IRGP20B120UD-EP;中文规格书,Datasheet资料

合集下载

IRLR120N中文资料

IRLR120N中文资料
V(BR)DSS
∆V(BR)DSS/∆TJ
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
10
100
A
100
V D S , D rain-to-S ource V oltage (V )
V D S , D rain-to-S ource V oltage (V )
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
** When mounted on 1" square PCB (FR-4 or G-10 Material ) . For recommended footprint and soldering techniques refer to application note #AN-994

IRGP4086PBF;中文规格书,Datasheet资料

IRGP4086PBF;中文规格书,Datasheet资料
TJ = 25°C
tf
Fall time
td(on)
Turn-On delay time
tr
Rise time
— 65 —
— 30 —
IC = 25A, VCC = 196V
— 33 — ns RG = 10Ω, L=200μH, LS= 200nH
td(off) tf tst
EPULSE
Turn-Off delay time Fall time Shoot Through Blocking Time
2
/

240
VGE = 18V
200
VGE = 15V
VGE = 12V
160
VGE = 10V VGE = 8.0V
120
VGE = 6.0V
ICE (A)
80
40
0
0
4
8
12
16
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
––– 29 ––– ––– 65 ––– ––– 22 ––– — 36 — — 31 — — 112 —
S VCE = 25V, ICE = 25A nC VCE = 200V, IC = 25A, VGE = 15Ve
IC = 25A, VCC = 196V ns RG = 10Ω, L=200μH, LS= 200nH
Parameter Thermal Resistance Junction-to-Case-(each IGBT) d Case-to-Sink (flat, greased surface) Junction-to-Ambient (typical socket mount) d Weight

VIPer20SP资料

VIPer20SP资料

BLOCK DIAGRAM
OSC DRAIN
ON/OFF OSCILLATOR
SECURITY LATCH VDD UVLO LOGIC R/S FF S Q
PWM LATCH R1 S FF R2 R3 Q
OVERTEMP. DETECTOR
0.5 V
+ _
1.7 µs delay
250 ns Blanking
Symbol VDS ID VDD VOSC VCOMP ICOMP Vesd ID(AR) Ptot Tj Tstg Parameter Continuous Drain-Source Voltage (Tj=25 to 125°C) for VIPer20/SP/DIP for VIPer20A/ASP/ADIP Maximum Current Supply Voltage Voltage Range Input Voltage Range Input Maximum Continuous Current Electrostatic Discharge (R =1.5kΩ; C=100pF) Avalanche Drain-Source Current, Repetitive or Not Repetitive (TC=100°C; Pulse width limited by Tj max; δ < 1%) for VIPer20/SP/DIP for VIPer20A/ASP/ADIP Power Dissipation at Tc=25ºC Junction Operating Temperature Storage Temperature Value -0.3 to 620 -0.3 to 700 Internally limited 0 to 15 0 to VDD 0 to 5 ±2 4000 0.5 0.4 57 Internally limited -65 to 150 Unit V V A V V V mA V A A W °C °C

IR2010STR中文资料

IR2010STR中文资料
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
元器件交易网
Data Sheet No. PD60195-D
IR2010(S) & (PbF)
Features
HIGH AND LOW SIDE DRIVER
• Floating channel designed for bootstrap operation Product Summary
Symbol
VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD
RTHJA
TJ TS TL
Definition
High side floating supply voltage
High side floating supply offset voltage
High side floating output voltage
VS + 10 Note 1
VS + 20 200
VS
VB
10
20
V
0
VCC
VSS + 3 -5 (Note 2)

F_USB20LP中文资料

F_USB20LP中文资料

Standard Bus IP: High Speed USB 2.0 Device ControllerSupports high-speed (480Mbps) and full-speed (12Mbps)Customize endpoint numbers and configurationsUTMI (USB2.0 Transceiver Macrocell Interface)Full compliance with USB 2.0 Device Controller standardIntegrated PHY macro for system cost reduction and space savingFujitsu USB 2.0 device controller is a synthesizable core suitable for different process. Corresponding physical interface in 0.18um and 0.11um technology (supporting high and full speed operation)also available for integration.Generic CPU interface makes it easy to be integrated into overall ASIC. Different endpoints are available for application such as printer, scanner, digital still camera, bluetooth devices, digital set top box,cable modems and PC Access Point to high speed wireless connectivity.Integrated SIE performs synchronization pattern recognition, bit stuffing/ stripping, CRC check/ generation, serial/ parallel conversion,PID verification, address recognition and handshake evaluation/response.The macro decodes and handles standard USB commands. Device class specific command is passed on to the ASIC for further processing.LinkProtocol Engine (UDC-20) is a fully synthesizable soft core that supports high-speed (480 Mbps), full-speed (12Mbps) signaling bit rates.Protocol engine reduces CPU burden by processing basic USB 2.0 protocols in hardware.Endpoint numbers, configurations, and its FIFO densities are flexible. Following is one of the configuration examples.1) End Point 0 control out 2) End Point 0 control in 3) End Point 1 Bulk out 4) End Point 2 Bulk in 5) End Point 3 Interrupt in64Byte 64Byte512Byte (Double buffer)512Byte (Double buffer)64BytePHY block consists of a 0.18um hard macro and a soft macro (Receiving Block).PHY block supports high-speed (480Mbps) and full-speed (12Mbps).Contains high-speed Analog Blocks and high-speed SERDES (serializer and de-serializer Logic) and provides a parallel interface to UDC-20 protocol Engine.16bit parallel connection to LinkPHYA p p l i c a t i o n (V C I ) I n t e r f a c eP H Y I n t e r f a c e – (U T M I )Protocol Engine (UDC-20) InternalsASIC Development SupportFujitsu provide analog macro to supplement ASIC development,such as USB transceiver, and APLL (various speed combinations.Accurate timing model is provided for synthesis, simulation and Static Timing Analysis (STA).Small gate count and soft coach approach makes it efficient to integrate into an ASIC. Fujitsu provides a set of functional vectors to customer for module hand-shake and full chip verification. Our application engineer works with you on full chip design forUSB test chip with selectable configurations,Test chip and macro specifications Encrypted RTL for top level simulation Application notes and testability guideTest benches for standalone IP verificationsDeliverables:Fujitsu Microelectronics Asia Pte LtdShenzhenBranch OfficeFUJITSU MICROELECTRONICSPACIFIC ASIA LTDRm. 4509, Di Wang Commercial Ctr,5002 Shen Nan Dong Road Shenzhen 518008, PRC Phone:(86 755) 246 1662Fax:(86 755) 246 1510PenangBranch OfficeFUJITSU MICROELECTRONICSASIA PTE LTDBlock B, 303-5-13, Krystal Point,Jalan Sultan Azian Shah,Sungai Nibong 11900, Penang, Malaysia Phone:604 - 645 - 2050Fax:604 - 645 - 6658SingaporeAsia Pacific Headquarters &Singapore Sales OfficeFUJITSU MICROELECTRONICS ASIA PTE LTD 151 Lorong Chuan#05-08, New Tech Park Singapore 556741Phone:(65) 6281 0770Fax:(65) 6281 0220Hong KongSales OfficeFUJITSU MICROELECTRONICSPACIFIC ASIA LTDRoom 1101 Ocean Centre 5 Canton RoadTsim Sha Tsui, Kowloon, Hong Kong Phone:(852) 2377 0226Fax:(852) 2376 3269ShanghaiBranch OfficeFUJITSU MICROELECTRONICSPACIFIC ASIA LTDRm. 1905 - 1906, Aetna Tower 107 Zunyi RoadShanghai 200051, PRC Phone:(86 21) 6219 7170Fax:(86 21) 6219 9243FloorTaiwanSales OfficeFUJITSU MICROELECTRONICS ASIA PTE LTD Room G, 12No. 168 Tun-Hwa N. Road Taipei, TaiwanPhone:(886 2) 2719 2011Fax:(886 2) 2545 3690BeijingBranch OfficeFUJITSU MICROELECTRONICSPACIFIC ASIA LTD Unit 2701, 27th Floor.China World Tower 1, No. 1 Jian Guo Men Wai Avenue, Beijing 100004, PRC Phone:(86 10) 6505 9750Fax:(86 10) 6505 9751。

EGP20A;EGP20B;EGP20C;EGP20D;EGP20G;中文规格书,Datasheet资料

EGP20A;EGP20B;EGP20C;EGP20D;EGP20G;中文规格书,Datasheet资料

EGP20A - EGP20K 2.0 Ampere Glass Passivated High Efficiency Rectifiers July 2007EGP20A - EGP20K 2.0 Ampere Glass Passivated High Efficiency RectifiersTypical Performance CharacteristicsEGP20A - EGP20K 2.0 Ampere Glass Passivated High Efficiency RectifiersReverse Recovery Time Characterstic and Test Circuit DiagramTRADEMARKSThe following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or(b) support or sustain life, and (c) whose failure to performwhen properly used in accordance with instructions for useprovided in the labeling, can be reasonably expected to resultin significant injury to the user.2. A critical component is any component of a life supportdevice or system whose failure to perform can be reasonablyexpected to cause the failure of the life support device orsystem, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONSDefinition of TermsACEx®Build it Now™CorePLUS™CROSSVOLT™CTL™Current Transfer Logic™EcoSPARK®Fairchild®Fairchild Semiconductor®FACT Quiet Series™FACT®FAST®FastvCore™FPS™FRFET®Global Power Resource SMGreen FPS™Green FPS™ e-Series™GTO™i-Lo™IntelliMAX™ISOPLANAR™MegaBuck™MICROCOUPLER™MicroFET™MicroPak™Motion-SPM™OPTOLOGIC®OPTOPLANAR®®PDP-SPM™Power220®Power247®POWEREDGE®Power-SPM™PowerTrench®Programmable Active Droop™QFET®QS™QT Optoelectronics™Quiet Series™RapidConfigure™SMART START™SPM®STEALTH™SuperFET™SuperSOT™-3SuperSOT™-6SuperSOT™-8SyncFET™The Power Franchise®TinyBoost™TinyBuck™TinyLogic®TINYOPTO™TinyPower™TinyPWM™TinyWire™µSerDes™UHC®UniFET™VCX™Datasheet Identification Product Status DefinitionAdvance Information Formative or In DesignThis datasheet contains the design specifications for product development.Specifications may change in any manner without notice.Preliminary First ProductionThis datasheet contains preliminary data; supplementary data will be pub-lished at a later date. Fairchild Semiconductor reserves the right to makechanges at any time without notice to improve design.No Identification Needed Full ProductionThis datasheet contains final specifications. Fairchild Semiconductor reservesthe right to make changes at any time without notice to improve design. Obsolete Not In ProductionThis datasheet contains specifications on a product that has been discontin-ued by Fairchild semiconductor. The datasheet is printed for reference infor-mation only.Rev. I30分销商库存信息:FAIRCHILDEGP20A EGP20B EGP20C EGP20D EGP20G EGP20J EGP20K EGP20F EGP20KTA。

IRGPH20中文资料

IRGPH20中文资料

C-463IRGPH20MShort Circuit RatedFast IGBTINSULATED GATE BIPOLAR TRANSISTORParameter Min.Typ.Max.UnitsR θJC Junction-to-Case—— 2.1R θCS Case-to-Sink, flat, greased surface—0.24—°C/W R θJA Junction-to-Ambient, typical socket mount ——40WtWeight—6 (0.21)—g (oz)Features• Short circuit rated - 10µs @ 125°C, V GE = 15V • Switching-loss rating includes all "tail" losses • Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curveV CES = 1200V V CE(sat) ≤ 4.6V@V GE = 15V, I C = 4.5AAbsolute Maximum RatingsParameterMax.UnitsV CESCollector-to-Emitter Voltage 1200V I C @ T C = 25°C Continuous Collector Current 6.9I C @ T C = 100°C Continuous Collector Current 4.5AI CM Pulsed Collector Current14I LM Clamped Inductive Load Current 14t sc Short Circuit Withstand Time 10µs V GE Gate-to-Emitter Voltage±20V E ARVReverse Voltage Avalanche Energy 5.0mJ P D @ T C = 25°C Maximum Power Dissipation 60WP D @ T C = 100°C Maximum Power Dissipation 24T J Operating Junction and-55 to +150T STGStorage Temperature Range°CSoldering Temperature, for 10 sec.300 (0.063 in. (1.6mm) from case)Mounting torque, 6-32 or M3 screw.10 lbf•in (1.1N•m)PD - 9.1137Thermal ResistanceInsulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.DescriptionRevision 1IRGPH20MC-464C-465Fig. 1 - Typical Load Current vs. Frequency(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK )Fig. 2 - Typical Output Characteristics Fig. 3- Typical Transfer CharacteristicsC-466Fig. 5 - Collector-to-Emitter Voltage vs.Case TemperatureFig. 4 - Maximum Collector Current vs.Case TemperatureIRGPH20MIRGPH20MC-467C-468。

FGA20N120FTDTU;中文规格书,Datasheet资料

FGA20N120FTDTU;中文规格书,Datasheet资料
C
GCE
TO-3PN
Absolute Maximum Ratings
Symbol
VCES VGES IC
ICM (1) IF PD
TJ Tstg TL
Description
Collector to Emitter Voltage Gate to Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current
oC
Typ.
-
Max.
0.42 2.0 40
Units
oC/W oC/W oC/W

FGA20N120FTD 1200V, 20A Trench IGBT
Package Marking and Ordering Information
Device Marking
©2007 Fairchild Semiconductor Corporation
1
FGA20N120FTD Rev. A
G
E
Ratings
1200 ± 25 40 20 60 20 298 119 -55 to +150 -55 to +150 300
Units
V V A A A A W W oC oC
Applications
• Induction heating and Microvewave oven • Soft switching applications
December 2007
tm
General Description
Using advanced field stop trench technology, Fairchild’s 1200V trench IGBTs offer superior conduction and switching performances, and easy parallel operation with exceptional avalanche ruggedness. This device is designed for soft switching applications.

IGBT模块结温的计算

IGBT模块结温的计算

IGBT模块结温的计算作者:付聪付帅来源:《科技资讯》2017年第07期摘要:该文为了分析IGBT模块的损耗与结温之间的联系,通过实例计算了IRGP20B120UD-E型号IGBT模块的结温,为进一步运用损耗与结温检测手段对IGBT模块进行失效判断和监测提供了必备的准备。

关键词:IGBT 损耗结温中图分类号:U464.138 文献标识码:A 文章编号:1672-3791(2017)03(a)-0049-02对于IGBT模块的电压VCE电流IC随着外部母线电压的改变发生变化的分析是目前研究其失效原因的工作之一。

尤其对于牵引变流器而言,IGBT模块的母线电压确实因为工作条件变化而改变,所以其中IGBT模块器件有一定的概率发生由于电压VCE、电流IC改变而发生故障[1]。

对于IGBT器件如果单一分析其电压和电流是比较片面的,二者共同作用在器件上通过损耗表现出来,所以分析IGBT器件的损耗以及由于损耗带来的结温变化能够很好分析出IGBT 器件的电压VCE和电流IC变化情况[2]。

该文以一种具体型号的IGBT器件为目标对其结温进行了如下计算:1 IGBT结温计算以IRGP20B120UD-E型号IGBT为例当其正常工作(初始条件125 ,℃15 V )时结温计算。

表1为IRGP20B120UD-E的部分参数。

根据以上参数表,在125 ,℃15 V初始条件下,IGBT模块的工作电流为20 A,工作选取基准频率为20 kHz,DT=0.5,DF=0.5。

根据图1,当VGE=15 V时, V,根据公式(1),(2):(1)(2)可得: W W;当IC=20 A,VCE=600 V时, mJ mJ,经过查IRGP20B120UD-E参数表可知,此时 mJ。

根据公式(3),(4),(5):·(3)·(4)·(5)可得:24 W=8 W,=42 W;由公式(6),(7)可得:78.9 W,(6)(7)根据整个IGBT模块热传导的过程,其等效热阻共分为[3]:为IGBT结壳间热阻;为IGBT壳与散热器间热阻;为二极管结壳间热阻;为二极管壳与散热器间热阻;为散热器与周围环境间热阻;为环境温度[4]。

MMBFJ201;中文规格书,Datasheet资料

MMBFJ201;中文规格书,Datasheet资料

J201 - J202MMBFJ201 - MMBFJ203P D Total Device DissipationDerate above 25°C 6255.03502.8WmW/°CR q JC Thermal Resistance, Junction to Case125°C/W R q JA Thermal Resistance, Junction to Ambient357556°C/W* Device mounted on FR-4 PCB 1.6” ´1.6” ´0.06"Dimensions in MillimetersJ201 - J202 / MMBFJ201 - MMBFJ203 N-Channel General Purpose AmplifierJ201 - J202 / MMBFJ201 - MMBFJ203Rev. I31TRADEMARKSThe following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use andis not intended to be an exhaustive list of all such trademarks.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of Terms ACEx ®Build it Now™CorePLUS™CROSSVOLT ™CTL™Current Transfer Logic™EcoSPARK ®Fairchild ®Fairchild Semiconductor ®FACT Quiet Series™FACT ®FAST ®FastvCore™FPS™FRFET ®Global Power Resource SMGreen FPS™Green FPS™ e-Series™GTO™i-Lo ™IntelliMAX™ISOPLANAR™MegaBuck™MICROCOUPLER™MicroFET™MicroPak™MillerDrive™Motion-SPM™OPTOLOGIC ®OPTOPLANAR ®®PDP-SPM™Power220®Power247®POWEREDGE ®Power-SPM™PowerTrench ®Programmable Active Droop™QFET ®QS™QT Optoelectronics™Quiet Series™RapidConfigure™SMART START™SPM ®STEALTH™SuperFET™SuperSOT™-3SuperSOT™-6SuperSOT™-8SyncFET™The Power Franchise ®TinyBoost™TinyBuck™TinyLogic ®TINYOPTO™TinyPower™TinyPWM™TinyWire™µSerDes™UHC ®UniFET™VCX™Datasheet Identification Product Status DefinitionAdvance InformationFormative or In DesignThis datasheet contains the design specifications for product development. Specifications may change in any manner without notice.Preliminary First ProductionThis datasheet contains preliminary data; supplementary data will be pub-lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.No Identification Needed Full ProductionThis datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Obsolete Not In ProductionThis datasheet contains specifications on a product that has been discontin-ued by Fairchild semiconductor. The datasheet is printed for reference infor-mation only.分销商库存信息: FAIRCHILD MMBFJ201。

IRGP20B120UD-E中文资料

IRGP20B120UD-E中文资料

TO-247AD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current (Fig.1) Continuous Collector Current (Fig.1) Pulsed Collector Current (Fig.3, Fig. CT.5) Clamped Inductive Load Current(Fig.4, Fig. CT.2) Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation (Fig.2) Maximum Power Dissipation (Fig.2) Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw.
P aram eter
Qg Q ge Q gc E on E off E tot E on E off E tot td (o n ) tr td (o ff) tf C ies C oes C res R BSO A
T o ta l G a te ch a rg e (tu rn -o n ) G a te - E m itte r C h a rg e (tu rn -o n ) G a te - C o lle cto r C h a rg e (tu rn -o n ) T u rn -O n S w itch in g L o ss T u rn -O ff S w itch in g L o ss T o ta l S w itch in g L o ss T u rn -o n S w itch in g L o ss T u rn -o ff S w itch in g L o ss T o ta l S w itch in g L o ss T u rn - o n d e la y tim e R ise tim e T u rn - o ff d e la y tim e F a ll tim e In p u t C a p a cita n ce O u tp u t C a p a cita n ce R e ve rse T ra n sfe r C a p a cita n ce

Z550中文资料(Intel)中文数据手册「EasyDatasheet - 矽搜」

Z550中文资料(Intel)中文数据手册「EasyDatasheet - 矽搜」
Intel m ay m ak e changes to specifications and product descriptions at any tim e, without notice. Designers m ust not rely on the absence or characteristics of any features or instructions m ark ed “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incom patibilities arising from future changes to them . The inform ation here is subject to change without notice. Do not finalize a design with this inform ation.
UNLESS O THERW ISE AGREED IN W RITING BY INTEL, THE INTEL PRO DUCTS ARE NO T DESIGNED NO R INTENDED FO R ANY APPLICATIO N IN W HICH THE FAILURE O F THE INTEL PRO DUCT CO ULD CREATE A SITUATIO N W HERE PERSO NAL INJURY O R DEATH MAY O CCUR.
Contact your local Inte l sale s office or your distributor to obtain the late st spe cifications and be fore placing your product orde r. Copie s of docum ents which have an orde r num be r and are re fere nce d in this docum en

G20N120中文资料

G20N120中文资料

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.SemiconductorHGTG20N120E234A, 1200V N-Channel IGBTPackageJEDEC STYLE TO-247Terminal DiagramCOLLECTOR GATECOLLECTOREMITTER(BOTTOM SIDEMETAL)CGEFeatures•34A, 1200V•Latch Free Operation •Typical Fall Time - 780ns •High Input Impedance •Low Conduction LossDescriptionThe HGTG20N120E2 is a MOS gated, high voltage switch-ing device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25o C and +150o C.IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.The development type number for this device is TA49009.PACKAGING AVAILABILITYPART NUMBER PACKAGE BRANDHGTG20N120E2TO-247G20N120E2April 1995Absolute Maximum Ratings T C = +25o C, Unless Otherwise SpecifiedHGTG20N120E2UNITS Collector-Emitter Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV CES 1200V Collector-Gate Breakdown Voltage R GE = 1M Ω. . . . . . . . . . . . . . . . . . . . . . . . . . .BV CGR 1200V Collector Current ContinuousAt T C = +25o C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I C25At T C = +90o C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I C903420A A Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I CM 100A Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GES ±20V Gate-Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GEM ±30V Switching SOA at T C = +150o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SSOA 100A at 0.8 BV CES-Power Dissipation Total at T C = +25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P D 150W Power Dissipation Derating T C > +25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.20W/o C Operating and Storage Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . .T J , T STG -55 to +150o C Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T L (0.125" from case for 5 seconds)260o CShort Circuit Withstand Time (Note 2)At V GE = 15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t SC At V GE = 10V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t SC 315µs µsNOTES:1.Repetitive Rating:Pulse width limited by maximum junction temperature.2.V CE(PEAK) = 720V, T C = +125o C, R GE = 25ΩHARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:4,364,0734,417,3854,430,7924,443,9314,466,1764,516,1434,532,5344,567,6414,587,7134,598,4614,605,9484,618,8724,620,2114,631,5644,639,7544,639,7624,641,1624,644,6374,682,1954,684,4134,694,3134,717,6794,743,9524,783,6904,794,4324,801,9864,803,5334,809,0454,809,0474,810,6654,823,1764,837,6064,860,0804,883,7674,888,6274,890,1434,901,1274,904,6094,933,7404,963,9514,969,027File Number3370.2Specifications HGTG20N120E2 Electrical Specifications T C = +25o C, Unless Otherwise SpecifiedPARAMETERS SYMBOL TEST CONDITIONSLIMITSUNIT MIN TYP MAXCollector-Emitter BreakdownVoltageBV CES I C = 250µA, V GE = 0V1200--V Collector-Emitter Leakage Current I CES V CE = BV CES T C = +25o C--250µAV CE = 0.8 BV CES T C = +125o C-- 1.0mACollector-Emitter Saturation Voltage V CE(SAT)I C = I C90, V GE = 15V T C = +25o C- 2.9 3.5VT C = +125o C- 3.0 3.6VI C = I C90, V GE = 10V T C = +25o C- 3.1 3.8VT C = +125o C- 3.3 4.0VGate-Emitter Threshold Voltage V GE(TH)I C = 500µA,V CE = V GET C = +25o C 3.0 4.5 6.0V Gate-Emitter Leakage Current I GES V GE =±20V--±250nA Gate-Emitter Plateau Voltage V GEP I C = I C90, V CE = 0.5 BV CES-7.0-VOn-State Gate Charge Q G(ON)I C = I C90,V CE = 0.5 BV CES V GE = 15V-110150nC V GE = 20V-150200nCCurrent Turn-On Delay Time t D(ON)R L = 48ΩI C = I C90, V GE = 15V,V CE = 0.8 BV CES,R G = 25Ω,T J = +125o C -100-nsCurrent Rise Time t R-150-ns Current Turn-Off Delay Time t D(OFF)I L = 50µH-520620ns Current Fall Time t FI-7801000ns Turn-Off Energy (Note 1)W OFF-7.0-mJCurrent Turn-On Delay Time t D(ON)R L = 48ΩI C = I C90, V GE = 10V,V CE = 0.8 BV CES,R G = 25Ω,T J = +125o C -100-nsCurrent Rise Time t R-150-nsCurrent Turn-Off Delay Time t D(OFF)I L = 50µH-420520ns Current Fall Time t FI-7801000ns Turn-Off Energy (Note 1)W OFF-7.0-mJ Thermal Resistance RθJC-0.700.83o C/WNOTE:1.Turn-Off Energy Loss (W OFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse andending at the point where the collector current equals zero (I CE = 0A). The HGTG20N120E2 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.Typical Performance CurvesFIGURE 1.TRANSFER CHARACTERISTICS (TYPICAL)FIGURE 2.SATURATION CHARACTERISTICS (TYPICAL)FIGURE 3.MAXIMUM DC COLLECTOR CURRENT AS A FUNCTION OF CASE TEMPERATURE FIGURE 4.FALL TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENTFIGURE 5.CAPACITANCE AS A FUNCTION OF COLLECTOR-EMITTER VOLTAGE FIGURE 6.NORMALIZED SWITCHING WAVEFORMS AT CONSTANT GATE CURRENT. (REFER TOAPPLICATION NOTES AN7254 AND AN7260)FIGURE 7.SATURATION VOLTAGE AS A FUNCTION OF COLLECTOR-EMITTER CURRENT FIGURE 8.TURN-OFF SWITCHING LOSS AS A FUNCTION OF COLLECTOR-EMITTER CURRENTFIGURE 9.TURN-OFF DELAY AS A FUNCTION OF COLLECTOR-EMITTER CURRENT FIGURE 10.OPERATING FREQUENCY AS A FUNCTION OFCOLLECTOR-EMITTER CURRENT AND VOLTAGEFIGURE 11.COLLECTOR-EMITTER SATURATION VOLTAGE Typical Performance Curves(Continued)Handling Precautions for IGBTsInsulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler’s body capacitance is not discharged through the device. With proper handling and application procedures,however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:1.Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as “† ECCOSORBD LD26” or equivalent.2.When devices are removed by hand from their carriers,the hand being used should be grounded by any suitable means - for example, with a metallic wristband.3.Tips of soldering irons should be grounded.4.Devices should never be inserted into or removed from circuits with power on.5.Gate Voltage Rating - Never exceed the gate-voltage rating of VGEM. Exceeding the rated VGE can result in permanent damage to the oxide layer in the gate region.6.Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.7.Gate Protection - These devices do not have an internal monolithic zener diode from gate to emitter. If gate protection is required an external zener is recommended.† Trademark Emerson and Cumming, Inc.Operating Frequency InformationOperating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I CE ) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f MAX1 or f MAX2 whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.f MAX1 is defined by f MAX1 = 0.05/t D(OFF)I . t D(OFF)I deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. t D(OFF)I is defined as the time between the 90%point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device turn-off delay can establish an additional fre-quency limiting condition for an application other than T JMAX .t D(OFF)I is important when controlling output ripple under a lightly loaded condition. f MAX2 is defined by f MAX2 = (Pd - Pc)/W OFF . The allowable dissipation (Pd) is defined by Pd =(T JMAX - T C )/R θJC . The sum of device switching and conduc-tion losses must not exceed Pd. A 50% duty factor was used (Figure 10) and the conduction losses (Pc) are approximated by Pc = (V CE • I CE )/2. W OFF is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I CE = 0A).The switching power loss (Figure 10) is defined as f MAX2•W OFF . Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.Test CircuitFIGURE 12.INDUCTIVE SWITCHING TEST CIRCUIT20V 0VR GEN = 50Ω1/R G = 1/R GEN + 1/R GER GE = 50ΩL = 50µHV CC 960V+-。

HGTP10N120BN;HGT1S10N120BNS;中文规格书,Datasheet资料

HGTP10N120BN;HGT1S10N120BNS;中文规格书,Datasheet资料

10N120BN 10N120BN
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g. HGT1S10N120BNST.
Formerly Developmental Type TA49290.
Ordering Information
PART NUMBER HGTG10N120BN
PACKAGE TO-247
BRAND G10N120BN
HGTP10N120BN HGT1S10N120BNS
TO-220AB TO-263AB
Symbol
C
G E
Features
• 35A, 1200V, TC = 25oC • 1200V Switching SOA Capability • Typical Fall Time. . . . . . . . . . . . . . . . 140ns at TJ = 150oC • Short Circuit Rating
Packaging
JEDEC STYLE TO-247
COLLECTOR (FLANGE)
E C
G
JEDEC TO-220AB (ALTERNATE VERSION)
COLLECTOR
E
(FLANGE)
C
G
JEDEC TO-263AB
COLLECTOR
G
(FLANGE)
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS

IXGT20N120B;IXGH20N120B;中文规格书,Datasheet资料

IXGT20N120B;IXGH20N120B;中文规格书,Datasheet资料

© 2003 IXYS All rights reserved DS98986D(05/03)High Voltage IGBTIXGH 20N120B IXGT 20N120B C (TAB)G = Gate, C = Collector,E = Emitter,TAB = CollectorTO-247 AD (IXGH)Features zHigh Voltage IGBT for resonant power supplies - Induction heating - Rice cookers zInternational standard packages JEDEC TO-268 surface and JEDEC TO-247 AD zLow switching losses, low V (sat)zMOS Gate turn-on -drive simplicityAdvantagesz High power densityz Suitable for surface mounting zEasy to mount with 1 screw,(isolated mounting screw hole)Symbol Test ConditionsCharacteristic Values(T J = 25°C, unless otherwise specified)min.typ.max.BV CES I C = 250 µA, V GE = 0 V 1200V V GE(th)I C= 250 µA, V CE = V GE2.55V I CES V CE = V CEST J = 25°C50µA I GES V CE = 0 V, V GE = ±20 V ±100nA V CE(sat)I C= 20A, V GE = 15 V2.93.4V T J = 125°C2.83.8VSymbol Test Conditions Maximum RatingsV CES T J = 25°C to 150°C1200V V CGR T J= 25°C to 150°C; R GE= 1 M Ω1200V V GES Continuous ±20V V GEM Transient ±30V I C25T C = 25°C 40A I C110T C = 110°C 20A I CMT C = 25°C, 1 ms80A SSOA V GE = 15 V, T VJ = 125°C, R G = 10 Ω I CM = 80A(RBSOA)Clamped inductive load @ 0.8 V CESP C T C = 25°C190W T J -55 ... +150°C T JM 150°C T stg-55 ... +150°C Maximum Lead temperature for soldering 300°C 1.6 mm (0.062 in.) from case for 10 sMaximum Tab temperature for soldering SMD devices for 10 s 260°CM d Mounting torque (M3) (TO-247)1.13/10Nm/lb.in.WeightTO-247 AD6g TO-2684gTO-268(IXGT)GEV CES =1200V I C25=40A V CE(sat)= 3.4V t fi(typ)=160nsPreliminary Data SheetSymbolTest ConditionsCharacteristic Values(TJ = 25°C, unless otherwise specified)min.typ.max.g fs I C = 20A; V CE = 10 V,1218S Pulse test, t ≤ 300 µs, duty cycle ≤ 2 %C ies 1700pF C oes V CE = 25 V, V GE = 0 V, f = 1 MHz95pF C res 35pF Q g 72nC Q ge I C = 20A, V GE = 15 V, V CE = 0.5 V CES12nC Q gc 27nC t d(on)25ns t ri 15ns t d(off)150280ns t fi 160320nsE off 2.1 3.5mJt d(on)25ns t ri 18ns E on 0.9mJ t d(off)270ns t fi 360ns E off 3.5mJ R thJC 0.65K/WR thCK(TO-247)0.25K/WIXYS reserves the right to change limits, test conditions, and dimensions.Inductive load, T J = 125°C I C = 20A, V GE = 15 VV CE = 0.8 V CES , R G = R off = 10 ΩInductive load, T J = 25°C I C = 20 A, V GE = 15 VV CE = 0.8 V CES , R G = R off = 10 ΩIXYS MOSFETs and IGBTs are covered by one or moreof the following U.S. patents:4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,486,715 6,306,728B1 6,259,123B1 6,306,728B14,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,381,025 6,404,065B1 6,162,665 6,534,343© 2003 IXYS All rights reservedIXYS reserves the right to change limits, test conditions, and dimensions.IXYS MOSFETs and IGBTs are covered by one or moreof the following U.S. patents:4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,486,715 6,306,728B1 6,259,123B1 6,306,728B14,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,381,025 6,404,065B1 6,162,665 6,534,343© 2003 IXYS All rights reserved分销商库存信息:IXYSIXGT20N120B IXGH20N120B。

IGBT

IGBT
IGW15N120H3
STGW40N120KD
STGW40NC60WD
FGH60N60UFDTU
FSAM15SM60A
STGY50NC60WD
HGTG27N120BN
IRG4PC30FDPBF
IRGP4066DPBF
HGTG40N60A4
STGD7NC60HT4
STGW20NC60VD
FGA25N120ANTDTU
2SC0435T2A0-17
STGF7NB60SL
FNA41560
STGW60H65F
STGB20NC60V
STGIPL14K60
STGW35NC120HD
HGTP10N120BN
STGIPS14K60T
IRG7PH46UDPBF
IRG4RC10UTRPBF
IRGP4062DPBF
FGPF4533
SKW15N60
IRG7I313UPBF
IRG4PC40UD-EPBF
FGH80N60FD2TU
IRG4PC30FPBF
STGP18N40LZ
IRG7PH42U-EP
IRGP4066-EPBF
HGTG10N120BND
IRGP4063DPBF
FGH75N60UFTU
STGD10NC60KT4
STGIPL20K60
STGIPS20K60
STGWA45HF60WDI
FGL60N100BNTD
STGD18N40LZT4
STGIPS10K60T
IRG7PH42UPBF
HGTG30N60A4
STGW45HF60WD

irgps40b120ud器件手册

irgps40b120ud器件手册

IRGPS40B120UDINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEFeaturesV CES = 1200V V CE(on) typ. = 3.12V@ V GE = 15V,I CE = 40A, Tj=25°C01/17/02Absolute Maximum RatingsParameterMax.UnitsV CESCollector-to-Emitter Voltage 1200VI C @ T C = 25°C Continuous Collector Current 80I C @ T C = 100°C Continuous Collector Current 40I CM Pulsed Collector Current160AI LMClamped Inductive Load Current 160I F @ T C = 25°CDiode Continuous Forward Current 80I F @ T C = 100°C Diode Continuous Forward Current 40I FM Diode Maximum Forward Current 160V GEGate-to-Emitter Voltage± 20V P D @ T C = 25°C Maximum Power Dissipation 595P D @ T C = 100°C Maximum Power Dissipation 238T J Operating Junction and-55 to +150T STGStorage Temperature Range°CSoldering Temperature, for 10 sec.300 (0.063 in. (1.6mm) from case)• Non Punch Through IGBT Technology.• Low Diode VF.• 10µs Short Circuit Capability.• Square RBSOA.• Ultrasoft Diode Reverse Recovery Characteristics.• Positive VCE (on) Temperature Coefficient.• Super-247 Package.BenefitsPD- 94240W 1• Benchmark Efficiency for Motor Control.• Rugged Transient Performance.• Low EMI.• Significantly Less Snubber Required• Excellent Current Sharing in Parallel Operation.Parameter Min.Typ.Max.UnitsR θJC Junction-to-Case - IGBT ––––––0.20R θJC Junction-to-Case - Diode––––––0.83°C/WR θCS Case-to-Sink, flat, greased surface–––0.24–––R θJA Junction-to-Ambient, typical socket mount ––––––40Recommended Clip Force 20 (2)––––––N(kgf)Wt Weight––– 6.0 (0.21)–––g (oz)LeInternal Emitter Inductance (5mm from package)–––13–––nHThermal ResistanceSuper -247™UltraFast Co-Pack IGBTIRGPS40B120UDElectrical Characteristics @ T J = 25°C (unless otherwise specified)Ref.Fig.5, 67, 91011Parameter Min.Typ.Max.Units ConditionsV (BR)CESCollector-to-Emitter Breakdown Voltage 1200––––––V V GE = 0V, I C = 500µA∆V (BR)CES /∆T J Temperature Coeff. of Breakdown Voltage –––0.40–––V/°C V GE = 0V, I C = 1.0mA, (25°C-125°C)V CE(on)Collector-to-Emitter Saturation Voltage ––– 3.123.40I C = 40A V GE = 15V––– 3.39 3.70V I C = 50A––– 3.88 4.30I C = 40A, T J = 125°C––– 4.244.70I C = 50A, T J = 125°C V GE(th)Gate Threshold Voltage 4.05.06.0V CE = V GE , I C = 250µA∆V GE(th)/∆T J Temperature Coeff. of Threshold Voltage –––-12–––mV/°C V CE = V GE , I C = 1.0mA, (25°C-125°C)g feForward Transconductance –––30.5–––S V CE = 50V, I C = 40A, PW=80µs I CES Zero Gate Voltage Collector Current ––––––500µA V GE = 0V, V CE = 1200V –––4201200V GE = 0V, V CE = 1200V, T J = 125°C V FM Diode Forward Voltage Drop ––– 2.032.40I C = 40A––– 2.17 2.60V I C = 50A––– 2.26 2.68I C = 40A, T J = 125°C ––– 2.462.95I C = 50A, T J = 125°C I GES Gate-to-Emitter Leakage Current ––––––±100nA V GE = ±20V9,1011 ,128Ref.Fig.ParameterMin.Typ.Max.Units Conditions Qg Total Gate Charge (turn-on)–––340510I C = 40A Qge Gate - Emitter Charge (turn-on)–––4060nC V CC = 600V Q gc Gate - Collector Charge (turn-on)–––165248V GE = 15V E on Turn-On Switching Loss –––14001750µJ I C = 40A, V CC = 600V E off Turn-Off Switching Loss –––16502050V GE = 15V,R G = 4.7Ω, L =200µH E tot Total Switching Loss –––30503800Ls = 150nH T J = 25°C E on Turn-On Switching Loss –––19502300 T J = 125°C E off Turn-Off Switching Loss –––22002950µJ Energy losses include "tail" and E tot Total Switching Loss –––41505250diode reverse recovery.t d(on)Turn-On Delay Time –––7699I C = 40A, V CC = 600V t r Rise Time –––3955V GE = 15V, R G = 4.7Ω L =200µH t d(off)Turn-Off Delay Time–––332365ns Ls = 150nH, T J = 125°C t fFall Time –––2533C iesInput Capacitance –––4300–––V GE = 0V C oes Output Capacitance –––330–––pF V CC = 30V C res Reverse Transfer Capacitance –––160––– f = 1.0MHzT J = 150°C, I C = 160A, Vp =1200VV CC = 1000V, V GE = +15V to 0VR G = 4.7ΩT J = 150°C, Vp =1200VV CC = 900V, V GE = +15V to 0V,R G = 4.7ΩErec Reverse Recovery energy of the diode –––3346–––µJ T J = 125°C t rr Diode Reverse Recovery time–––180–––ns V CC = 600V, I F = 60A, L =200µH I rrDiode Peak Reverse Recovery Current–––50–––A V GE = 15V,R G = 4.7Ω, Ls = 150nHSwitching Characteristics @ T J = 25°C (unless otherwise specified)23CT1CT4WF1WF213,1514, 16CT4WF1WF2224CT2CT3WF417,18,1920, 21CT4,WF3RBSOAReverse Bias Safe Operting AreaFULL SQUARE SCSOA Short Circuit Safe Operting Area 10––––––µsIRGPS40B120UD 3Fig. 1 - Maximum DC Collector Current vs.Case Temperature Fig. 2 - Power Dissipation vs. CaseTemperatureFig. 3 - Forward SOA T C = 25°C; T JS ≤ 150°C Fig. 4 - Reverse Bias SOA T J = 150°C; V GE =15V20406080100120140160T C (°C)20406080100I C (A)50100150200T C (°C)100200300400500600700P t o t (W)110100100010000V CE (V)0.11101001000I C (A )10100100010000V CE (V)1101001000I C A )Fig. 8 - Typ. Diode Forward Characteristicstp = 80µsFig. 7 - Typ. IGBT Output CharacteristicsT J = 125°C; tp = 80µs020406080I C E (A )123456V CE (V)01020304050607080I C E (A )01234V F (V) 5Fig. 10 - Typical V CE vs. V GET J = 25°CFig. 11 - Typical V CE vs. V GET J = 125°C Fig. 12 - Typ. Transfer CharacteristicsV CE = 50V; tp = 10µs5101520V GE (V)2468101214161820V C E (V )5101520V GE (V)2468101214161820V C E (V )5101520V GE (V)2468101214161820V C E (V )5101520V GE (V)50100150200250300350400450500I C E (A )IRGPS40B120UDFig. 14 - Typ. Switching Time vs. I C T J = 125°C; L=200µH; V CE = 600VR G = 4.7Ω; V GE = 15VFig. 13 - Typ. Energy Loss vs. I C T J = 125°C; L=200µH; V CE = 600VR G = 4.7Ω; V GE = 15V Fig. 16 - Typ. Switching Time vs. R G T J = 125°C; L=200µH; V CE = 600VI CE = 40A; V GE = 15VFig. 15 - Typ. Energy Loss vs. R G T J = 125°C; L=200µH; V CE = 600VI CE = 40A; V GE = 15V 020406080I C (A)050010001500200025003000350040004500E n e r g y (µJ )20406080I C (A)101001000S w i c h i n g T i m e (n s )510152025R G (Ω)0500100015002000250030003500400045005000E n e r gy (µJ )510152025R G (Ω)101001000S w i c h i n g T i m e (n s )IRGPS40B120UD 7Fig. 17 - Typical Diode I RR vs. I FT J = 125°C Fig. 18 - Typical Diode I RR vs. R GT J = 125°C; I F = 40AFig. 20 - Typical Diode Q RR V CC = 600V; V GE = 15V;T J = 125°CFig. 19- Typical Diode I RR vs. di F /dtV CC = 600V; V GE = 15V;I CE = 40A; T J = 125°C20406080100I F (A)0102030405060I R R (A )50100150R G (Ω)0102030405060I R R (A )50010001500di F/dt (A/µs)102030405060I R R (A )050010001500di F /dt (A/µs)123456789Q R R (µC)IRGPS40B120UDFig. 21 - Typical Diode E RR vs. I FT J = 125°CFig. 23 - Typical Gate Charge vs. V GEI CE = 40A; L = 600µHFig. 22- Typ. Capacitance vs. V CEV GE = 0V; f = 1MHz 020406080100I F (A)0500100015002000250030003500E n e r g y (µJ )20406080100V CE (V)10100100010000C a p a c i t a n c e (p F)100200300400Q G , Total Gate Charge (nC)0246810121416V GE (V )IRGPS40B120UD 9Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE)Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT)t 1 , Rectangular Pulse Duration (sec)T h e r m a l R e s p o n s e ( Z t h J C )t 1 , Rectangular Pulse Duration (sec)T h e r m a l R e s p o n s e ( Z )IRGPS40B120UDLFig.C.T.1 - Gate Charge Circuit (turn-on)Fig.C.T.2- RBSOA CircuitFig.C.T.5 - RBSOA CircuitIRGPS40B120UDIRGPS40B120UDData and specifications subject to change without notice.This product has been designed and qualified for the industrial market.Qualification Standards can be found on IR ’s Web site.IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903Visit us at for sales contact information .01/02Super-247™ Package Outline。

PMEG6020ER,115;中文规格书,Datasheet资料

PMEG6020ER,115;中文规格书,Datasheet资料

Symbol
Parameter
Conditions
Min
Tj
junction temperature
-
Tamb
ambient temperature
−55
Tstg
storage temperature
−65
Max Unit
150
°C
+150 °C
+150 °C
[1] Device mounted on a ceramic PCB, Al2O3, standard footprint. [2] Tj = 25 °C prior to surge. [3] Reflow soldering is the only recommended soldering method. [4] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. [5] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm2.
PMEG6020ER
2 A low VF MEGA Schottky barrier rectifier
102
Zth(j-a) (K/W)
10
duty cycle =
1 0.75 0.5
0.33 0.25
0.2
0.1 0.05
0.02 0.01 1
0
006aab651
10−1
10−3
10−2
10−1
[1]

IRGP20B120UD-E应用说明

IRGP20B120UD-E应用说明

IRGP20B120UD-E应用说明1.特点·超快开关特性,适用于感应加热电路。

·正温度系数,随着温度上升,V CE以 1.2V/℃提高。

·热阻小(≤0.43℃/W),结(T J)壳(T C)温差小。

·雪崩耐量大,抗电冲击能力强。

2.设计时工作电流(I R)的选取·用于感性负载(电磁炉)时,原则上额定工作电流I R≤0.35 I C。

·例、20B120UD-E,T C=85℃时,I C=25A;此时,I R=0.35×25A=8.8AP R<220V×8.8A=1936W 3.设计时工作电压(U CER)的选取·用于感性负载(电磁炉)时,IGBT的C极电压V CER≤0.8V CE时较为稳妥。

·例,20B120UD-E,T C=85℃时,T C=25℃时,V CE=1.1×1200V=1320VT C=85℃时,V CE≥1320V+1.2×80=1416V考虑到冲击尖峰的影响及冷态V CE值限,V CER≤0.8×1320=1056V4.设计时IGBT外表温度T C的选取·由于IGBT结温T J≤150℃,故正常工作时,一般T J≤125℃为好。

(第 1 页共 2 页)即T C≤125℃-P D×R QJC·例、20B120UD-E,工作在1800W的电磁炉上时,I R=8.2A, V CE(SAT)=3.05VT C<125℃-3.05×8.2×0.50=113℃考虑到散热条件及发热量的波动,T C<100℃,较为理想;散热器温度 T s<95℃为佳。

5.驱动电路·原则上与用TA8316S驱动器的电路相同,但要注意控制。

V GE:15~20V,零电压关断。

6.振荡电路·原则上LC振荡回路频率f≤25KHZ较合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档