =1,y =2,z =4C.{x =1,y =0,z =4D.{x =4,y =1,z =0知识点2解三元一次方程组4.解方程组ìíîïïïïx +y -z =11,①y +z -x =5,②z +x -y =1,③若要使运算简便,消元的方法应选()A.先消去xB.先消去yC.先消去zD.以上说法都不对5.解下列三元一次方程组:(1)ìíîïïy =2x -7,5x +3y +2z =2,3x -4z =4;(2)ìíîïïx +y +z =12,x +2y +5z =22,x =4y .6.解下列三元一次方程组:(1)ìíîïï3x -y +z =4,2x +3y -z =12,x +y +z =6;(2)ìíîïï2x +4y +3z =9,3x -2y +5z =11,5x -6y +7z =13;(3)ìíîïïïï4x +9y =12,3y -2z =1,7x +5z =434;(4)ìíîïï3x -y +2z =3,2x +y -3z =11,x +y +z =12.7.解方程组ìíîïï2x +3y +z =6,x -y +2z =-1,x +2y -z =5.8.解方程组ìíîïï3x +y -4z =13,5x -y +3z =5,x +y -z =3.9.解方程组:(1)ìíîïïïï2x +6y +3z =6,①3x +15y +7z =6,②4x -9y +4z =9;③(2)ìíîïïïïx +2y +3z =4,①3x +y +2z =5,②2x +3y +z =6.③知识点3解三元一次方程组的应用10.方程组{3x +5y =6,6x +15y =16的解也是方程3x+ky=10的解,则()A.k=6B.k=10C.k=9D.k=11011.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的值为()A.3B.-3C.-4D.412.李红在做这样一个题目:在等式y=ax 2+bx+c 中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y 等于多少?她想,在求y 值之前应先求a,b,c 的值,你认为她的想法对吗?你能帮她求出a,b,c 的值吗?知识点4列三元一次方程组解应用题13.有铅笔、练习本、圆珠笔三种学习用品,若购买铅笔3支、练习本7本、圆珠笔1支共需3.15元;若购买铅笔4支、练习本8本、圆珠笔2支共需4.2元,那么,购买铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元14.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花、12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花、3750朵紫花,则黄花一共用了朵.15.一个三位数,个位与百位上的数的和等于十位上的数,百位上的数的7倍比个位与十位上的数的和大2,个位、十位、百位上的数的和是14,求这个三位数.综合点1根据方程组的特点,灵活选用解法16.解方程组:{x +y =9,y +z =11,x +z =10.17.解方程组:ìíîïïx ∶y =3∶2,y ∶z =5∶4,x +y +z =66.综合点2方程组与其他知识结合18.已知|x-8y|+2(4y-1)2+3|8z-3x|=0,求x+y+z的值.19.已知单项式-ab 11c y+z-x 与12a x+z-yb x+y-zc 5是同类项,求x,y,z 的值.拓展点1利用整体的思想解题20.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元.拓展点2不定方程的整数解21.用100元买15张邮票,其中有4元、8元、10元三种面值,问可以怎么买?(列出三元一次方程组)第8章二元一次方程组*8.4三元一次方程组的解法答案与点拨1.不唯一,如:{x +y +z =3,2x -y =1,3y -z =2.(点拨:根据题意任意写出一个三元一次方程组,满足x=1,y=1,z=1就行,答案不唯一.)2.C3.A(点拨:可利用三元一次方程组解的定义逐个验证.)4.D(点拨:原方程组中,①+②可消去x,z,求出y;①+③可消去y,z,求出x;②+③可消去x,y,求出z;故选D.)5.(1)ìíîïïïïx =2,y =-3,z =12.(2){x =8,y =2,z =2.6.(1){x =2,y =3,z =1.(2)ìíîïïïïx =-1,y =12,z =3.(3)ìíîïïïïïïïïx =-34,y =53,z =2.(4){x =3,y =8,z =1.7.ìíîïï2x +3y +z =6,①x -y +2z =-1,②x +2y -z =5.③③+①得,3x+5y=11.④③×2+②得,3x+3y=9.⑤④-⑤得2y=2,y=1.将y=1代入⑤得,3x=6,x=2.将x=2,y=1代入①得,z=6-2×2-3×1=-1,∴原方程组的解为{x =2,y =1,z =-1.8.ìíîïï3x +y -4z =13,①5x -y +3z =5,②x +y -z =3.③①+②得z=8x-18,②+③×3得y=7-4x.把z=8x-18,y=7-4x,代入③得x=2,则z=-2,y=-1.所以原方程组的解是:{x =2,y =-1,z =-2.9.(1)ìíîïïïïx =5,y =13,z =-2.(2)ìíîïïïïïïïïx =76,y =76,z =16.10.B11.D(点拨:解{3x -y =7,2x +3y =1得:{x =2,y =-1,代入y=kx-9得:-1=2k-9,解得k=4.故选D.)12.她的想法正确.根据题意,得{a +b +c =6,4a +2b +c =21,a -b +c =0,解得{a =4,b =3,c =-1.∴该等式为y=4x 2+3x-1.∴当x=-2时,y=4×4-3×2-1=9,即y=9.13.B14.438015.设此数个位上数字为x,十位为y,百位为z,得{x +z =y,7z -(x +y )=2,x +y +z =14,解得{x =5,y =7,z =2,答:此三位数为275.16.{x =4,y =5,z =6.(点拨:三个方程相加得2x+2y+2z=9+10+11.)17.{x =30,y =20,z =16.18.由已知得{x -8y =0,4y -1=0,8z -3x =0,解之得ìíîïïïïïïïïx =2,y =14,z =34.∴x+y+z=2+14+34=3.19.由已知可得{x +z -y =1,x +y -z =11,y +z -x =5,解之得{x =6,y =8,z =3.20.15021.设4元、8元、10元三种面值邮票的张数分别为x,y,z 张,由题意得{x +y +z =15,4x +8y +10z =100,整理得4y+6z=40,则2y+3z=20,z=20-2y3,所以y=1,4,7,10,对应z=6,4,2,0.代入①求得x=8,7,6,5.所以方程组的解为{x =8,y =1,z =6;{x =7,y =4,z =4;{x =6,y =7,z =2;{x =5,y =10,z =0.也就是买8张4元,1张8元,6张10元或买7张4元,4张8元,4张10元或买6张4元,7张8元,2张10元或买5张4元,10张8元.。
8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)
第八章 二元一次方程组*8.4 三元一次方程组的解法基础过关全练知识点1 三元一次方程(组)1.(2023河北唐山遵化期中)下列是三元一次方程组的是( )A.2x=5x2+y=7x+y+z=6-y+z=-22y+z=9=-3C.x+y-z=7xyz=1x-3y=4 D.x+y=2y+z=1x+z=9知识点2 三元一次方程组的解法2.(2021四川遂宁安居期中)解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,以下解法不正确的是( )A.由①②消去z,再由①③消去zB.由①③消去z,再由②③消去zC.由①③消去y,再由①②消去yD.由①②消去z,再由①③消去y3.(2023云南昆明十中期中)解方程组2x-y+3z=1,3x+y-7z=2,5x-y+3z=3,若要使运算简便,则消元时最好( )A.先消去xB.先消去yC.先消去zD.先消常数项4.(2023天津南开期末)已知2x+3y=z,3x+4y=2z+6中的x,y满足x+y=3,则z 的值为( )A.9B.-3C.12D.不确定5.【新考法】请认真观察,动脑筋想一想,图中“?”表示的数是( )A.420B.240C.160D.706.在等式y=ax2+bx+c中,当x=0时,y=-5;当x=2时,y=3;当x=-2时,y=11,则a= ,b= ,c= .7.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,则这个三位数是 .8.解方程组:(1)2x-3y+4z=12, x-y+3z=4,4x+y-3z=-2.(2)【一题多解】x+y=27,①y+z=33,②z+x=30.③9.【新独家原创】一只蜘蛛有8条腿,一只蜻蜓有6条腿和2对翅膀,一只小鸟有2条腿和1对翅膀.现在这三种动物共有14只,共有70条腿和17对翅膀,则每种动物各有几只?10.小明从家到学校的路程为3.3千米,且从家到学校分别为一段上坡路,一段平路和一段下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校要用一个小时,从学校到家要用44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米.能力提升全练11.(2023浙江杭州拱墅期中,15,★★☆)若关于x,y的方程组3x+5y=m+2,2x+3y=m满足x、y的和等于3,则m= .12.(2022湖北武汉汉阳期末,14,★★☆)某联赛中A,B,C,D,E五支球队的积分和胜负情况如下表:队名比赛场次胜场平场负场积分A1684428B16016016C16012412D16286aE16b82c从中可知a= ,b= ,c= .13.(2023四川资阳安岳期中,13,★★☆)有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件共需63元;购买甲4件、乙10件、丙1件共需84元,则购买甲、乙、丙各一件共需 元.14.(2022广东深圳龙岗月考,27,★★☆)A、B、C三个阀门,同时开放,1小时可注满水池.只开放A、C两个阀门,1.5小时可注满水池.只开放B、C两个阀门,2小时可注满水池.问:只开放A、B两个阀门,需多少时间才能注满水池?素养探究全练15.【运算能力】阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:x=1,y=8是方程3x+y=11的一组“好解”;x=1, y=2, z=3是方程组3x+2y+z=10,x+y+z=6的一组“好解”.(1)求方程x+2y=5的所有“好解”.(2)关于x,y,k的方程组x+y+k=15,x+5y+3k=27有“好解”吗?若有,请求出对应的所有“好解”;若没有,请说明理由.答案全解全析基础过关全练1.DA选项,第二个方程中x2的次数是2;B选项,第一个方程中分母含有未知数;C选项,第二个方程中xyz的次数是3;D选项,方程组中含有三个未知数,且含未知数的项的次数都是1,故D选项中的方程组是三元一次方程组.故选D.2.D解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,利用加减法消去同一个未知数,组成二元一次方程组,故解法不正确的是由①②消去z,再由①③消去y.故选D.3.B观察各方程未知数x,y,z的系数发现:未知数y的系数要么相等,要么互为相反数,所以要使运算简便,那么消元时最好先消去y,故选B.4.B由题意,得2x+3y=z①,3x+4y=2z+6②, x+y=3③,①×2-②,得x+2y=-6④,④-③,得y=-9.把y=-9代入③,得x-9=3,解得x=12.把x=12,y=-9代入①,得z=2×12+3×(-9)=-3.5.B设题图中一个篮球表示的数是x,一顶帽子表示的数是y,一双鞋表示的数是z,依题意得x-3y+z=30②,2x-3z=20③,①+②,得2x+3z=140④,③+④,得4x=160,解得x=40,把x=40代入③得2×40-3z=20,解得z=20,把x=40,z=20代入①得40+3y+2×20=110,解得y=10,则方程组的解为x=40, y=10, z=20.故x+yz=40+10×20=240.故选B.6.3;-2;-5解析 根据题意,得c=-5,①4a+2b+c=3,②4a-2b+c=11,③②-③,得4b=-8,解得b=-2,把b=-2,c=-5代入②得4a-4-5=3,解得a=3,∴a=3,b=-2,c=-5.7.275解析 设这个三位数个位上的数字为x,十位上的数字为y,百位上的数字为z.根据题意得x+z=y①,7z=x+y+2②,x+y+z=14③,把①代入③得2y=14,解得y=7,把y=7代入①得x+z=7④,把y=7代入②得7z=x+9⑤,④+⑤得8z=16,解得z=2,把z=2代入④得x+2=7,解得x=5,∴这个三位数为2×100+7×10+5=275.8.解析 (1)x -y +3z =4②,4x +y -3z =-2③,②+③,得5x=2,解得x=25,①+③×3,得14x-5z=6④,把x=25代入④得285-5z=6,解得z=-225.把x=25,z =―225代入②得25―y ―625=4,解得y=-9625.所以原方程组的解为x =25,y =-9625,z =-225.(2)解法一:由①+②+③得2x+2y+2z=90,即x+y+z=45,④④-①,得z=18,④-②,得x=12,④-③,得y=15,所以原方程组的解为x =12,y =15,z =18.解法二:由①+②-③得2y=30,解得y=15,由①+③-②得2x=24,解得x=12,由②+③-①得2z=36,解得z=18,所以原方程组的解为x =12,y =15,z =18.解法三:由①得x=27-y,④把④代入③,得z+27-y=30,即z-y=3,⑤由②与⑤组成方程组,得y +z =33,z -y =3,解得y =15,z =18,把y=15代入④,得x=12,所以原方程组的解为x =12,y =15,z =18.9.解析 设蜘蛛有x 只,蜻蜓有y 只,小鸟有z 只,由题意得x +y +z =14,8x +6y +2z =70,2y +z =17,解得x =3,y =6,z =5.答:蜘蛛3只,蜻蜓6只,小鸟5只.10.解析 设小明家到学校上坡路是x 千米,平路是y 千米,下坡路是z 千米.+y +z =3.3,+y 4+z 5=1,+y 4+x5=4460,解得x =2.25,y =0.8,z =0.25.答:上坡路是2.25千米,平路是0.8千米,下坡路是0.25千米.能力提升全练11.5解析 由题意,得3x +5y =m +2①,2x +3y =m ②,x +y =3③,由①-②得x+2y=2④,联立③④得方程组x +y =3③,x +2y =2④,解得x =4,y =-1,把x =4,y =-1代入②得m=2×4+3×(-1)=5.12.14;6;26解析 设胜一场得x 分,平一场得y 分,负一场得z 分,∴8x+4y+4z=28,16y=16,12y+4z=12,∴x=3,y=1,z=0.a=2x+8y+6z=14,b=16-8-2=6,c=6x+8y+2z=26.故答案为14;6;26.13.21解析 设甲的单价为x元,乙的单价为y元,丙的单价为z元,根据题意,得3x+7y+z=63①, 4x+10y+z=84②,②-①得x+3y=21,∴3x+9y=63,由②得x+(3x+9y)+y+z=84,∴x+63+y+z=84,∴x+y+z=21.14.解析 设单独开放A、B、C三个阀门,分别需要x、y、z小时才能注满水池,易知x,y,z都不为0,+1+×1=1, +×1.5=1, +×2=1,∴1x =12,1y=13,1z=16,∴1x+1y=56,∴开放A、B两个阀门需要的时间为+=1÷56=65(小时),∴开放A、B两个阀门,需65小时才能注满水池.素养探究全练15.解析 (1)当y=0时,x=5;当y=1时,x=3;当y=2时,x=1,所以方程x+2y=5的所有“好解”为x =5,y =0,x =3,y =1,x =1,y =2.(2)有.x +y +k =15,①x +5y +3k =27.②②-①,得4y+2k=12,则k=6-2y.①×3-②,得2x-2y=18,则x=9+y.∵x,y,k 为非负整数,∴当y=0时,x=9,k=6;当y=1时,x=10,k=4;当y=2时,x=11,k=2;当y=3时,x=12,k=0,∴关于x,y,k 的方程组x +y +k =15,x +5y +3k =27的“好解”为x =9,y =0,k =6,x =10,y =1,k =4,x =11,y =2,k =2,x =12,y =3,k =0.。
人教版七年级数学下册:8.4三元一次方程组的解法复习巩固练习(含答案)
人教版七年级数学下册:8.4 三元一次方程组的解法复习稳固练习〔含答案〕、选择题1 假设x+2y+3z = 10, 4x+3y+2z = 15,那么x+y+z 的值为()A. —2B. 2 C . - 1x+ y = —1,6•三元一次方程组x+z= 0, 的解是〔〕y+ z = 1x = - 1x= 1A y=1z = 0B y= 0z=- 1A.2 B .3 C .4 D .52.方程组x + 2y = k,2x+ y= 1的解满足x+ y= 3,那么k的值为(A.10 B.8 C.2 D.-8 3. 以下方程组中, 是三元一次方程组的是〔〕??= 1 A. { ??= 2????= 3??+ ??= 2 B. {??+ ??= 1??+ ??= 34??-3??= 7 C. { 5??-2??= 142??-??= 4???+? ??= D.{??+ ???=????+? ??= 3x —y+ 2z = 3,4.观察方程组2x + y—4z = 11,的系数特点,假设要使求解简便,消元的方法应选取A.先消去B.先消去yC.先消去D.以上说法都不对5. 关于x, y 的方程组x 2y ax 4y 4a的解是方程3x+2y=10 的解,那么a 的值为〔〕x = 0x=- 1C y = 1D y= 0 z= 1z = - 13??-??+ ??= 4 ① ,7. 解方程组2??+ 3????= 12 ②,时,第一次消去未知数的最正确方法是(){ ??+ ??+ ??= 6 ③A加减法消去x,将①-③X 3与②-③X 2B. 加减法消去y,将①+③与①X 3+②C. 加减法消去z, 将①+②与③+②D. 代入法消去x, y, z 中的任何一个8.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24 人准备同时租用这三间客房共8 间,且每个客房都住满,那么租房方案有( )A. 4种B. 3种C. 2种D. 1种9. 方程x+y+z=7 的正整数解有( )A.10 组B.12 组C.15 组D.16 组10.为了奖励进步较大的学生,某班决定购置甲、乙、丙三种钢笔作为奖品,其单价分别为4 元、5 元、6 元,购置这些钢笔需要花60 元;经过协商,每种钢笔单价下降1 元,结果只花了48 元,那么甲种钢笔可能购置( ) .A.11 支B .9支C .7支D .5支、填空题11 •一个三位数,个位、百位上的数字的和等于十位上的数字, 百位上的数字的7倍比个位、 十位上的数字的和大 2,个位、十位、百位上的数字的和是 14.那么这个三位数是.15. _________________________________________________ 方程x+2y+3z = 14 (x v y v z)的正整数解是 _________________________________________________ 16. 某服装厂专门安排 210名工人进行手工衬衣的缝制 ,每件衬衣由2个衣袖、1个衣身、1 个衣领组成,如果每人每天能够缝制衣袖 10个或衣身15个或衣领12个,那么应该安排 _名 工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套 三、解答题17. 解方程组:x 2y z3x2y 5z 2(1) 3x2y 1(2) x 2y z 62x1y z24x 2y 7z 3018. 假设 1 x + 2y — 5| + (2y + 3z — 13)2+ 3z + x — 10= 0,试求 x , y , z 的值.12.如果方程组{?二??:的解是方程2????= 5 13.x y2y z x z 23 4—??C??+14 { -2 ■ ■ {2??3??3???0,o 那么 a:b :c=2x- 3y+a=5的解,那么a 的值是 ______贝H x+2y+z = _______ •19. 某农场300名职工耕种51公顷土地,方案种植水稻、棉花和蔬菜,种植农作物每公顷所需的劳动力人数及投入的设备资金如下表该农场方案在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?20. 小明从家到学校的路程为 3.3千米,其中有一段上坡路、平路和下坡路•如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米,那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?21.为确保信息平安,在传输时往往需加密,发送方发出一组密码a,b,c 时,那么接收方对应收到的密码为A, B, C.双方约定:A= 2a —b, B= 2b, C= b + c,例如发出1, 2, 3,那么收到0,4 ,5.(1) 当发送方发出一组密码为2, 3, 5 时,那么接收方收到的密码是多少?(2) 当接收方收到一组密码2, 8, 11 时,那么发送方发出的密码是多少?22. 请阅读下面对话, 并解答问题:一天晚饭后小明与隔壁小店老板闲聊,小店老板说:我经销A, B两种商品A,B两种商品的进货单价之和为5元;A商品零售价比进货单价多1元,B商品零售价比进货单价的2倍少1元,按零售价购置A商品3件和B商品2件,共19元•你知道AB两种商品的进货单价各多少元吗?小明想了想很快答复了小店老板的问题. 并给小店老板出了个问题:上次我去逛超市, 买甲、乙、丙三样商品,拿了4 件甲商品,7 件乙商品,1 件丙商品,结果售货员告诉我共8 元, 我没带那么多钱, 就改成了买 2 件甲商品,3 件乙商品,1 件丙商品, 结果售货员告诉我要6元, 可我钱还是不够, 我算了算, 我的钱恰好够买甲、乙、丙商品各一件, 你知道我那天带了多少钱吗?小店老板晕了,叹道:这我哪知呀!后生可畏, 后生可畏啊!问题:(1) 你知道小明是怎样求解小店老板的问题的吗?请写出求解过程.(2) 小明给老板的问题真的不能解决吗?假设能解,请写出求解过程.参考答案、选择题1 假设 x+2y+3z = 10, 4x+3y+2z = 15,那么 x+y+z 的值为〔D 〕A .x + 2y = k ,2x + y = 1的解满足x + y = 3,那么k 的值为〔B 〕??+ ??= 2 B. {??+ ??= 1??+ ??= 34??-3??= 7C. { 5??-2??= 14 2??-2??= 43x — y + 2z = 3,A.先消去xB. 先消去A . 10B .8C .2D .-83. 以下方程组中 , 是三元一次方程组的是 (A) 4.观察方程组2x + y — 4z =11,的系数特点,假设要使求解简便,消元的方法应选取7x + y — 5z = 1〔B〕2. 方程组??= 1A . { ??= 2????= 3???+? ??=D .{??+ ???=? ???+? ??=y5. 关于x, y的方程组X 2y a a的解是方程3x+2y=10的解,那么aA. —2B. 2 C . - 1x+ y =- 1,6. 三元一次方程组x+ z= 0,的解是〔D〕y+ z = 1x = - 1A y = 1z = 0x = 0C y= 1z = - 1x= 1B y= 0z=- 1x=- 1D. y= 0z= 1C.先消去zD.以上说法都不对3??-??+ ??= 4 ① ,7.解方程组2??+ 3????= 12 ②,时,第一次消去未知数的最正确方法是{ ??+ ??+ ??= 6 ③(C)A加减法消去X,将①-③X 3与②-③X 2B. 加减法消去y,将①+③与①X 3+②C. 加减法消去z, 将①+②与③+②D. 代入法消去x, y, z 中的任何一个8.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团三间客房共8 间,且每个客房都住满,那么租房方案有〔 B 〕24 人准备同时租用这A. 4种B. 3种C. 2种D. 1种9. 方程x+y+z=7 的正整数解有〔C〕A.10 组B.12 组的值为〔 B 〕C. 15 组10•为了奖励进步较大的学生,某班决定购置甲、乙、丙三种钢笔作为奖品,其单价分别为 4元、5元、6元,购置这些钢笔需要花 60元;经过协商,每种钢笔单价下降 1元,结果只花了 48元,那么甲种钢笔可能购置 〔D 〕.A. 11 支 B • 9 支 C • 7 支 D • 5 支 二、填空题11 •一个三位数,个位、百位上的数字的和等于十位上的数字, 百位上的数字的7倍比个位、 十位上的数字的和大 2,个位、十位、百位上的数字的和是14.那么这个三位数是 275.12.如果方程组{?二〜的解是方程2x- 3y+a=5的解,那么a 的值是 -102????= 5 ----------14. {??2?? 3??= 02??3?? 4??= 0,x 115. ____________________________________________ 方程x+2y+3z = 14 (x v y v z)的正整数解是 _______________________________________________ y 2 _____z 316. 某服装厂专门安排 210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个或衣身15个或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套三、解答题17. 解方程组:x2y z3x2y 5z 2(1) 3x2y 1(2)x 2y z 614x 2y 7z 302x y z2D.16 组13.2,贝y x+2y+z = __-10 ____c= 1 : 2 : 1x 2y z ①解:(1) 3x 2y 1 ②2x y z 1③由①得:x 2y z④,将④代入②③,整理得:8y 3z3y z11 ,解得:21 y2,z 1代入④得:x 0,x 0,所以,原方程组的解是1 y 2,z 1.3x 2y 5z 2 ①(2) x 2y z 6 ②4x2y7z30③由①+②得:4x4z8 , 即x z 2④,由②+③得:5x8z36⑤,由④X 5—⑤,整理里得:z 2 ,将z 2代入④,解得: x 4,将x 4, z 2代入①,解得y 0,x 4,所以,原方程组的解是y 0,z 2.18. 假设 1 x+ 2y~5|+ (2y + 3z—13)2+ 3z+ x —10= 0,试求x, y, z 的值.x + 2y —5 = 0, x= 1,解:由题意,得2y+ 3z —13=°,解得y= 2,3z + x—10= 0. z = 3.19. 某农场300名职工耕种51公顷土地,方案种植水稻、棉花和蔬菜,种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:该农场方案在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?解:设种植水稻x公顷,棉花y公顷,蔬菜为z公顷,??+ ??+ 2??= 67, ??= 15,由题意得{4??+ 8??+ 5??= 300,解得{??= 20,??+ ??+ ??= 51, ??= 16答:种植水稻15公顷,棉花20公顷,蔬菜16公顷.20. 小明从家到学校的路程为 3.3千米,其中有一段上坡路、平路和下坡路•如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米,那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?解:设去学校时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得x + y + z = 3.3 ,答:上坡路2.25千米、平路0.8千米、下坡路 0.25千米.21 •为确保信息平安,在传输时往往需加密,发送方发出一组密码 a , b , c 时,那么接收方对 应收到的密码为 A , B, C.双方约定:A = 2a — b , B = 2b , C = b + c ,例如发出1, 2, 3,那么收 到 0, 4, 5.(1) 当发送方发出一组密码为 2, 3, 5时,那么接收方收到的密码是多少?(2) 当接收方收到一组密码 2, 8, 11时,那么发送方发出的密码是多少?A = 2X 2 — 3,解: (1)由题意得B = 2X 3,C = 3+ 5,解得 A = 1, B = 6, C = 8.答:接收方收到的密码是 1 , 6 , 8.2a — b = 2 , a = 3 ,(2)由题意得2b = 8, 解得b = 4 ,b +c = 11. c = 7.答:发送方发出的密码是 3 , 4 , 7.22.请阅读下面对话,并解答问题:一天晚饭后小明与隔壁小店老板闲聊 ,小店老板说:我经销A , B 两种商品A,B 两种商品的进货单价之和为5元;A 商品零售价比进货单价多1元,B 商品零售价比进货单价的 2倍少1元, 按零售价购置 A 商品3件和B 商品2件,共19元.你知道AB 两种商品的进货单价各多少元 吗?小明想了想很快答复了小店老板的问题 .并给小店老板出了个问题 :上次我去逛超市,买甲、乙、丙三样商品,拿了 4件甲商品,7件乙商品,1件丙商品,结果售货员告诉我共8元,x y z3+ 4+ 5 =1,z y x 443+ 4+ 5 =60, x = 2.25 , 解得y =0.8, z = 0.25.我没带那么多钱 ,就改成了买 2件甲商品 ,3 件乙商品 ,1 件丙商品 ,结果售货员告诉我要 6元, 可我钱还是不够 , 我算了算 , 我的钱恰好够买甲、乙、丙商品各一件 钱吗?小店老板晕了 ,叹道:这我哪知呀 !后生可畏 ,后生可畏啊 !问题:(1) 你知道小明是怎样求解小店老板的问题的吗 ?请写出求解过程(2) 小明给老板的问题真的不能解决吗 ?假设能解 , 请写出求解过程 解:(1)设A 商品进货单价为x 元,B 商品进货单价为y 元,?? + ??= 5, 根据题意得 {3(??+ 1) + 2(2??-1)=1900-9解得{???? == 32,.答:A ,B 两种商品的进货单价分别为 2元、3元.(2)设甲商品售价为a 元,乙商品售价为b 元,丙商品售价为c 元,4??+ 7??+ ??= 根据题意得 {2??+ 3??+ ??= ① -②得 2a+4b=2,那么 a+2b=1,③② - ③得 a+b+c=5.答: 小明那天带了 5元钱 ., 你知道我那天带了多少 8, ①6, ②。
三元一次方程组的解法(练习)七年级数学下册同步课堂(人教版)(解析版)
第八章二元一次方程组8.4三元一次方程组精选练习答案基础篇一、单选题(共10小题)1.下列方程组中是三元一次方程组的是().A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩D .::3:4:524x y z x y z =⎧⎨++=⎩【答案】D【详解】解:A 、a 的最高次数是2,选项错误;B 、x 、y 、z 的最高次数都是2,选项错误;C 、每个方程都是分式方程,选项错误;D 、符合题意,选项正确.故选:D2.解方程组3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③时,为转化为二元一次方程组,最恰当的方法是()A .由②③消去zB .由②③消去yC .由①②消去zD .由①③消去x【答案】B【详解】解:由②⨯3+③得:11x +10z =35,∴转化为二元一次方程组为347111035x z x z +=⎧⎨+=⎩,故选:B .3.已知方程组369x y y z z x +=⎧⎪+=-⎨⎪+=⎩,则x y z ++的值是()A .3B .4C .5D .6【答案】A【详解】解:方程组369x y y z z x +=⎧⎪+=-⎨⎪+=⎩,三个方程相加得:2226x y z ++=,∴3x y z ++=,故选:A .4.运用加减消元法解方程组11393282645x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩,较简单的方法是()A .先消去x ,再解22261663837y z y z +=⎧⎨-=-⎩B .先消去z ,再解2615381821x y x y -=-⎧⎨+=⎩C .先消去y ,再解117291139x z x z +=⎧⎨+=⎩D .三个方程相加得8x -2y +42=11再解【答案】C【详解】解:11393282645x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③,②×3+③,得11x +7z =29④,④与①组成二元一次方程组117291139x z x z +=⎧⎨+=⎩.故选:C .5.三元一次方程组345+=⎧⎪+=⎨⎪+=⎩x y x z y z 的解是()A .123x y z =⎧⎪=⎨⎪=⎩B .231x y z =⎧⎪=⎨⎪=⎩C .312x y z =⎧⎪=⎨⎪=⎩D .321x y z =⎧⎪=⎨⎪=⎩【答案】A【详解】解:345①②③+=⎧⎪+=⎨⎪+=⎩x y x z y z①+②+③,得:()212x y z ++=,即6x y z ++=④,把①代入④,得:3z =,把②代入④,得:2y =,把③代入④,得:1x =,所以原方程组的解为123x y z =⎧⎪=⎨⎪=⎩.故选:A .6.小明妈妈到文具店购买三种学习用品,其单价分别为2元、4元、6元,购买这些学习用品需要56元,经过协商最后以每种单价均下调0.5元成交,结果只用了50元就买下了这些学习用品,则小明妈妈有几种不同的购买方法.()A .6B .5C .4D .3【答案】D【详解】解:设分别购买学习用品x 、y 、z ,根据题意可得:246561.5 3.5 5.550x y z x y z ++=⎧⎨++=⎩①②(①-②)×2得:12x y z ++=③①÷2得:2328x y z ++=④④-③得:216y z +=方案一:2,7,3y z x ===方案二:4,6,2y z x ===方案三:6,5,1y z x ===故选:D .7.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A .1.2元B .1.05元C .0.95元D .0.9元【答案】B【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据题意得:37 3.15482 4.2x y z x y z ++=⎧⎨++=⎩①②,②–①可得: 1.05x y z ++=.故选:B .8.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买().A .11支B .9支C .7支D .5支【答案】D【详解】解:设购买甲、乙、丙三种钢笔分别为x 、y 、z 支,由题意,得4566034548x y z x y z ++=⎧⎨++=⎩①②①×4-②×5得0x z -=,所以x z =,将z x =代入①,得45660x y x ++=.即212y x +=.∵0y >,∴6x <,∴x 为小于6的正整数,四个选项中只有D 符合题意;故选D .9.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?()A .1个B .2个C .3个D .4个【答案】C【详解】设现在这对夫妇的年龄和为x 岁,子女现在的年龄和为y 岁,这对夫妇共有z 个子女,则,()()6,22102,2636,x y x y z x y z ⎧=⎪-⨯=-⎨⎪+⨯=+⎩解得84,14,3.x y z =⎧⎪=⎨⎪=⎩∴这对夫妇共有3个子女.故选C .10.已知买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买10支铅笔、10块橡皮与10本日记本共需()元A .16B .60C .30D .66【答案】B【详解】解:设铅笔单价为x 元,橡皮的单价为y 元,日记本的单价为z 元,由题意得:203232395358x y z x y z ⎩++⎨=++=⎧①②,由①×2-②得:x +y +z =6,∴10x +10y +10z =10×6=60,即购买10支铅笔、10块橡皮与10本日记本共需60元,故选:B .提升篇二、填空题(共5小题)11.已知303340x y z x y z -+=⎧⎨--=⎩,则::x y z =________.【答案】15:7:6;【详解】解:原方程组化为3334x y z x y z -=-⎧⎨-=⎩①②②-①得25x z =,52x z =.故76y z =.∴57::::15:7:626x y z z z z ==.故答案为:15:7:612.若()12||15210b a a x yz +--++=是一个三元一次方程,那么=a _______,b =________.【答案】-10【详解】由题意得:101121a b a ⎧-≠⎪+=⎨⎪-=⎩,解得:10a b =-⎧⎨=⎩.故答案为:-1,0.13.已知2234x y y z x z +++===-,则2x y z ++=________.【答案】-10【详解】2234x y y z x z +++===- ,222324x y y z x z +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩,即468x y y z x z +=-⎧⎪+=-⎨⎪+=-⎩,2()()4(6)10x y z x y y z ∴++=+++=-+-=-,故答案为:-10.14.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需()元.【答案】5【详解】解:设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.则由题意得:73310441152x y z x y z x y z a ++=⎧⎪++=⎨⎪++=⎩①②③,由-②①得:31x y +=,④由+②①得:17727x y z ++=,⑤由2-⨯-⑤④③得:05a =-,解得:5a =.故答案为:515.一个水池有A ,B 两个水口,其中A 为进水口,B 水口可进水也可出水(B 水口进出水速度相同).已知单独打开A 进水口,需要t 小时将水池由空池注满.若将A ,B 两个水口同时打开进水,5小时将水池由空池注满;若将A 水口打开进水,同时B 水口打开出水,10小时将水池由空池注满,则t =______.【答案】203【详解】解:设A 进水口速度为a ,B 进水口、出水口速度为b ,水池容量为V ,由题意得:5()10()at V a b V a b V =⎧⎪+=⎨⎪-=⎩③①②,由②2⨯+③得:203a V =,解得:320V a =,将320V a =代入①得:320V t V ⨯=,解得:203t =,故答案为:203.三、解答题(共2小题)16.解方程:(1)11425x y x y z x y z =+⎧⎪++=⎨⎪+-=⎩(2)3743225x y y z x z -=-⎧⎪+=⎨⎪-=-⎩(3)1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩(4)::3:4:536x y z x y z =⎧⎨++=⎩【答案】(1)653x y z =⎧⎪=⎨⎪=⎩;(2)2112x y z ⎧⎪=-⎪=⎨⎪⎪=⎩;(3)683x y z =⎧⎪=⎨⎪=⎩;(4)91215x y z =⎧⎪=⎨⎪=⎩【详解】解:(1)11425x y x y z x y z =+⎧⎪++=⎨⎪+-=⎩①②③,将①代入②,得2y +z =13④,将①代入③,得2y -2z =4⑤,④-⑤,得z =3,把z =3代入②,得y =5,把y =5代入①,得x =6,故原方程组的解是653 xyz=⎧⎪=⎨⎪=⎩;(2)3743225x yy zx z-=-⎧⎪+=⎨⎪-=-⎩①②③,①+②,得3x+4z=-4④,④+③2⨯,得7x=-14,解得x=-2,将x=-2代入④,得z=1 2,将x=-2代入①,得y=1.故原方程组的解是2112xyz⎧⎪=-⎪=⎨⎪⎪=⎩;(3)1151x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩①②③,①+②+③,得x+y+z=17④,④-①,得z=3,④-②,得x=6,④-③,得y=8,故原方程组的解是683 xyz=⎧⎪=⎨⎪=⎩;(4)::3:4:536 x y zx y z=⎧⎨++=⎩∵::3:4:5x y z=,∴设x=3k,y=4k,z=5k,代入②,得3k+4k+5k=36,解得:k=3,∴x=9,y=12,z=15,故原方程组的解是91215 xyz=⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,解题的关键是利用加减消元法将方程组转化为一元一次方程进行解答.17.小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?【答案】上坡路2.25千米、平路0.8千米、下坡路0.25千米【详解】解:设去时上坡路是x 千米,平路是y 千米,下坡路是z 千米.依题意得:3.313454434560x y z x y z z y x ⎧⎪++=⎪⎪++=⎨⎪⎪++⎪⎩=,解得 2.250.80.25x y z =⎧⎪=⎨⎪=⎩.答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.。
七年级数学-三元一次方程组的解法练习含解析 (2)
故答案是:6.
【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.
5.三元一次方程组 的解是 .
【分析】方程组利用加减消元法求出解即可.
【解答】解: ,
①+②得:x﹣z=2④,
③+④得:2x=8,即x=4,
把x=4代入④得:z=2,
把z=2代入②得:y=3,
【解答】解:设购买甲、乙、丙各一件分别需要x,y,z元,
由题意得 ,
②﹣①得x+3y=105,
代入①得x+y+2(x+3y)+z=315,
即x+y+z+2×105=315,
∴x+y+z=315﹣210=105.
故答案为:105.
【点评】本题考查了三元一次方程组的实际应用,解答此题的关键是首先根据题意列出方程组,再整体求解.
11.已知y=ax2+bx+c,且当x=1时,y=5;当x=﹣2时,y=14;当x=﹣3时,y=25,则a=2,b=﹣1,c=4.当x=4时,y=32.
【分析】根据题意,把x,y的值代入y=ax2+bx+c中,得到关于a、b、c的三元一次方程组,即可求得a、b、c的值.
【解答】解:据题意得 ,
解得 ,
【解答】解:由题意得 ,
把③代入②得x= ,
代入①得k=﹣ .
故本题答案为: .
【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.
人教版七年级数学下册三元一次方程组(基础) 典型例题(考点)讲解+练习(含答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】三元一次方程组(基础)知识讲解责编:杜少波【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩ B .111216y x z yx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2.(2016春•枣阳市期末)在等式y=ax 2+bx+c 中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值.【思路点拨】由“当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论. 【答案与解析】解:根据题意,得,②﹣①,得a+b=1④; ③﹣①,得4a+b=10 ⑤.④与⑤组成二元一次方程组,解这个方程组,得,把代入①,得c=﹣5.因此,即a ,b ,c 的值分别为3,﹣2,﹣5.【总结升华】本题考查了解三元一次方程组,解题的关键是得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大. 【:三元一次方程组 409145 例1】举一反三:【变式】解方程组:【答案】解:①+②得:5311x y +=④①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【:三元一次方程组409145 例2(2)】3. 解方程组23520x y zx y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】解法一:原方程可化为:253520x zy zx y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y zt ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解. 举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( ) A .1 B .0 C .﹣2 D .4【答案】B .解:,①+②+③得:x+y+z=1④, 把①代入④得:z=﹣4, 把②代入④得:y=2, 把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0, 解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (56)
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案)某校在“筑梦少年正当时,不忘初心跟党走”知识竟赛中,七年级(2)班2人获一等奖,1人获二等奖,3人获三等奖,奖品价值41元;七年级(7)班1人获一等奖,3人获二等奖,3人获三等奖,奖品价值37元;七年级(13)班5人获二等奖,3人获三等奖,奖品价值_____元.【答案】33【解析】【分析】设一等奖奖品的单价为x元/个,二等奖奖品的单价为y元/个,三等奖奖品的单价为z元/个,根据“2个一等奖、1个二等奖、3个三等将奖品价值41元;1个一等奖、3个二等奖、3个三等将奖品价值37元”,即可得出关于x、y、z 的三元一次方程组,利用2×②﹣①即可求出结论.【详解】设一等奖奖品的单价为x元/个,二等奖奖品的单价为y元/个,三等奖奖品的单价为z元/个,根据题意得:23413337x y zx y z++=⎧⎨++=⎩①②,2×②﹣①,得:5y+3z=33.故答案是:33.【点睛】考查了三元一次方程组,找准等量关系,正确列出三元一次方程组是解题的关键.52.若关于x ,y 的二元一次方程组3,-x y k x y k +=⎧⎨=⎩的解也是二元一次方程x +2y =8的解,则k 的值为____.【答案】2【解析】【分析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=8的解,也就是说,它们有共同的解,及它们是同一方程组的解,列出方程组解答即可.【详解】根据题意,得()()()31{2283x y k x y k x y +-+===由(1)+(2),得2x=4k 即x=2k (4)由(1)-(2),得2y=2k 即y=k (5)将(4)、(5)代入(3),得2k+2k=8,解得k=2.【点睛】本题考查了三元一次方程组的解,运用了加减消元法和代入消元法.通过“消元”,使其转化为二元一次方程(组)来解.53.若54413273193218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则5x ﹣y ﹣z ﹣1的立方根是_____. 【答案】3【解析】【分析】先③×3-③得7x -y =35③,再③×3+③×4得:23x +16y =115③,然后③×16+③求出x 的值,再把x 的值代入③求出y 的值,最后把x 、y 的值代入③求出z 的值即可.【详解】54413273193218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩①②③, ③×3-②得: 7x -y =35③,①×3+③×4得:23x +16y =115⑤,④×16+⑤得:x =5,把x =5代入④得:y =0,把x =5,y =0代入③得:z =-3;则原方程组的解为:503x y z =⎧⎪=⎨⎪=-⎩. ③5x ﹣y ﹣z ﹣1=25-0+3-1=27,③5x ﹣y ﹣z ﹣1故答案为3.【点睛】本题考查了三元一次方程组的解法,关键把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.54.方程组202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是_____. 【答案】123x y z =⎧⎪=-⎨⎪=⎩【解析】【分析】①+②得出3x+y=1④,③﹣②求x ,把x=1代入④求出y ,把x=1,y=﹣2代入①求出z 即可.【详解】202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩①②③ ①+②得:3x+y=1④,③﹣②得:x=1,把x=1代入④得:3+y=1,解得:y=﹣2,把x=1,y=﹣2代入①得:1﹣4+z=0,解得:z=3,所以原方程组的解为123x y z =⎧⎪=-⎨⎪=⎩, 故答案为:123x y z =⎧⎪=-⎨⎪=⎩. 【点睛】本题考查了解三元一次方程组,能把三元一次方程转化成二元一次方程组或一元一次方程是解此题的关键.55.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,那么甲、乙、丙三个数分别是__________.【答案】10,9,7【解析】【分析】先设甲数为x ,乙数为y ,丙数为z ,根据甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,列出方程组,求出方程组的解即可.【详解】设甲数为x ,乙数为y ,丙数为z ,根据题意得:261218x y z x y x z y ++=⎧⎪-=⎨⎪+-=⎩, 解得:1097x y z =⎧⎪=⎨⎪=⎩, 则甲数是10,乙数是9,丙数是7,故答案为:10,9,7.【点睛】本题考查了三元一次方程组的应用,解题的关键是读懂题意,根据题目中的数量关系,列出方程组.56.县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.【答案】12【解析】【分析】可设公交车每隔x 分钟发车一次,同时设公共汽车和小明的速度为未知数,等量关系为:15×(公共汽车的速度-小明的速度)=x ×公共汽车的速度;10×(公共汽车的速度+小明的速度)=x ×公共汽车的速度,消去x 后得到公共汽车速度和小明速度的关系式,代入任意一个等式可得x 的值.【详解】设公共汽车的速度为a ,小明的速度为b ,每隔x 分钟发车一次,依题意有 ()()1510a b ax a b ax ⎧-=⎪⎨+=⎪⎩, 解得a=5b ,代入方程10(a+b )=ax 得x=12,故公交车每隔12分钟发车一次,故答案为12.【点睛】本题考查了三元一次方程组的应用;消元是解决本题的难点;得到相遇问题和追及问题的等量关系是解决本题的关键.57.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.【答案】152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得 230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6,∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.58.如果576x yy zx z+=⎧⎪+=⎨⎪+=⎩,那么x y z++的值为______.【答案】9【解析】【分析】把三个方程相加即可.【详解】三个方程相加可得:2x+2y+2z=18,所以x+y+z=9,故答案为9【点睛】此题考查三元方程组的问题,关键是把三个方程相加解答.59.方程组251x yy zx z+=-⎧⎪+=⎨⎪+=-⎩的解为________.【答案】423 xyz=-⎧⎪=⎨⎪=⎩【解析】分析:方程组利用加减消元法求出解即可.详解:251x yy zx z+=-⎧⎪+=⎨⎪+=-⎩①②③,①-②+③,得2x=-8,解得:x=-4,把x=-4代入①得:y=2,把y=2代入②得:z=3,则方程组的解为423xyz=-⎧⎪=⎨⎪=⎩,故答案为:423 xyz=-⎧⎪=⎨⎪=⎩.点睛:本题考查了解三元一次方程组的应用,解三元一次方程组的基本思路是想法把三元一次方程组转化成二元一次方程组.60.方程组210285326x y zx y zx y z①②③+-=⎧⎪-+=⎨⎪-+=⎩先消去z,可用①+②得3x+ ______ =18,②×2-③得______ = _____.【答案】y -x+y 10【解析】分析:先把三元一次方程组转化成二元一次方程组,消去z,①+②和②×2−③,即可得出答案.详解:210 28 5326 x y zx y zx y z①②③+-=⎧⎪-+=⎨⎪-+=⎩①+②得:3x+y=18,②×2−③得:−x+y=10,故答案为:y,−x+y,10.点睛:本题考查了解三元一次方程组的应用,解三元一次方程组的基本思路是想法把三元一次方程组转化成二元一次方程组.。
七下8-4三元一次方程组的解法习题新版新人教版
C.消去z
D.以上说法都不对
【点拨】
因为y的系数的绝对值都是1,所以消去y较简便.
+ + = ,①
4.已知三元一次方程组൞+ − = ,②经过步骤①-
++= − ,③
③和③×4+②消去未知数z后,得到的二元一次方程组是
A
(
)
+ = ,
+ = ,
B )
= ,
A.൞= − ,
+ =
+ = ,
B.൞+ = ,
+ =
= + ,
+
=
,
C.൞
+ = ,
−
= ,
D.൞
+ =
−=
2.若(a+1)x+5yb+1+2z2-|a|=10是一个三元一次方程,则
则原方程组可化为൞ − + = − ,②
+ = . ③
①+②,得2a+2c=1,④
②+③,得2a+4c=4.⑤
④与⑤组成方程组,得ቊ
+ = ,
+ = .
= − ,
= − ,
解这个方程组,得൝
把൝
代入①,得
= .
=
b=6.
因此, =-1, =6, = ,
(
A )
A.a=1,b=0
B.a=-1,b=0
C.a=±1,b=0
D.a=0,b=0
知识点2
三元一次方程组的解法
− + = ,
3.[母题:教材P106练习T1(2)]解方程组൞+ − = ,
初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案
初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列方程组中,是三元一次方程组的是 ( )A.{x +y =0,y −z =1,z +w =5B.{x +y =0,y +2x =1C.{3x +4z =7,2x +3y =9−z ,5x −9y +7z =8D.{x 2−2y =0,y +z =3,x +y +z =12. 三个二元一次方程2x +5y −6=0,3x −2y −9=0,y =kx −9有公共解的条件是k =( )A.4B.3C.2D.13. 若2x +3y −z =0且x −2y +z =0,则x:z =( )A.1:3B.−1:1C.1:2D.−1:74. 若方程x +y =3,x −y =5和x +ky =2有公共解,则k 的值是( )A.2B.−2C.1D.35. 有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,那么购甲、乙、丙各1件,共需( )A.128元B.130元C.150元D.160元6. 如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A.2B.7C.8D.157. 已知{a−2b+3c=02a−3b+4c=0,则a:b:c等于()A.3:2:1B.1:3:1C.1:2:3D.1:2:18. 方程组{x+y+z=103x+y−z=502x+y=40()A.无解B.有1组解C.有2组解D.有无穷多组解9. 若a:b:c=2:3:7,且a−b+3=c−2b,则c=()A.7B.63C.10.5D.5.2510. 有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21B.23C.25D.27二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a=________.12. 已知三元一次方程组,则________.13. 若x2=y3=z4,且3x+2y+z=32,则(y−z)x=________.14. 某超市销售A、B、C三种商品,若将A、B两种商品分别提价30%,C种价格不变,那么三种商品的总价将提高20%;若将A、B两种商品在原价的基础上分别提高25%,C 种商品降价5%,那么三种商品的总价将提高________%.15. 方程组{ xyz y+z =65xyz x+z =32xyz x+y=2的解是________.16. 若{x +y −z =11y +z −x =5z +x −y =1,则x +y +z =________.17. 某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.18. 2015年5月18日华中旅游博览会在汉召开.开幕式上用到甲、乙、丙三种造型的花束,甲种花束由3朵红花、2朵黄花和1朵紫花搭配而成,乙种花束由2朵红花和2朵黄花搭配而成,丙种花束由2朵红花、1朵黄花和1朵紫花搭配而成.这些花束一共用了580朵红花,150朵紫花,则黄花一共用了________朵.19. 已知方程组{x +ay =25x −2y =3的解也是二元一次方程x −y =1的一个解,则a =________.20. 已知a 、b 、c 满足a +2b +3c =0,3a +2b +c =70,则a +b +c =________.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 , )21. 解方程组:{x 2=y 3=z 52x +y +3z =88.22. 一种饮料大小包装有3种,1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,3种包装的饮料每瓶各多少元?23. 解方程:{x +y +z =651(1+10%)z =y (1+5%)y =x.24. 汽车在平路、上坡路、下坡路的速度分别为30km/ℎ,28km/ℎ,35km/ℎ,甲、乙两地两距142km ,汽车从甲地去乙地需4.5ℎ,从乙地回甲地需4.7ℎ.从甲地去乙地,平路、上坡路、下坡路各有多少千米?25. 一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来三位数大99,求原来的三位数.26. 解方程组:{x −y +z =0,3y −z =8,x +y =6.27. 某电脑公司有A 型、B 型、C 型三种型号的电脑,其中A 型每台5000元、B 型每台4000元、C 型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.28. 已知:{x +y −z =02x −3y +5z =53x +y −z =2,求x ,y ,z 的值.29. 有这样一道数学题:在等式y =ax 2+bx +c 中,当x =−1时,y =0,当x =2时,y =3,当x =5时,y =60.(1)请你列出关于a ,b ,c 的方程组,这是一个三元一次方程组吗?(2)求出a ,b ,c 的值.30. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需34.5元;若购甲4件,乙10件,丙1件,共需42.00元,现在购甲、乙、丙各一件共需多少元?31. 解方程组:{2x +3y =4,2x −y +2z =−4,x +2y −2z =3.32. 有一个三位数,个位上的数字与百位上的数字的和等于十位上的数字,百位上的数字的2倍比个位,十位上的数字的和大4,个位、十位、百位上的数字的和是14,求这个三位数.33. 解方程组{2x+y+z=3 x+2y+z=5 x+y+2z=8.34. 解三元一次方程组{3x+4z=72x+3y+z=95x−9y+7z=8.35. 已知:青铜含有80%的铜、4%锌和16%锡,而黄铜是铜和锌的合金.今有黄铜和青铜的混合物一块,其中含有74%的铜、16%锌和10%锡.求黄铜含有铜和锌之比.36. 王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?37. 请借助数轴求解:甲、乙两人分别开车从武汉出发到某风景区游玩,途中要经过一个高速公路收费站和一个休息站.当乙到达收费站时,甲才出发;当甲经过收费站半小时后得知乙已经到达休息站,此时乙已经走了全程的12;当甲到达休息站时,乙离风景区只有13的路程.已知甲、乙两车始终保持60千米/时的速度行驶,途中也没有休息,问甲比乙晚出发多长时间?38. 一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?39. {2x+y+3z=383x+2y+4z=56 4x+y+5z=66.40. 已知△ABC的三边a、b、c满足{a+b=21b+c=24a+c=27,求这个三角形的三边a、b、c的长.参考答案与试题解析初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】三元一次方程组的应用三元一次方程组的定义【解析】利用三元一次方程组的定义判断即可.【解答】解:A ,4个未知数,不符合题意;B ,2个未知数,不符合题意;C ,有3个未知数,未知数的次数都是1,是三元一次方程组,符合题意;D ,未知数x 的最高次数为2,不符合题意.故选C .2.【答案】B【考点】解三元一次方程组【解析】理解清楚题意,运用三元一次方程组的知识,把三个方程组成方程组再求解.【解答】解:由题意得:{2x +5y −6=03x −2y −9=0y =kx −9,①×3−②×2得y =0,代入①得x =3,把x ,y 代入③,得:3k −9=0,解得k =3.故选B .3.【答案】D【考点】解三元一次方程组【解析】根据2x +3y −z =0和x −2y +z =0,可用含y 的式子表示x 与z ,再求比值即可.【解答】解:∵ 2x +3y −z =0①,x −2y +z =0②,∴ ①+②得,3x +y =0,解得x =−13y ,①-②×2得,7y −3z =0,解得z =73y , ∴ x:z =−13y 73y =−17. 故选D .4.【答案】A 【考点】解三元一次方程组【解析】把方程x +y =3,x −y =5和x +ky =2组成方程组,首先求出x ,y 的值,再把x ,y 的值代入x +ky =2中,就可以得到k 的值.【解答】解;把x +y =3,x −y =5和x +ky =2组成方程组得;{x +y =3①x −y =5②x +ky =2③,①+②得:2x =8,x =4,把x =4代入①得;y =−1,把x =4,y =−1代入③得;k =2,∴ 方程组的解为{x =4y =−1k =2.故选A .5.【答案】C【考点】三元一次方程组的应用【解析】根据题意分别表示出购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,进而将两式相加得出答案.【解答】解:设甲1件x 元,乙1件y 元,丙1件z 元,根据题意可得:3x +2y +z =315①,x +2y +3z =285②,①+②得:4x +4y +4z =600,则x +y +z =150(元),故购甲、乙、丙各1件,共需150元.故选C .6.【答案】C【考点】正方形的性质规律型:数字的变化类规律型:图形的变化类【解析】根据题意首先设A端点数为x,B点为y,则C点为:7−y,D点为:z,得出x+y=3①,C点为:7−y,z+7−y=12,而得出x+z的值.【解答】设A端点数为x,B点为y,则C点为:7−y,D点为:z,根据题意可得:x+y=3①,C点为:7−y,故z+7−y=12②,故①+②得:x+y+z+7−y=12+3,故x+z=8,即AD上的数是:8.7.【答案】D【考点】解三元一次方程组【解析】首先利用加减消元法,求得用c来表示a、b,再进一步代入求得a:b:c即可.【解答】解:{a−2b+3c=02a−3b+4c=0,①×2−②得:−b+2c=0则b=2c;①×3−②×2得:−a+c=0则a=c;所以a:b:c=c:2c:c=1:2:1.故选:D.8.【答案】A【考点】解三元一次方程组【解析】首先①+②消去z可得:4x+2y=60,化简得:2x+y=30,而③式中2x+y=40,故无解.【解答】解:∵{x+y+z=10①3x+y−z=50②2x+y=40③,∴ ①+②得:4x+2y=60,即2x+y=30④,又∵2x+y=40③,∴原方程组无解.故选A.9.【答案】C【考点】解三元一次方程组【解析】利用a、b、c比值可设a=2t,b=3t,c=7t,于是可得到关于t的一次方程2t−3t+ 3=7t−6t,解方程得t=1.5,然后计算7t即可.【解答】解:由a:b:c=2:3:7可设a=2t,b=3t,c=7t,把a=2t,b=3t,c=7t代入a−b+3=c−2b,得2t−3t+3=7t−6t,解得t=1.5,所以c=7t=10.5.故选C.10.【答案】A【考点】三元一次方程组的应用【解析】设购买甲、乙、丙各一件分别需要x,y,z元,列出方程组,消去z后,得到x+3y的值,再代入①,即可求得x+y+z的值,也即购买甲、乙、丙各一件的共需钱数.【解答】设购买甲、乙、丙各一件分别需要x,y,z元,由题意得{3x+7y+z=634x+10y+z=84,②-①得x+3y=21,代入①得x+y+2(x+3y)+z=63,即x+y+z+2×21=63,∴x+y+z=63−42=21.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】10cm【考点】三元一次方程组的应用【解析】由c:b=1:2,可得b=2c,因为a=b,所以a=2c,再根据三角形的周长为25cm即可求出c,继而求出a的长.【解答】解:∵c:b=1:2,∴b=2c,∴a=b,∴a=2c,∵△ABC的周长为25cm,∴a+b+c=25,∴5c=25,∴c=5cm,∴a=2c=10cm故答案为:10cm.12.【答案】6【考点】解三元一次方程组【解析】方程组中三个方程左右两边相加,变形即可得到x+y+z的值.①【解答】解:{x+y=3y+z=4x+z=5③ ②①+②+③,得2x+2y+2z=12 x+y+z=6故答案为:6.13.【答案】16【考点】解三元一次方程组【解析】先设x2=y3=z4=k,根据3x+2y+z=32,求出k的值,再根据k的值分别求出x,y,z的值,再把它代入即可求出答案.【解答】解:设x2=y3=z4=k,则x=2k,y=3k,z=4k,∵3x+2y+z=32,∴6k+6k+4k=32,解得:k=2,∴x=4,y=6,z=8,∴(y−z)x=(6−8)4=(−2)4=16.故答案为:16.14.【答案】15【考点】三元一次方程组的应用【解析】设A 、B 、C 三种商品的原价分别是a 元、b 元、c 元,根据题意列出方程组解决问题即可.【解答】解:设A 、B 、C 三种商品的原价分别是a 元、b 元、c 元则1.3a +1.3b +c =1.2(a +b +c),化简得a +b =2c ,所以1.25a +1.25b +0.95c =1.25(a +b)+0.95c=1.25×2c +0.95c=2.5c +0.95c=3.45c ,原价为a +b +c =2c +c =3c ,所以(3.45c −3c)÷3c ×100%=15%.答:那么三种商品的总价将提高15%.故答案为:15.15.【答案】{x 1=1y 1=2z 1=3,{x 2=−1y 2=−2z 2=−3【考点】解三元一次方程组【解析】先把原方程组取倒数,得到一组新的方程,然后再写成分式相加的形式,再利用加减消元法和代入法求解即可.【解答】解:原方程组可化为{ y+z xyz =56x+z xyz =23x+y xyz =12,∴ { 1xz +1xy =561yz +1xy =231yz +1xz =12∴ { 1yz =161xz =131xy =12,∴ {yz =6xz =3xy =2 ∴ {x 1=1y 1=2z 1=3,{x 2=−1y 2=−2z 2=−316.【答案】17【考点】解三元一次方程组【解析】方程组中的三个方程相加,即可得出答案.【解答】{x +y −z =11(1)y +z −x =5(2)z +x −y =1(3)(1)+(2)+(3)得:x +y −z +y +z −x +z +x −y =11+5+1即x +y +z =17,故答案为:1717.【答案】18:19【考点】三元一次方程组的应用【解析】设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案.【解答】设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,则第五、六车间每天生产的产品数量分別是34x 和83x , 由题意得,{6(x +x +x)+3m =6ac2(x +34x)+2m =2bc (2+4)×83x +m =4bc,②×2−③得,m =3x ,把m =3x 分别代入①得,9x =2ac ,把m =3x 分别代入②得,192x =2bc ,则a:b =18:19,甲、乙两组检验员的人数之比是18:19,18.【答案】430【考点】三元一次方程组的应用【解析】题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=580朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=150朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x 盆、y 盆、z 盆,用含x 的代数式分别表示y 、z ,即可求出黄花一共用的朵数.【解答】解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x 盆、y 盆、z 盆.由题意,有{3x +2y +2z =580①x +z =150②, 把②代入①得:x +2y =280.所以2x +2y +z =(x +z)+(x +2y)=150+280=430(朵).即黄花一共用了430朵.故答案是:430.19.【答案】−52【考点】解三元一次方程组【解析】由题意建立关于x ,y 的新的方程组,求得x ,y 的值,再代入x +ay =2中,求得a 的值.【解答】解:由题意得{5x −2y =3x −y =1, 解得{x =13y =−23, 代入方程x +ay =2,解得a =−52. 故本题答案为:−52. 20.【答案】17.5【考点】解三元一次方程组【解析】运用两式相加得出a +b +c 的关系式求解.【解答】解:∵ a +2b +3c =0,3a +2b +c =70,∴ 4(a +b +c)=70,∴ a +b +c =17.5.故答案为:17.5.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:设x 2=y 3=z 5=k , 则x =2k ,y =3k ,z =5k ,代入2x +y +3z =88得:4k +3k +15k =88,k =4,所以x =8,y =12,z =20,即方程组的解为{x =8y =12z =20.【考点】解三元一次方程组【解析】设x 2=y 3=z 5=k ,则x =2k ,y =3k ,z =5k ,代入2x +y +3z =88得出4k +3k +15k =88,求出k =4,即可得出答案.【解答】解:设x 2=y 3=z 5=k , 则x =2k ,y =3k ,z =5k ,代入2x +y +3z =88得:4k +3k +15k =88,k =4,所以x =8,y =12,z =20,即方程组的解为{x =8y =12z =20.22.【答案】大瓶5元,中瓶3元,小瓶1.6元.【考点】三元一次方程组的应用【解析】设大瓶x 元,中瓶y 元,小瓶z 元,根据题意列出三元一次方程组,求出方程组的解即可.【解答】解:设大瓶x 元,中瓶y 元,小瓶z 元,由题意可得:{y =2z −0.2x =y +z +0.4x +y +z =9.6,解得:{x =5y =3z =1.6,23.【答案】解:方程组整理得:{x +y +z =651①11z =10y②21y =20x③,由②得:y =1.1z ,由③得:x =2120y =1.155z ,代入①得:1.155z +1.1z +z =651,解得:z =200,可得x =231,y =220,则方程组的解为{x =231y =220z =200.【考点】解三元一次方程组【解析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:{x +y +z =651①11z =10y②21y =20x③,由②得:y =1.1z ,由③得:x =2120y =1.155z ,代入①得:1.155z +1.1z +z =651,解得:z =200,可得x =231,y =220,则方程组的解为{x =231y =220z =200.24.【答案】这段路的去时上坡路是70千米,下坡路是42千米,平路是30千米.【考点】三元一次方程组的应用【解析】本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:甲、乙两地路程是142千米,;去时上坡时间+下坡时间+平路时间=4.5ℎ;回时上坡时间+下坡时间+平路时间=4.7ℎ,据此可列方程组求解.【解答】解:设去时上坡路是x 千米,下坡路是y 千米,平路是z 千米.依题意得:{x +y +z =142x 28+y 35+z 30=4.5x 35+y 28+z 30=4.7, 解得{x =70y =42z =30.25.【答案】解:设个位、十位、百位上的数字为x 、y 、z ,则{x +y +z =13y −x =2100z +10y +x +99=100y +10z +x,解得{x =4y =6z =3.故原来的三位数为364.【考点】三元一次方程组的应用【解析】此题首先要掌握数字的表示方法,每个数位上的数字乘以位数再相加.设个位、十位、百位上的数字为x 、y 、z ,则原来的三位数表示为:100z +10y +x ,新数表示为:100x +10y +z ,故根据题意列三元一次方程组即可求得.【解答】解:设个位、十位、百位上的数字为x 、y 、z ,则{x +y +z =13y −x =2100z +10y +x +99=100y +10z +x,解得{x =4y =6z =3.故原来的三位数为364.26.【答案】解:{x −y +z =0,①3y −z =8,②x +y =6.③由①得x =y −z ,代入③得,2y −z =6④②-④得y =2,所以解得{x =4,y =2,z =−2.【考点】解三元一次方程组【解析】此题暂无解析【解答】解:{x −y +z =0,①3y −z =8,②x +y =6.③由①得x =y −z ,代入③得,2y −z =6④②-④得y =2,所以解得{x =4,y =2,z =−2.27.【答案】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台.【考点】三元一次方程组的应用【解析】设购买A 型电脑x 台,B 型y 台,C 型z 台,分情况讨论当购买A 型、B 型时,当购买A 型、C 型时,当购买C 型、B 型时分别建立方程组求出其解即可.【解答】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台. 28.【答案】解:{x +y −z =0①2x −3y +5z =5②3x +y −z =2③,①×5+②得,7x +2y =5④,①-③得,−2x =−2,x =1,把x =1代入④得,7+2y =5,y =−1,将x =1,y =−1代入①得,z =0,故方程组的解为{x =1y =−1z =0.【考点】解三元一次方程组【解析】①×5+②得到7x +2y =5,①-③得到−2x =−2,x =1,将x =1代入④求出y 的值,再将x 、y 的值代入①得z =0,可得方程组的解.【解答】解:{x +y −z =0①2x −3y +5z =5②3x +y −z =2③,①×5+②得,7x +2y =5④,①-③得,−2x =−2,x =1,把x =1代入④得,7+2y =5,y =−1,将x =1,y =−1代入①得,z =0,故方程组的解为{x =1y =−1z =0.29.【答案】解:(1)把{x =−1y =0,{x =2y =3,{x =5y =60分别代入y =ax 2+bx +c得:{a −b +c =04a +2b +c =325a +5b +c =60,这是一个三元一次方程组;(2){a −b +c =0①4a +2b +c =3②25a +5b +c =60③②-①得:3a +3b =3,a +b =1④,③-①得:24a +6b =60,4a +b =10⑤,由④和⑤组成一个二元一次方程组{a +b =14a +b =10, 解这个方程组得:a =3,b =−2,把a =3,b =−2代入①得:3+2+c =0,解得:c =−5.【考点】解三元一次方程组三元一次方程组的定义【解析】(1)把三组数分别代入,即可得出答案;(2)②-①得出3a +3b =3,求出a +b =1④,③-①求出4a +b =10⑤,由④和⑤组成一个二元一次方程组,求出a 、b 的值,把a 和b 的值代入①求出c 即可.【解答】解:(1)把{x =−1y =0,{x =2y =3,{x =5y =60分别代入y =ax 2+bx +c得:{a −b +c =04a +2b +c =325a +5b +c =60,这是一个三元一次方程组;(2){a −b +c =0①4a +2b +c =3②25a +5b +c =60③②-①得:3a +3b =3,a +b =1④,③-①得:24a +6b =60,4a +b =10⑤,由④和⑤组成一个二元一次方程组{a +b =14a +b =10, 解这个方程组得:a =3,b =−2,把a =3,b =−2代入①得:3+2+c =0,解得:c =−5.30.【答案】解:设甲、乙、丙各一件共需x 元,y 元,z 元,根据题意,得:{3x +7y +z =34.50①4x +10y +z =42.00②, ①×3−②×2得:x +y +z =19.5;则现在购甲、乙、丙各一件共需19.5元.【考点】三元一次方程组的应用【解析】先设甲、乙、丙各一件共需x 元,y 元,z 元,根据购甲3件,乙7件,丙1件,共需34.5元,购甲4件,乙10件,丙1件,共需42.00元,列出方程组,求出x +y +z 的值即可.【解答】解:设甲、乙、丙各一件共需x 元,y 元,z 元,根据题意,得: {3x +7y +z =34.50①4x +10y +z =42.00②, ①×3−②×2得:x +y +z =19.5;则现在购甲、乙、丙各一件共需19.5元.31. 【答案】解:{2x +3y =4,①2x −y +2z =−4,②x +2y −2z =3,③②+③得3x +y =−1④,④×3−①得7x =−7,∴ x =−1.把x =−1代入④得y =2.把x =−1,y =2代入②,解得z =0,∴ {x =−1,y =2,z =0.【考点】解三元一次方程组【解析】此题暂无解析【解答】解:{2x +3y =4,①2x −y +2z =−4,②x +2y −2z =3,③②+③得3x +y =−1④,④×3−①得7x =−7,∴ x =−1.把x =−1代入④得y =2.把x =−1,y =2代入②,解得z =0,∴ {x =−1,y =2,z =0.32.【答案】解:这个三位数个位上的数字为x ,十位上的数字为y ,百位上的数字为z .{x +z =y,①2z =x +y +4,②x +y +z =14,③把①代入③得y =7,把y =7代入①得x +z =7④,代入②得2z =x +11⑤④-⑤得z =6,∴ x =1,∴ 这个三位数是671.【考点】三元一次方程组的应用【解析】等量关系为:个位上的数字+百位上的数字=十位上的数字;百位上的数字×2=个位数字+十位上的数字+4;个位上的数字+十位上的数字+百位上的数字=14,把相关数值代入可得各位上的数字,三位数=100×百位上的数字+10×十位上的数字+个位数字,把相关数值代入计算可得.【解答】解:这个三位数个位上的数字为x ,十位上的数字为y ,百位上的数字为z .{x +z =y,①2z =x +y +4,②x +y +z =14,③把①代入③得y =7,把y =7代入①得x +z =7④,代入②得2z =x +11⑤④-⑤得z =6,∴ x =1,∴ 这个三位数是671.33.【答案】解:{2x +y +z =3①x +2y +z =5②x +y +2z =8③②-①得:−x +y =2④,①×2−③得:3x +y =−2⑤,由④和⑤组成方程组{−x +y =23x +y =−2, 解得:x =−1,y =1,把x =−1,y =1代入①得:−2+1+z =3,解得:z =4,所以原方程组的解为:{x =−1y =1z =4.【考点】解三元一次方程组【解析】②-①得出−x +y =2④,①×2−③得出3x +y =−2⑤,由④和⑤组成一个二元方程组,求出方程组的解,再代入求出z 即可.【解答】解:{2x +y +z =3①x +2y +z =5②x +y +2z =8③②-①得:−x +y =2④,①×2−③得:3x +y =−2⑤,由④和⑤组成方程组{−x +y =23x +y =−2, 解得:x =−1,y =1,把x =−1,y =1代入①得:−2+1+z =3,解得:z =4,所以原方程组的解为:{x =−1y =1z =4.34.【答案】解:②×3+③,得11x +10z =35 ④①与④组成方程组{3x +4z =7①11x +10z =35解得{x =5z =−2,把{x =5z =−2代入方程②得,y =13,三元一次方程组{3x +4z =72x +3y +z =95x −9y +7z =8的解为{x =5y =13z =−2.【考点】解三元一次方程组【解析】根据加减消元法,化三元一次方程组为二元一次方程组,再根据加减消元法,可得一元一次方程,求出一元一次方程的解,在逐步代入,可得方程组的解.【解答】解:②×3+③,得11x +10z =35 ④①与④组成方程组{3x +4z =7①11x +10z =35解得{x =5z =−2,把{x =5z =−2代入方程②得,y =13, 三元一次方程组{3x +4z =72x +3y +z =95x −9y +7z =8的解为{x =5y =13z =−2.35.【答案】黄铜中铜和锌的比例是16:9.【考点】三元一次方程组的应用【解析】首先黄铜含有铜的百分比是x ,锌的百分比是y ,青铜在混合物中的百分比是z . 根据题目中青铜、黄铜4、锡所占百分比列出三元一次方程组方程组{z ×80%+x(1−z)=74%z ×4%+y(1−z)=16%z ×16%=10%,解得x 、y 后,再求x 与y 之比即为所求结果.【解答】解:设黄铜含有铜的百分比是x ,锌的百分比是y ,青铜在混合物中的百分比是z .根据题意得{z ×80%+x(1−z)=74%①z ×4%+y(1−z)=16%②z ×16%=10%③由③的 z =58 将z 分别代入①②得 x =64%,y =36%所以黄铜中铜和锌的比例是64%36%=16936.【答案】王明买了苹果、梨、香蕉分别是6kg ,4kg ,5.5kg .【考点】三元一次方程组的应用【解析】先设买了苹果xkg 、梨ykg 、香蕉zkg ,根据74元钱买了苹果、梨、香蕉三种水果共15.5/kg ,苹果比梨多2kg ,已知苹果5元/kg ,梨5.5元/kg ,香蕉4元/kg ,列出方程组,求出方程组的解即可.【解答】解:设买了苹果xkg 、梨ykg 、香蕉zkg ,根据题意得:{x +y +z =15.5x −y =25x +5.5y +4z =74,解得:{x =6y =4z =5.5.37.【答案】甲比乙晚出发0.5小时.【考点】三元一次方程组的应用【解析】假设收费站离休息站距离B 千米、休息站离终点距离2A 千米、起点到收费站距离C 千米,根据根据“乙到达收费站时,甲才出发;当甲经过收费站半小时后得知乙已经到达休息站”,可得(B −C)=60×0.5=30,由于C +B =A ,根据“当甲到达休息站时,乙离风景区只有13的路程”,可得B −30=A −23A ,联立可得A ,B ,C 的值,进一步即可求解.【解答】解:如图:设收费站离休息站距离B 千米、休息站离终点距离2A 千米、起点到收费站距离C 千米; 根据“乙到达收费站时,甲才出发;当甲经过收费站半小时后得知乙已经到达休息站” 可得(B −C)=60×0.5=30,C =B −30,∵ C +B =A ,∴ 2B −30=A ,根据“当甲到达休息站时,乙离风景区只有1/3的路程”可得B −30=A −23A =13A =13(2B −30), 3B −90=2B −30,B =60,A =90,C =A −B =90−60=30,甲比乙晚出发时间=3060=0.5(小时).38.【答案】这对夫妇共有3个子女.【考点】三元一次方程组的应用【解析】设夫妇现在的年龄的和是x ,子女年龄和为y ,共有n 个子女,建立关于x ,y ,n 的方程组求解.【解答】解:设夫妇现在的年龄和为x ,子女年龄和为y ,共有n 个子女,由夫妇现在年龄的和是其子女年龄和的6倍可知:x =6y ,由他们两年前年龄和是子女两年前年龄和的10倍可知:x −2×2=10×(y −2n), 由6年后他们的年龄和是子女6年后年龄和的3倍可知:x +2×6=3×(y +6n),列出方程组{x −2×2=10×(y −2n)x +2×6=3×(y +6n), 将x =6y 代入方程组中解得:n =3.39.【答案】解:{2x +y +3z =38①3x +2y +4z =56②4x +y +5z =66③③-①得:2x +2z =28,即x +z =14④,①×2−②得:x +2z =20⑤,由④和⑤组成方程组:{x +z =14x +2z =20, 解得:{x =8z =6, 把x =8,z =6代入①得:16+y +18=38,解得:y =4,即方程组的解为{x =8y =4z =6.【考点】解三元一次方程组【解析】③-①得出x +z =14④,①×2−②得出x +2z =20⑤,由④和⑤组成方程组,求出方程组的解,把x =8,z =6代入①求出y 即可.【解答】解:{2x +y +3z =38①3x +2y +4z =56②4x +y +5z =66③③-①得:2x +2z =28,即x +z =14④,①×2−②得:x +2z =20⑤,由④和⑤组成方程组:{x +z =14x +2z =20, 解得:{x =8z =6,把x =8,z =6代入①得:16+y +18=38, 解得:y =4,即方程组的解为{x =8y =4z =6.40.【答案】三角形的三边a 、b 、c 的长分别是12、9、15.【考点】三元一次方程组的应用【解析】通过解三元一次方程组可以求得a 、b 、c 的值.【解答】解:{a +b =21,①b +c =24,②a +c =27,③,由①-②,得a −c =−3,④由③+④,得2a =24,解得 a =12.把a =12代入①,解得b =9.把a =12代入③,解得 c =15.综上所述,原方程组的解是{a =12b =9c =15.。
【初中数学】人教版七年级下册8.4 三元一次方程组的解法(练习题)
人教版七年级下册8.4 三元一次方程组的解法(646)1.下列方程组是三元一次方程组的是()A.{p +q =5,2m +3n =9B.{x +y =5,x −y =1,x +2y +3z =0C.{xy =12,yz =2,zx =6D.{1x +y +z =6,2x +y +3z =4,x +2y +z =2 2.解方程组:\(\begin{cases} x -2y=9,\\ x+y-z=7,\\ 2x-3y+z=12\end{cases}\).3.解方程组:\(\begin{cases}2x+4y -3z=9,\\ 3x-2y-4z=8,\\5x-6y-5z=7.\end{cases}\)4.已知式子ax 2+bx +c ,当x =−1时,其值为4;当x =1时,其值为8;当x =2时,其值为25.求当x =3时式子的值.参考答案1.【答案】:B【解析】:A 项,方程组中含有4个未知数,即“四元”,所以不是三元一次方程组;C 项,方程组是三元二次方程组;D 项,第一个方程不是整式方程,因此不是三元一次方程组.只有选项B 中的方程组符合三元一次方程组的概念.故选B .2.【答案】:解:\(\begin{cases} x -2y=9,①\\ x+y-z=7,②\\ 2x-3y+z=12.③\end{cases}\)解法一:由①,得x =2y +9.④把④分别代入②③,得\(\begin{cases} 3y-z=-2,\\ y+z=-6.\end{cases}\) 解这个方程组,得\(\begin{cases} y=-2,\\ z=-4.\end{cases}\)把y =−2代入④,得x =5.所以原方程组的解为\(\begin{cases} x=5,\\ y=-2,\\ z=-4.\end{cases}\) 解法二:②+③,得3x −2y =19.④联立①与④,得\(\begin{cases}x-2y=9,\\ 3x-2y=19.\end{cases}\)解这个方程组,得\(\begin{cases} x=5,\\ y=-2.\end{cases}\)把x =5,y =−2代入②,得5−2−z =7,解得z =−4.所以原方程组的解为\(\begin{cases} x=5,\\ y=-2,\\ z=-4.\end{cases}\)【解析】:第一个方程中缺少未知数z ,解法一:由第一个方程得x =2y +9,把x =2y +9分别代入第二个方程、第三个方程,得到一个含y,z 的二元一次方程组;解法二:既然第一个方程中不含z ,那么在第二个方程和第三个方程中消去z 后,得到一个关于x,y 的方程3x −2y =19,与第一个方程联立,得到一个含x,y 的二元一次方程组.3.【答案】:解:{2x +4y −3z =9,①3x −2y −4z =8,②5x −6y −5z =7③.解法一(用代入法):由②,得−2y=8−3x+4z,即y=−4+32x−2z.④把④代入①,得2x+4(−4+32x−2z)−3z=9,即8x−11z=25.⑤把④代入③,得5x−6(−4+32x−2z)−5z=7,即−4x+7z=−17.⑥⑤与⑥组成方程组\(\begin{cases}8x-11z=25,\\-4x+7z=-17.\end{cases}\)解这个方程组,得{x=−1,z=−3.把x=−1,z=−3代入④,得y=12.所以原方程组的解为\(\begin{cases}x=-1,\\y=\dfrac{1}{ 2},\\z=-3\end{cases}\).解法二(用加减法):②×2,得6x−4y−8z=16.④①+④,得8x−11z=25.⑤②×(−3),得−9x+6y+12z=−24.⑥③+⑥,得−4x+7z=−17.⑦以下解法同解法一,略.【解析】:解法一(用代入法):方程组中,未知数的系数绝对值较小的方程有第一个方程和第二个方程.若选用第一个方程,则用含y,z的式子表示x,并分别代入第二个方程、第三个方程消去x,得关于y,z的二元一次方程组;若选用第二个方程,则用含x,z的式子表示y,并分别代入第一个方程、第三个方程,消去y,得到关于x,z的二元一次方程组,其中选用先消去y的解法较简单;解法二(用加减法):方程组中,相同未知数的系数绝对值之间存在相等或成整数倍的关系时,可用加减法.如本题可消去y.4.【答案】:根据题意,得{a−b+c=4,①a+b+c=8,②4a+2b+c=25.③②-①,得2b=4,∴b=2. ∴①③可化为{a+c=6,④4a+c=21.⑤⑤-④,得3a=15,∴a=5. 把a=5代入④,得c=1. ∴所求的式子为5x2+2x+1, 当x=3时,式子的值为5×32+2×3+1=52【解析】:根据题意,得{a−b+c=4,①a+b+c=8,②4a+2b+c=25.③②-①,得2b=4,∴b=2. ∴①③可化为{a+c=6,④4a+c=21.⑤⑤-④,得3a=15,∴a=5. 把a=5代入④,得c=1. ∴所求的式子为5x2+2x+1, 当x=3时,式子的值为5×32+2×3+1=52。
人教版数学七年级下册 第8章 8.4三元一次方程组的解法同步测试试题(一)
三元一次方程组的解法同步测试试题(一)一.选择题1.已知方程组,则x+y+z的值为()A.6B.﹣6C.5D.﹣52.三元一次方程组的解为()A.B.C.D.3.桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A.80B.110C.140D.2204.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三种客房共8间,且每个客房都住满,那么租房方案有()A.4种B.3种C.2种D.1种5.方程组的解是()A.B.C.D.6.若三元一次方程组的解使ax+2y+z=0,则a的值为()A.1B.0C.﹣2D.47.三元一次方程组的解是()A.B.C.D.8.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2009.如图,在正方形ABCD的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB上的数是3,BC上的数是7,CD上的数是12,则AD上的数是()A.2B.7C.8D.1510.如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各10克的砝码,将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,现从图2右侧盘中拿掉砝码和袋子外面的玻璃球,只剩下一小袋玻璃球,要使天平保持平衡,则左侧袋中需拿出玻璃球的个数为()A.2B.3C.4D.5二.填空题11.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物“给他的好朋友,有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元:若甲种买1包,乙种买4包,丙种买5包共36元.问甲种买1包,乙种买2包,丙种买3包共元.12.双节期间,某超市推出的“彩云追月”“众星拱月”“花好月圆”三种月饼礼盒热销,“彩云追月”礼盒含有摩卡月饼4个,芝士月饼8个,“众星拱月”礼盒含有摩卡月饼3个,芝士月饼8个,虫草月饼1个,“花好月圆”礼盒含有摩卡月饼2个,芝士月饼6个,虫草月饼1个,已知摩卡月饼每个20元,芝士月饼每个15元,虫草月饼每个100元,中秋节当天销售这三种礼盒共9440元,其中摩卡月饼的销售额为2320元,则虫草月饼的销售量为个.13.已知=,那么代数式=.14.解关于x、y、z的三元一次方程组,得xyz=.15.某花店三八妇女节推出“温暖”和“和煦”两款鲜花礼盒,其中“温暖”礼盒里有3支向日葵,3支洋桔梗,2支多头玫瑰;“和煦”礼盒里有2支向日葵,2支洋桔梗,6支多头玫瑰.两种礼盒的成本价分别为三种花的成本之和.已知“温暖”与“和煦”的售价分别为73.6元和97.2元.利润率分别为60%和80%.若两种礼盒的销售利润率达到75%,则花店卖出的“温暖”与“和煦”鲜花礼盒的的数量之比为.三.解答题16.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时,y=﹣9;x=﹣1时,y=﹣3,求a、b、c的值.17.解方程组:.18.二元一次方程组的解x,y的值相等,求k.19.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工时产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)参考答案与试题解析一.选择题1.【解答】解:∵,①+②+③,得x+y+z=5,故选:C.2.【解答】解:,②×4﹣①得2x﹣y=5④②×3+③得5x﹣2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=﹣2.故原方程组的解为.故选:C.3.【解答】解:设甲杯中原有水a毫升,乙杯中原有水b毫升,丙杯中原有水c毫升,②﹣①,得b﹣a=110,故选:B.4.【解答】解:设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意得:,解得:y+2z=8,y=8﹣2z,∵x,y,z是正整数,当z=1时,y=6,x=1;当z=2时,y=4,x=2;当z=3时,y=2,x=3;当z=4时,y=0,x=4;(不符合题意,舍去)∴租房方案有3种.故选:B.5.【解答】解:,①﹣③得:x﹣z=﹣3④,②﹣④得:4z=4,即z=1,把z=1代入④得:x=﹣2,把x=﹣2代入①得:y=8,则方程组的解为,故选:C.6.【解答】解:,①+②+③得:x+y+z=1④,把①代入④得:z=﹣4,把②代入④得:y=2,把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0,解得:a=0.故选:B.7.【解答】解:由②,得y=5﹣z,由③,得x=6﹣z,将y和x代入①,得11﹣2z=1,∴z=5,x=1,y=0∴方程组的解为.故选:A.8.【解答】解:设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一件共需150元.9.【解答】解:设A端点数为x,B点为y,则C点为:7﹣y,D点为:z,根据题意可得:x+y=3①,C点为:7﹣y,故z+7﹣y=12②,故①+②得:x+y+z+7﹣y=12+3,故x+z=8,即AD上的数是:8.故选:C.10.【解答】解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+20;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+10,x=(m﹣n﹣10)=(n+20﹣n﹣10)=5,∴1个玻璃球的质量为5克,∵5+10=15,15÷5=3,∴要使天平保持平衡,则左侧袋中需拿出玻璃球3个;故选:B.二.填空题(共5小题)11.【解答】解:设每包甲种类型的棒棒糖x元,每包乙种类型的棒棒糖y元,每包丙种类型的棒棒糖z元,依题意得:,(2×①+3×②)÷7得:x+2y+3z=22.故答案为:22.12.【解答】解:每盒“彩云追月”的价格为20×4+15×8=200(元),每盒“众星拱月”的价格为20×3+15×8+100×1=280(元),每盒“花好月圆”的价格为20×2+15×6+100×1=230(元).设中秋节当天销售“彩云追月”礼盒x盒,“众星拱月”礼盒y盒,“花好月圆”礼盒z 盒,依题意得:,①﹣2.5×②得130y+130z=3640,∴y+z=28.故答案为:28.13.【解答】解:设==k,∴解得,∴代数式==,故答案.14.【解答】解:①×3﹣②×2,得﹣y﹣3z=7④,②+④×3,得﹣10z=20,解得,z=﹣2,将z=﹣2代入②,得y=﹣1,将y=﹣1,z=﹣2代入①,得x=1,∴原方程组的解是,∴xyz=1×(﹣1)×(﹣2)=2,故答案为:2.15.【解答】解:“温暖”鲜花礼盒的成本价为:73.6÷(1+60%)=46(元),“和煦”鲜花礼盒的成本价为:97.2÷(1+80%)=54(元),设花店卖出“温暖”x盒,卖出“和煦”y盒,根据题意得:(73.6﹣46)x+(97.2﹣54)y=75%(46x+54y),解得:x:y=9:23故答案为:9:23三.解答题(共4小题)16.【解答】解:由题意得:,把c=0代入②、③得:,解得:a=1,b=﹣3,则a=1,b=﹣3,c=﹣7.17.【解答】解:,①+②,得x+z=2④,②+③,得5x﹣8z=36⑤,④×5﹣⑤,得13z=﹣26,解得z=﹣2,把z=﹣2代入④,得x=4,把x=4,z=﹣2代入②,得y=0.所以原方程组的解是.18.【解答】解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=1代入kx+(k﹣1)y=3中得:k+k﹣1=3,∴k=219.【解答】解:设每周应生产空调、彩电、冰箱的数量分别为x台、y台、z台,则有,①﹣②×4得3x+y=360,总产值A=4x+3y+2z=2(x+y+z)+(2x+y)=720+(3x+y)﹣x=1080﹣x,∵z≥60,∴x+y≤300,而3x+y=360,∴x+360﹣3x≤300,∴x≥30,∴A≤1050,即x=30,y=270,z=60.最高产值:30×4+270×3+60×2=1050(千元)。
8.4 三元一次方程组的解法 人教版数学七年级下册课时练习(含答案)
人教版七年级下册数学8.4三元一次方程组的解法课时练习(附答案)一、单选题1.已知方程组{x +y =3y +z =−6z +x =9,则x +y +z 的值是( )A .3B .4C .5D .62.解三元一次方程组 {x −y +z =−3①x +2y −z =1②x +y =1③ ,要使解法较为简便,首先应进行的变形为( )A .①+②B .①-②C .①+③D .②-③3.已知实数x ,y ,z 且x+y+x≠0,x=x+y−z 2 ,z= x−y+z2,则下列等式成立的是( ) A .x 2-y 2=z 2 B .xy=z C .x 2+y 2=z 2 D .x+y=z4.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A .5B .4C .3D .25.一个三位数,百位上的数与十位上的数之差是2,如果交换十位数字与个位数字的位置,那么所得的数就比原来小36,则百位上的数与个位上的数之差为( ) A .5B .6C .7D .86.若{x =3−my =1+2m ,则y 用含x 的代数式表示为( )A .y =2x +7B .y =−2x +7C .y =2x −5D .y =−2x −57.已知三个实数a 、b 、c ,满足3a +2b +c =5,2a +b −3c =1,且a ≥0、b ≥0、c ≥0,则3a +b −7c 的最小值是( ) A .−111B .−57C .37D .7118.下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为()A .5B .4C .3D .29.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c 对应密文a+1,-a+2b+4,b+3c+9,如果接收方收到密文7,12,22,则解密得到的明文为()A.6,2,7B.2,6,7C.6,7,2D.7,2,610.若方程组{x−by+4z=1x−2by+3z=3的解是{x=ay=1z=c,则a+b+6c的值是()A.-3B.0C.3D.611.已知实数x,y,z满足{x+y+z=74x+y−2z=2,则代数式3(x﹣z)+1的值是()A.﹣2B.﹣4C.﹣5D.﹣612.在抗击疫情知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用尽的情况下,有多少种购买方案()A.7种B.8种C.14种D.15种二、填空题13.实数x,y,z满足2x+y-3z=5,x+2y+z=-4,请用含x的代数式表示z,即. 14.中午放学后,有a个同学在学校一食堂门口等候进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生继续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟时刚好配餐完毕,则两个食堂需要同时一共开放个配餐窗口.15.在一个3×3的方格中填写了1到9这9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方,如图的三阶幻方填写了一些数和字母,则x=.16.已知关于x,y的二元一次方程组{3x+y=2k,x−2y=k+6有下列说法:①当x与y相等时,解得k=-4;②当x与y互为相反数时,解得k=3;③若4x·8y=32,则k=11;④无论k为何值,x与y的值一定满足关系式x+5y+12=0,其中正确的序号是17.四月正是吃草莓的季节,春旭草莓对环境适应能力极强,营养物质丰富,属于优良品种;淡雪草莓在外观上和其它草莓品种有着很大的差异,它的果肉和果皮都呈白色,深受消费者喜欢;凤香草莓维生素C 的含量是其它品种的数倍.某水果店第一天从草莓园分别采购了春旭草莓、淡雪草莓和凤香草莓若干盒,其中春旭草莓的进价为25元/盒,淡雪草莓售价为62元/盒,凤香草莓的进价为33元/盒,水果店对春旭草莓提价100%进行销售,淡雪草莓每盒提价35元进行销售,凤香草莓的售价为38元/盒,第一天三种草莓售罄后总销售额为1674元,其中淡雪草莓和凤香草莓的销售利润共350元.第二天水果店采购和第一天相同数量的春旭草莓、淡雪草莓和凤香草莓.春旭草莓的成本增加了20%,春旭草莓的售价不变,淡雪草莓的进价不变,淡雪草莓的利润率变为了100%,凤香草莓的进价和售价均保持不变,由于水果店储存不当,第二天采购的淡雪草莓有13的损耗(损耗水果不能销售,损耗的数量为整数盒),则第二天三种草莓售罄时总利润为 元(购买或出售三种草莓的数量均为整数盒)18.中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的15 ,卖出腊香肠的数量是前两天腊香肠数量和 43,卖出腊肉的数量是第二天腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为 元.19.已知x =2t −5,y =−2t +7,若用含x 的代数式表示y ,则结果为 . 20.若正数a ,b ,c 满足abc=1, a +1b =3,b +1c =17 ,则 c +1a= . 21.下表是某校七年级各班某月课外兴趣小组活动时间的统计表,其中各班同一兴趣小组每次活动时间相同.课外兴趣小组 活动总时间单位:说明:活动次数为正整数科技小组每次活动时间为 h ,该年级4班这个月体育小组活动次数最多可能是 次.22.小华和小慧到校门外文具店买文件,小华购铅笔2支,练习本2本,圆珠笔1支,共付9元钱;小慧购同样铅笔1支,练习本4本,圆珠笔2支,共付12元钱,若小明去买与她们一样的购铅笔1支、练习本2本、圆珠笔1支,他需付 元钱.23.某店三八节推出A ,B ,C 三种花束,每种花束的成本分别为105元/束,135元/束,70元/束.在3月7日,A ,B ,C 三种花束的单价之比为 3:4:2 ,销量之比为 1:1:3 .在3月8日,由于供不应求,该花店适当调整价格,预计3月8日三种花束的销售额将比3月7日有所增加.A ,C 花束增加的销售额之比为 1:2 ;3月8日B 花束的单价上调25%且A ,B 花束的销售额之比为 4:5 .同时三种花束的销量之比不变,若3月8日三种花束的单价之和比3月7日三种花束的单价之和多96元,则3月8日当天的利润率为 .24.重庆一中趣味数学社团在社团活动日举办了知识竞答挑战赛.比赛共设置有A 、B 、C 三关,每关设有若干问题,且每关的每个问题分值相同.参赛选手需回答完所有试题,答对得分,答错不扣分.甲、乙、丙三人作答完毕后,结果如下:甲在A 、B 、C 三个关中回答正确的问题数目之比为2:1:1,在A 关的得分占甲总得分的75%;乙在A 、B 、C 三个关中回答正确的问题数目之比为2:5:2,在B 关的得分占乙总得分的13;丙在A 关回答正确的问题数目是甲、乙在A 关回答正确的问题数目之和的一半,丙在B 关回答正确的问题数目比乙在B 关回答正确的问题数目少25,丙与甲在C 关回答正确的数目相同,若甲、乙两人的总得分之比为48:25,则乙、丙两人的总得分之比为 .三、计算题25.解三元一次方程组:{x +y +z =6x −y =12x −y +z =526.解方程(组)(1)5x ﹣2=3x+8 (2)2x+13−1=5x−16(3){x +y =23x +4y =7 (4){x +y −z =02x −y +3z =2x −4y −2z +6=0四、解答题27.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植各种农作物每公顷所需的劳动力人数及投入的设备资金如下表:已知该农场计划投入设备资金67万元,应该怎样安排这三种农作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?28.已知y=ax2+bx+c,当x=1时,y=5;当x=−2时,y=14;当x=−3时,y=25.求a,b,c的值.29.购买铅笔7支,作业本3本,圆珠笔1支共需6元;购买铅笔10支,作业本4本,圆珠笔1支共需8元.求购买铅笔11支,作业本5本,圆珠笔2支共需多少元.答 案1.A 2.A 3.A 4.A 5.B 6.B 7.B 8.A 9.C 10.A 11.B 12.C 13.z= 3x−147 14.29 15.2 16.①②③④ 17.537 18.4300 19.y =−x +220.112521.1;8 22.7 23.36% 24.25:3625.解:{x +y +z =6①x −y =1②2x −y +z =5③①-③得-x +2y =1④,④+②得y =2,将y =2代入②得x =3,将x =3,y =2代入①得z =1,所以原方程组的解为{x =3y =2z =1..26.(1)解:5x ﹣2=3x+8 5x -3x=8+2 2x=10 x=5(2)解: 2x+13−1=5x−162(2x+1)-6=5x -1 4x+2-6=5x -1 4x -5x=-1-2+6 -x=3 x=-3 (3)解: {x +y =2①3x +4y =7②由①×4-②得 x=1把x=1代入①得 1+y=2 y=1 ∴{x =1y =1 (4)解: {x +y −z =0①2x −y +3z =2②x −4y −2z +6=0③①×2 -2得3y -5z=-2④ ①-③得5y+z=6⑤ ∴{3y −5z =2④5y +z =6⑤,由⑤得:z=6-5y ⑥ 把⑥代入④得:3y -5(6-5y )=-2 解得:y=1 把y=1代入⑥得z=1 把y=1,z=1代入①得x=0 ∴{x =0y =1z =127.解:设种植水稻x 公顷,棉花y 公顷,蔬菜z 公顷,由题意,得{x +y +2z =674x +8y +5z =300x +y +z =51 ,解得 {x =15y =20z =16.答:种植水稻15公顷,棉花20公顷,蔬菜16公顷.28.解:将x=1,y=5;x=-2,y=14;x=-3,y=25分别代入y=ax 2+bx+c ,得{a+b+c=5,①4a−2b+c=14,②9a−3b+c=25,③,由②-①,③-①得{a−b=32a−b=5,整理,解得a=2,b=-1,把a=2,b=-1代入①中,解得c=4,则a,b,c的值分别为2,-1,4.29.设铅笔的单价为x元,作业本的单价为y元,圆珠笔的单价为z元,依题意得{7x+3y+z=6①10x+4y+z=8②3×①-②得,11x+5y+2z=10.答:购买铅笔11支,作业本5本,圆珠笔2支共需10元.。
人教版数学七年级下《三元一次方程组的解法》课堂练习题含答案
*8.4 三元一次方程组的解法基础题知识点1 解三元一次方程组1.下列是三元一次方程组的是(D )A .⎩⎪⎨⎪⎧2x =5x 2+y =7x +y +z =6B .⎩⎪⎨⎪⎧3x -y +z =-2x -2y +z =9y =-3 C .⎩⎪⎨⎪⎧x +y -z =7xyz =1x -3y =4 D .⎩⎪⎨⎪⎧x +y =2y +z =1x +z =92.观察方程组⎩⎪⎨⎪⎧3x -y +2z =3,2x +y -4z =11,7x +y -5z =1的系数特点,若要使求解简便,消元的方法应选取(B )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.将三元一次方程组⎩⎪⎨⎪⎧5x +4y +z =0, ①3x +y -4z =11, ②x +y +z =-2 ③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是(A )A .⎩⎪⎨⎪⎧4x +3y =27x +5y =3B .⎩⎪⎨⎪⎧4x +3y =223x +17y =11 C .⎩⎪⎨⎪⎧3x +4y =27x +5y =3 D .⎩⎪⎨⎪⎧3x +4y =223x +17y =11 4.已知方程组⎩⎪⎨⎪⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为(B ) A .10 B .8 C .2 D .-85.由方程组⎩⎪⎨⎪⎧2x +y =7,2y +z =8,2z +x =9,可以得到x +y +z 的值等于(A )A .8B .9C .10D .116.解下列三元一次方程组:(1)⎩⎪⎨⎪⎧2x +y =4,①x +3z =1,②x +y +z =7;③解:由①,得y =4-2x.④由②得z =1-x 3.⑤ 把④,⑤代入③,得x +4-2x +1-x 3=7. 解得x =-2.∴y =8,z =1.∴原方程组的解为⎩⎪⎨⎪⎧x =-2,y =8,z =1.(2)⎩⎪⎨⎪⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③解:②-③,得x +3z =5.④解由①,④组成的方程组,得⎩⎪⎨⎪⎧x =2,z =1. 将⎩⎪⎨⎪⎧x =2,z =1代入③,得y =4. ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =4,z =1.知识点2 三元一次方程组的简单应用7.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14.则这个三位数是275.8.已知-a x +y -z b 5c x +z -y 与a 11b y +z -x c 是同类项,则x =6,y =8,z =3.9.(镇江校级期末)已知y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1.求a ,b ,c 的值.解:∵y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1,∴代入,得⎩⎪⎨⎪⎧a +b +c =3,①a -b +c =1,②c =1,③把③代入①和②,得⎩⎪⎨⎪⎧a +b =2,a -b =0. 解得a =1,b =1,即a =1,b =1,c =1.10.2016里约奥运会,中国运动员获得金、银、铜牌共70枚,位列奖牌榜第三.其中金牌比银牌多8枚,铜牌比银牌的总数的2倍少10枚.问金、银、铜牌各多少枚?解:设金牌x 枚,银牌y 枚,铜牌z 枚,则⎩⎪⎨⎪⎧x +y +z =70,x -y =8,2y -z =10,解得⎩⎪⎨⎪⎧x =26,y =18,z =26.答:金牌26枚,银牌18枚,铜牌26枚.中档题11.三元一次方程组⎩⎪⎨⎪⎧x +y =-1,x +z =0,y +z =1的解是(D )A .⎩⎪⎨⎪⎧x =-1y =1z =0B .⎩⎪⎨⎪⎧x =1y =0z =-1C .⎩⎪⎨⎪⎧x =0y =1z =-1D .⎩⎪⎨⎪⎧x =-1y =0z =112.(淄博中考)如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是(C )A .2B .7C .8D .1513.如图1,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图2,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与2个砝码C 的质量相等.14.解方程组:(1)⎩⎪⎨⎪⎧x -2y +z =0,①3x +y -2z =0,②7x +6y +7z =100;③解:①+②×2,得7x -3z =0.④①×3+③,得10x +10z =100,即x +z =10.⑤解由④,⑤组成的方程组,得⎩⎪⎨⎪⎧x =3,z =7. 将⎩⎪⎨⎪⎧x =3,z =7代入①,得y =5.∴原方程组的解是⎩⎪⎨⎪⎧x =3,y =5,z =7.(2)⎩⎪⎨⎪⎧x ∶y =1∶5,①y ∶z =2∶3,②x +y +z =27.③解:由①,得y =5x.④由②,得z =32y =152x.⑤ 把④,⑤代入③,得x +5x +152x =27.解得x =2. ∴y =10,z =15.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =10,z =15.15.若||x +2y -5+(2y +3z -13)2+3z +x -10=0,试求x ,y ,z 的值. 解:由题意,得⎩⎪⎨⎪⎧x +2y -5=0,2y +3z -13=0,3z +x -10=0.解得⎩⎪⎨⎪⎧x =1,y =2,z =3.16.小明从家到学校的路程为3.3千米,其中有一段上坡路、平路和下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米,那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?解:设去学校时上坡路是x 千米,平路是y 千米,下坡路是z 千米.依题意得⎩⎪⎨⎪⎧x +y +z =3.3,x 3+y 4+z 5=1,z 3+y 4+x 5=4460,解得⎩⎪⎨⎪⎧x =2.25,y =0.8,z =0.25. 答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.综合题17.(贵州中考)为确保信息安全,在传输时往往需加密,发送方发出一组密码a ,b ,c 时,则接收方对应收到的密码为A ,B ,C.双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?解:(1)由题意得⎩⎪⎨⎪⎧A =2×2-3,B =2×3,C =3+5,解得A =1,B =6,C =8.答:接收方收到的密码是1,6,8.(2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11.解得⎩⎪⎨⎪⎧a =3,b =4,c =7.答:发送方发出的密码是3,4,7.。
数学人教版七年级下册三元一次方程组解决实际问题(整体思想)
{
15x+10y+10z=2900 25x+25z=3750 24x+12y+18z=?
黄花
24
12
18
?
{
解:设甲、乙、丙三种造型的盆景各有x、y、z盆,根据题意得: 15x+10y+10z=2900 25x+25z=3750 3x+2y+2z=580 化简,得 x+z=150
{
24x+12y+18z =6(4x+2y+3z) =6[(3x+2y+2z)+(x+z)] =6(580+150) =4380 答:黄花一共用了4380朵。
甲种盆景由15朵红花24朵黄花和25朵紫花搭配而成乙种盆景由10朵红花和12朵黄花搭配而成丙种盆景由10朵红花18朵黄花和25朵紫花搭配而成
三元一街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景 由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵 红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和 25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫 花, 则黄花一共用了多少朵?
七年级数学三元一次方程组的解法专项训练同步练习含答案解析
2020年03月18日初中数学1的初中数学组卷一.解答题(共12小题)1.解方程组.2.若2x﹣3y+z=0,3x﹣2y﹣6z=0,且xyz≠0,求的值.3.若x+2y+3z=10,4x+3y+2z=16,求x+y+z的值.4.解下列三元一次方程组:(1)(2).5.解下列方程组:(1)(2).6.解方程组7.解方程组:.8.解方程组:9.解方程组:10.解方程组:11.已知,试求a+2b+3c的值.12.试一试,解下列方程组:2020年03月18日初中数学1的初中数学组卷参考答案与试题解析一.解答题(共12小题)1.解方程组.解:,①+②得:5x﹣y=7④;②×2+③得:8x+5y=﹣2⑤,④×5+⑤得:33x=33,即x=1,把x=1代入④得:y=﹣2,把x=1,y=﹣2代入①得:z=﹣4,则方程组的解为.2.若2x﹣3y+z=0,3x﹣2y﹣6z=0,且xyz≠0,求的值.解:由题意得:,②×3﹣①×2,得:5x=20z,即x=4z,将x=4z代入①,得:8z﹣3y=﹣z,解得y=3z,将x=4z、y=3z代入原式,得:原式===.3.若x+2y+3z=10,4x+3y+2z=16,求x+y+z的值.解:∵,①+②,得5x+5y+5z=26,解得,x+y+z=5.2,即x+y+z的值是5.2.4.解下列三元一次方程组:(1)(2).解:(1)①+②得:3x﹣3y=15,x﹣y=5④,②﹣③得:x+2y=11⑤,由④和⑤组成方程组:,解得:,把代入③得:7﹣2﹣z=7,解得:z=﹣2,所以原方程组的解为:;(2)设x=2k,y=3k,z=5k,代入方程x+y+z=100得:10k=100,解得:k=10,即x=20,y=30,z=50,所以原方程组的解为:.5.解下列方程组:(1)(2).解:(1)∵,∴,∴,将①②代入③,得,解得,y=,将y=﹣代入①,②,得x=,z=,故原方程组的解是;(2)∵,∴,∴,①+②,得2x=6,得x=3,将x=3代入①,得y=2,将x=3,y=2代入③,得z=1,∴原方程组的解是.6.解方程组解:②﹣①得:3x+2y=5④,③﹣②得:5x+2y=11⑤,⑤﹣④得:2x=6,解得:x=3,把x=3代入④得:y=﹣2,把x=3,y=﹣2代入①得:z=﹣5,则方程组的解为.7.解方程组:.解:方程组整理得:,由①得:y=x,由②得:z=x,代入③得:2x+x﹣6x=﹣3,解得:x=12,可得y=15,z=18,则方程组的解为.8.解方程组:解:方程组整理得:,由①得:x=y④,代入②得:z=y⑤,把④、⑤代入③得:y+2y+4y=5,解得:y=,把y=代入④得:x=,z=1,则方程组的解为.9.解方程组:解:③﹣①,得2z+2y=56,即y+z=28④,②+④,得2y=32,y=16,将y=16代入②,得z=12,将z=12代入③,得24+x=47,x=23,∴原方程组的解为.10.解方程组:解:,①﹣②得:2y﹣2z=9④,②﹣③×3得:14y﹣3z=﹣14⑤,④×7﹣⑤得:﹣11z=77,解得:z=﹣7,把z=﹣7代入④得:y=﹣2.5,把y=﹣2.5,z=﹣7代入①得:x=3,则方程组的解为.11.已知,试求a+2b+3c的值.解:,②﹣①得:a+2b=3,把a+2b=3代入①得:4(a+2b)+3c=18,即12+3c=18,解得:c=2,则原式=3+6=9.12.试一试,解下列方程组:解:,①+②得:x+y=1④,①+③得:4x﹣y=14⑤,④+⑤得:5x=15,解得:x=3,把x=3代入④得:y=﹣2,把x=3,y=﹣2代入①得:z=﹣5,则方程组的解为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与三元一次方程组
1列方程组解决问题的一般步骤:(1)审题;(2)设元;(3)列方程组;(4)解方程组;(5)检验并作答。
2.列方程组时需注意以下几方面:
(1)单位必须统一,例如时间单位;
(2)解方程组后一定要把解代回实际问题中检验,不合题意的要舍去。
【例1】一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字,7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,求这个三位数。
【例2】某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的
株数是甲、丙两组的和的1
4
,甲组植树的株数恰是乙组与丙组的和,问每组各植树多少
株?
【例3】汽车在平路上每小时行30千米,上坡时每小时行28千米,下坡时每小时行35千米,现在行驶142千米的路程用去4小时三十分钟,回来使用4小时42分钟,问这段平路有多少千米?去时上下坡路各有多少千米?
【例4】已知;△ABC的周长为36cm,a,b,c是它的三条边长,a+b=2c,a:b=1:2.求a,
b,c的值。
【例5】某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个。
甲、乙、丙三种零件分别取3个、2个、个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?
【例6】有三种物品,每件的价格分别是2元,4元和6元,现在用60元买这三种物品(三种物品均需买到),总数共买16件,而钱要恰好用完,则价格为6元的物品最多买几件?价格为2元的物品最少买几件?
1.甲、乙、丙三数之和为26,甲数比乙数大1,甲数的2倍与丙数的和比乙数大18,求
甲、乙、丙三个数
2.有甲、乙、丙三种货物,购买5件甲,2件乙,4件丙,需要80元;购买3件甲,6件乙,4件丙,需要144元。
问;购买甲、乙、丙各一件,共需多少元?
3.甲地到乙地全程是3.3km,一段上坡,一段平路,一段下坡,上坡每小时行3km,平路每小时行4km,下坡每小时行5km,那么,从甲地到乙地要51分钟,乙地到甲地要53.4分钟求甲地到乙地的上坡、平路、下坡的路程各是多少?
4.如图中的□、△、○分别代表一个数字,且满足以下三个等式:
□+口+△+○=17,口+△+△+○=14,口+△+○+○=13,
则□、△、○分别代表什么数字?并说明理由
5.一个车间,每天生产甲种零件300个,或生产乙种零件500个,或生产丙种零件600个,从3种零件中各取一个配套使用。
现在要在63天之内生产的产品配套,问三种零件各需安排生产多少天?
6.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件件共需15元,如果购甲1件、乙2件、丙3件件共需25元,那么购甲、乙、丙各1件共需多少元?
7.(1)已知2a+b+3c=15,3a+b+5c=25,则a+b+c= 。
(2)已知2a+b+xc=15,3a+b+yc=25,要想求出a+b+c的值,x与y必须满足的关系是。
8.已知
230
20
x y z
x y z
--=
⎧
⎨
-+=
⎩
,且x、y、z都不等于0,求::
x y z。
第19讲:实际问题与三元一次方程组参考答案
1列方程组解决问题的一般步骤:(1)审题;(2)设元;(3)列方程组;(4)解方程组;(5)检验并作答。
2.列方程组时需注意以下几方面:
(1)单位必须统一,例如时间单位;
(2)解方程组后一定要把解代回实际问题中检验,不合题意的要舍去。
【例1】一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字,7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,求这个三位数。
【解答】设这个三位数个位上的数字为x ,十位上的数字为y ,百位上的数字为z 。
7214x z y z x y x y z +=⎧⎪=++⎨⎪++=⎩,解得572x y z =⎧⎪=⎨⎪=⎩
答;这个三位数是275。
【例2】某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的14
,甲组植树的株数恰是乙组与丙组的和,问每组各植树多少株?
【解答】设甲组植树x 株,乙组植树y 株,丙组植树z 株。
由题意,得()5014x y z y x z x y z
++=⎧⎪⎪=+⎨⎪=+⎪⎩,解得251015x y z =⎧⎪=⎨⎪=⎩ 答:甲组植树25棵株,乙组植树10株,丙组植树15株。
【例3】汽车在平路上每小时行30千米,上坡时每小时行28千米,下坡时每小时行35千米,现在行驶142千米的路程用去4小时三十分钟,回来使用4小时42分钟,问这段平路有多少千米?去时上下坡路各有多少千米?
【解答】设去时上坡x 千米,平路y 千米,下坡z 千米。
题意可得1424.5283035 4.7283035
x y z x y z z y x ⎧⎪++=⎪⎪++
=⎨⎪⎪++=⎪⎩,解得423070x y z =⎧⎪=⎨⎪=⎩, 答:去时上坡42千米,平路30千米,下坡70千米。
【例4】已知;△ABC 的周长为36cm ,a ,b ,c 是它的三条边长,a +b =2c ,a :b=1:2.求a ,b ,c 的值。
【解答】依题意有362:1:2a b c a b c a b ++=⎧⎪+=⎨⎪=⎩,解得81612a b c =⎧⎪=⎨⎪=⎩
故a 的值为8,b 的值为6,c 的值为12。
【例5】某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个。
甲、乙、丙三种零件分别取3个、2个、个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?
【解答】设甲生产了x 天,乙生产了y 天,丙生产z 天。
由题意得3012020031002002x y z x z y z ++=⎧⎪=⨯⎨⎪=⨯⎩,解得15123x y z =⎧⎪=⎨⎪=⎩
答;甲,乙,丙三种零件各应生产15天,12天、3天。
【例6】有三种物品,每件的价格分别是2元,4元和6元,现在用60元买这三种物品(三种物品均需买到),总数共买16件,而钱要恰好用完,则价格为6元的物品最多买几件?价格为2元的物品最少买几件?
【解答】设价格为2元的物品买x 件,4元的买y 件,6元的买z 件。
则1624660x y z x y z ++=⎧⎨++=⎩,解得1422y x x z
=-⎧⎨=+⎩。
由y>0得,z<7,而z 为整数,=1,2,3,4,5,6,对应地,方程组的解分别为;826x y z =⎧⎪=⎨⎪=⎩
,
745x y z =⎧⎪=⎨⎪=⎩,583x y z =⎧⎪=⎨⎪=⎩,4102x y z =⎧⎪=⎨⎪=⎩,3121x y z =⎧⎪=⎨⎪=⎩。
于是价格为6元的物品最多买6件,价格为2元的物品最少买3件。
1.甲、乙、丙三数之和为26,甲数比乙数大1,甲数的2倍与丙数的和比乙数大18,求
甲、乙、丙三个数
【解答】甲、乙、丙三个数分别为10,9,7。
2.有甲、乙、丙三种货物,购买5件甲,2件乙,4件丙,需要80元;购买3件甲,6件乙,4件丙,需要144元。
问;购买甲、乙、丙各一件,共需多少元?
【解答】购买甲、乙、丙各1件,需28元
3.甲地到乙地全程是3.3km ,一段上坡,一段平路,一段下坡,上坡每小时行3km ,平路每小时行4km ,下坡每小时行5km ,那么,从甲地到乙地要51分钟,乙地到甲地要53.4分钟求甲地到乙地的上坡、平路、下坡的路程各是多少?
【解答】从甲地到乙地,上坡1.2千米,平路0.6千米,下坡1.5千米。
4.如图中的□、△、○分别代表一个数字,且满足以下三个等式
□+口+△+○=17,
口+△+△+○=14
口+△+○+○=13
则□、△、○分别代表什么数字?并说明理由
【解答】口、△、○分别代表6,3,2。
5.一个车间,每天生产甲种零件300个,或生产乙种零件500个,或生产丙种零件600个,从3种零件中各取一个配套使用。
现在要在63天之内生产的产品配套,问三种零件各需安排生产多少天?
【解答】甲、乙,丙三种零件分别安排生产30,18,15天。
6.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件件共需15元,如果购甲1件、乙2件、丙3件件共需25元,那么购甲、乙、丙各1件共需多少元?
【解答】购甲,乙,丙三种商品各一件共需10元。
7.(1)已知2a+b+3c=15,3a+b+5c=25,则a+b+c= 5。
(2)已知2a+b+xc=15,3a+b+yc=25,要想求出a+b+c的值,x与y必须满足的关系是y=2x-1。
8.已知
230
20
x y z
x y z
--=
⎧
⎨
-+=
⎩
,且x、y、z都不等于0,求::
x y z。
【解答】x;y;z=7:5:3。