指数函数经典练习题
指数函数练习题及答案
(指数函数练习题及答案1.设y 1=,y 2=,y 3=(12)-,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 解析:选==,y 2==,y 3=(12)-=,∵y =2x在定义域内为增函数, 且>>, %∴y 1>y 3>y 2.2.若函数f (x )=⎩⎪⎨⎪⎧a x,x >14-a2x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( )A .(1,+∞)B .(1,8)C .(4,8)D .[4,8)解析:选D.因为f (x )在R 上是增函数,故结合图象(图略)知⎩⎪⎨⎪⎧a >14-a 2>04-a 2+2≤a,解得4≤a <8.3.函数y =(12)1-x的单调增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)@解析:选A.设t =1-x ,则y =⎝ ⎛⎭⎪⎫12t ,则函数t =1-x 的递减区间为(-∞,+∞),即为y =⎝ ⎛⎭⎪⎫121-x的递增区间.4.已知函数y =f (x )的定义域为(1,2),则函数y =f (2x)的定义域为________.解析:由函数的定义,得1<2x<2⇒0<x <1.所以应填(0,1). 答案:(0,1)1.设13<(13)b <(13)a<1,则( )A .a a <a b <b aB .a a<b a<a bC .a b <a a <b aD .a b <b a <a a、解析:选C.由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .2.若(12)2a +1<(12)3-2a,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)解析:选B.函数y =(12)x在R 上为减函数,∴2a +1>3-2a ,∴a >12.3.下列三个实数的大小关系正确的是( );A .(12011)2<212011<1B .(12011)2<1<212011C .1<(12011)2<212011D .1<212011<(12011)2解析:选B.∵12011<1,∴(12011)2<1,212011>20=1.4.设函数f (x )=a -|x |(a >0且a ≠1),f (2)=4,则( )A .f (-1)>f (-2)B .f (1)>f (2)C .f (2)<f (-2)D .f (-3)>f (-2)解析:选D.由f (2)=4得a -2=4,又a >0,∴a =12,f (x )=2|x |,∴函数f (x )为偶函数,在(-∞,0)上单调递减,在(0,+∞)上单调递增.5.函数f (x )=12x +1在(-∞,+∞)上( ) X k b 1 . c o m$A .单调递减无最小值B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值解析:选=2x+1为R 上的增函数且u >0,∴y =1u在(0,+∞)为减函数.即f (x )=12x +1在(-∞,+∞)上为减函数,无最小值.6.若x <0且a x >b x>1,则下列不等式成立的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b …解析:选B.取x =-1,∴1a >1b>1,∴0<a <b <1.7.已知函数f (x )=a -12x +1,若f (x )为奇函数,则a =________.解析:法一:∵f (x )的定义域为R ,且f (x )为奇函数,∴f (0)=0,即a -120+1=0.∴a =12.法二:∵f (x )为奇函数,∴f (-x )=-f (x ),即a -12-x +1=12x +1-a ,解得a =12.—答案:128.当x ∈[-1,1]时,f (x )=3x-2的值域为________.解析:x ∈[-1,1],则13≤3x ≤3,即-53≤3x-2≤1.答案:⎣⎢⎡⎦⎥⎤-53,1 9.若函数f (x )=e -(x -u )2的最大值为m ,且f (x )是偶函数,则m +u =________. 解析:∵f (-x )=f (x ), ∴e -(x +u )2=e -(x -u )2,∴(x +u )2=(x -u )2,^∴u =0,∴f (x )=e -x 2.∵x 2≥0,∴-x 2≤0,∴0<e -x 2≤1, ∴m =1,∴m +u =1+0=1. 答案:110.讨论y =(13)x 2-2x的单调性.解:函数y =(13)x 2-2x的定义域为R ,令u =x 2-2x ,则y =(13)u .列表如下:&)uy =(13)x 2-2xx ∈(-∞,1]x ∈(1,∞)|由表可知,原函数在(-∞,1]上是增函数,在(1,+∞)上是减函数.11.已知2x≤(14)x -3,求函数y =(12)x 的值域.解:由2x ≤(14)x -3,得2x ≤2-2x +6,∴x ≤-2x +6,∴x ≤2.∴(12)x ≥(12)2=14,即y =(12)x 的值域为[14,+∞).12.已知f (x )=(12x -1+12)x .\(1)求函数的定义域;(2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.解:(1)由2x-1≠0,得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.在定义域内任取x ,则-x 在定义域内,f (-x )=(12-x -1+12)(-x )=(2x1-2x +12)(-x )=-1+2x 21-2x ·x =2x+122x-1·x , $函数 单 调 性 区间而f (x )=(12x -1+12)x =2x+122x-1·x , ∴f (-x )=f (x ),∴函数f (x )为偶函数.(3)证明:当x <0时,由指数函数性质知, 0<2x <1,-1<2x-1<0,∴12x -1<-1, ∴12x -1+12<-12. 又x <0,∴f (x )=(12x -1+12)x >0.由f (x )为偶函数,当x >0时,f (x )>0. 综上,当x ∈R ,且x ≠0时,函数f (x )>0.。
(完整版)指数函数经典习题大全
指数函数习题新泰一中闫辉一、选择题1.下列函数中指数函数的个数是 ( ).①②③④A.0个 B.1个 C.2个 D.3个2.若,,则函数的图象一定在()A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限3.已知,当其值域为时,的取值范围是()A. B.C. D.4.若,,下列不等式成立的是()A. B. C. D.5.已知且,,则是()A.奇函数 B.偶函数C.非奇非偶函数 D.奇偶性与有关6.函数()的图象是()7.函数与的图象大致是( ).8.当时,函数与的图象只可能是()9.在下列图象中,二次函数与指数函数的图象只可能是()10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ).A.2400元 B.900元 C.300元 D.3600元二、填空题1.比较大小:(1);(2) ______ 1;(3) ______2.若,则的取值范围为_________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________ .6.已知的定义域为 ,则的定义域为__________.7.当时, ,则的取值范围是__________.8.时,的图象过定点________ .9.若 ,则函数的图象一定不在第_____象限.10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________.11.函数的最小值为____________.12.函数的单调递增区间是____________.13.已知关于的方程有两个实数解,则实数的取值范围是_________.14.若函数(且)在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列下列各数:,,,,,,,2.设有两个函数与,要使(1);(2),求、的取值范围.3.已知 ,试比较的大小.4.若函数是奇函数,求的值.5.已知,求函数的值域.6.解方程:(1);(2).7.已知函数(且)(1)求的最小值;(2)若,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的成本共下降了19%,若每年下降的百分率相等,求每年下降的百分率10.某工厂今年1月、2月、3月生产某产品分别为1万件、1.2件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以选用二次函数或函数(其中、、为常数),已知四月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?请说明理由.11.设,求出的值.12.解方程.参考答案:一、1.B 2.A 3.D 4.B 5.A 6.B 7.D 8.A 9.A 10.A二、1.(1)(2)(3)2. 3. 4.(0,1) 5.6. 7.8.恒过点(1,3) 9.四 10.11. 12. 13. 14.或三、1.解:除以外,将其余的数分为三类:(1)负数:(2)小于1的正数:,,(3)大于1的正数:,,在(2)中,;在(3)中,;综上可知说明:对几个数比较大小的具体方法是:(1)与0比,与1比,将所有数分成三类:,,,(2)在各类中两两比2.解:(1)要使由条件是,解之得(2)要使,必须分两种情况:当时,只要,解之得;当时,只要,解之得或说明:若是与比较大小,通常要分和两种情况考虑.3.4.解:为奇函数,,即,则,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:(1)两边同除可得,令,有,解之得或,即或,于是或(2)原方程化为,即,由求根公式可得到,故7.解:(1),当即时,有最小值为(2),解得当时,;当时,.8.当时, > ,当时, > .9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与1.37的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令 ,则原方程化为 解得 或 ,即 或 (舍去),习题二1. 求不等式2741(0x x aa a -->>,1)a ≠且中x 的取值范围.2. . 指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.3. 函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =B.()()()f xy f x f y =+ C.()()()f x y f x f y +=D.()()()f x y f x f y +=+oyx14. 若11()()23x x <,则x 满足( )A.0x > B.0x < C.0x ≤D.0x ≥5. (1)已知12()3a a -+=,求33a a -+;(2)已知21xa=,求33x xx xa a a a--++; (3)已知31xa -+=,求2362a ax x ---+的值.6. 已知函数()xf x a =(0a >,1a ≠)在[]22-,上函数值总小于2,求实数a 的取值范围. 7 已知函数()xxf x a a -=+(0a >,1a ≠),且(1)3f =,则(0)(1)(2)f f f ++的值是 . 8. 若关于x 的方程22210xx a a +++=g 有实根,试求a 的取值范围.9. 当0a >且1a ≠时,函数2()3x f x a-=-必过定点 .10. 设311x y a +=,22x y a -=其中0a >,且1a ≠.确定x 为何值时,有:(1)12y y =; (2)12y y >.11 当0a ≠时,函数y ax b =+和axy b =的图象是( )12. 函数()y f x =的图象与2xy =的图象关于x 轴对称,则()f x 的表达式为 . 13. 若函数()()()21021x F x f x x ⎛⎫=+≠ ⎪-⎝⎭g 是偶函数,且()f x 不恒等于0,则()f x 为( ) A.奇函数 B.偶函数C.可能是奇函数,也可能是偶函数 D.非奇非偶函数14. 已知函数()()2211xf xg x x =-=-,,构造函数()F x 定义如下:当()()f x g x ≥时,()()F x f x =;当()()f x g x <时,()()F x g x =-,那么()F x ( )A.有最大值1,无最小值 B.有最小值0,无最大值 C.有最小值1-,无最大值D.无最小值,也无最大值15. 当0x >时,函数()()21xf x a =-的值总大于1,则实数a 的取值范围是 .16. 已知函数()f x 满足对任意实数12x x <有()()12f x f x <且()()()1212f x x f x f x +=g 若写出一个满足这些条件的函数则这个函数可以写为 .习题三一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12:不用计算器计算48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=___________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.t/月20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BADDCCADAC二、填空题(4*7=28分)11.b a >; 12.100; 13.}24|{-<>x x x 或; 14.-1或2 15.(-2, 2) ; 16.]1,0( 17.①②⑤ 三、解答题:(10+10+12=32分) 18.解: (1)原式=11113312222111112222()()()(1)1718a a a a a a a a a aa a--------++==++=+=--。
指数函数练习题
指数函数练习题
1. 指数函数基础概念
指数函数是数学中常见的一种函数形式,通常表示为f(x)=a x,其中a是一个常数且a>0,a eq1。
指数函数具有一些特殊的性质,例如在x=0时函数值为1,函数图像以指数速率增加或减小等。
2. 指数函数的性质
•当a>1时,指数函数呈增长趋势,函数图像在x轴的右侧无上界。
•当0<a<1时,指数函数呈下降趋势,函数图像在x轴的右侧趋近于0。
•指数函数在x=0处必过点(0,1)。
•指数函数在不同的底数a下,增长或减小的速率有所差异。
3. 指数函数练习题
1.计算23的值。
2.求解方程3x=9。
3.指数函数f(x)=2x的图像经过点(0,1)和(1,2),试求f(2)的值。
4.若指数函数g(x)=4x,求g(−1)的值。
4. 解答
1.$2^3 = 2 \\times 2 \\times 2 = 8$,所以23的值为8。
2.化简方程3x=9可得x=2,因为32=9。
3.由已知条件可知,f(1)=2,f(0)=1,根据指数函数的性质f(2)=
22=4。
4.$g(-1) = 4^{-1} = \\frac{1}{4}$。
5. 总结
通过以上练习题,我们对指数函数的基本概念和性质有了更深入的理解。
在计算指数函数值时,可以利用指数函数的性质和常用计算方法来简化计算过程。
熟练掌握指数函数的求值方法有助于提高数学解题的效率,加深对指数函数的认识。
以上是关于指数函数练习题的相关内容,希望对读者有所帮助。
指数函数的运算法则练习题
指数函数的运算法则练习题1. 求解以下指数函数的运算结果:a) 如果f(x) = 2^x 和 g(x) = 2^(2x+1),求f(x) × g(x)的结果。
解析:根据指数函数的运算法则,当底数相同时,指数相加表示两个函数相乘。
所以f(x) × g(x)可以简化为 2^x × 2^(2x+1)。
利用指数函数的运算法则,我们可以将这个乘法式简化为一个式子,即2^(x + (2x+1))。
进一步化简,可以得出f(x) × g(x) = 2^(3x+1)。
b) 如果h(x) = 3^x 和 k(x) = (3^x)^2,求h(x) ÷ k(x)的结果。
解析:根据指数函数的运算法则,当一个指数函数的指数再次取指数时,等效于指数相乘。
所以k(x)可以简化为 3^(x × 2)。
利用指数函数的运算法则,我们可以将这个除法式简化为一个式子,即3^x ÷ 3^(2x)。
根据指数函数的运算法则,当两个指数相减时,等效于两个函数相除。
所以h(x) ÷ k(x)可以简化为 3^x ÷ (3^x × 3^(2x))。
进一步化简,可以得出h(x) ÷ k(x) = 3^x ÷ 3^(3x)。
2. 计算以下指数函数的值:a) 如果f(x) = 5^2x,求f(3)的值。
解析:将x替换为3,可以得出f(3) = 5^(2×3) = 5^6。
通过计算,可以得出f(3)的值为15625。
b) 如果g(x) = (1/4)^x,求g(-2)的值。
解析:将x替换为-2,可以得出g(-2) = (1/4)^(-2) = 4^2。
通过计算,可以得出g(-2)的值为16。
3. 给定一个指数函数f(x) = (1/2)^(x+2),求解方程f(x) = 1。
解析:将f(x)替换为1,可以得出(1/2)^(x+2) = 1。
指数函数的练习题
指数函数的练习题指数函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握指数函数的相关概念和性质。
下面,我将给大家提供一些指数函数的练习题,希望能够对大家的学习有所帮助。
练习题一:简单指数函数计算1. 计算 $2^3$ 和 $(-3)^2$ 的值。
2. 计算 $10^{-2}$ 和 $\left(\frac{1}{2}\right)^{-3}$ 的值。
练习题二:指数函数的性质1. 如果 $a > 1$,那么 $a^x$ 是否是递增函数?为什么?2. 如果 $0 < a < 1$,那么 $a^x$ 是否是递增函数?为什么?3. 如果 $a > 1$,那么 $a^x$ 是否有上界?为什么?练习题三:指数函数的图像1. 画出函数 $y = 2^x$ 和 $y = \left(\frac{1}{2}\right)^x$ 的图像。
2. 画出函数 $y = 3^x$ 和 $y = \left(\frac{1}{3}\right)^x$ 的图像。
练习题四:指数函数的应用1. 假设某种细菌的数量每小时增加50%,现在有1000个细菌,经过多少小时后细菌的数量会达到5000个?2. 一笔投资每年以5%的利率复利计算,如果初始投资为10000元,经过多少年后投资会翻倍?练习题五:指数函数的方程1. 解方程 $2^x = 8$。
2. 解方程 $3^{2x-1} = \frac{1}{9}$。
通过以上的练习题,我们可以加深对指数函数的理解和运用。
在计算指数函数的值时,我们需要注意底数的正负以及指数的大小。
指数函数的性质也是我们需要掌握的重要内容,它们对于理解函数的增减性和图像的变化有着重要的影响。
通过绘制指数函数的图像,我们可以更直观地观察函数的特点和变化趋势。
指数函数在实际生活中也有广泛的应用。
在金融领域中,复利计算常常使用指数函数的概念。
指数函数经典例题(答案)
指数函数1.指数函数的定义:函数 y a x (a 0且a 1) 叫做指数函数,其中 x 是自变量,函数定义域是 R2. 指数函数的图象和性质:x , y=10 x ,y=1x在同一坐标系中分别作出函数y=2 x,y=1的图象 .2 10x x我 们 观 察 y= 2 x , y=1, y= 10 x , y=1 图象特征,就可以得到 210y a x (a 0且a 1) 的图象和性质。
a>10<a<1图象11(1) 定义域: R性(2)值域:(0,+∞) 质 (3)过点( 0,1),即 x=0 时, y=1(4)在 R 上是增函数 (4)在 R 上是减函数指数函数是高中数学中的一个基本初等函数, 有关指数函数的图象与性质的题目类型较多, 同时也是学习后续数学内容的基础和高考考查的重点, 本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小例 1 已知函数 f (x)x 2 bx c 满足 f (1 x) f (1 x) ,且 f (0) 3 ,则 f (b x ) 与f ( c x ) 的大小关系是_____.分析:先求 b, c 的值再比较大小,要注意b x, c x的取值是否在同一单调区间内.解:∵ f (1 x) f (1 x) ,∴函数 f ( x) 的对称轴是x 1 .故 b 2,又 f (0) 3 ,∴c 3 .∴函数 f ( x) 在∞,1 上递减,在1,∞上递增.若 x ≥ 0 ,则 3x≥ 2x≥ 1 ,∴f(3x)≥f(2x);若 x 0 ,则3x 2 x 1 ,∴f (3x) f (2x ) .综上可得 f (3x )≥ f (2x ) ,即 f (c x ) ≥ f (b x ) .评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例 2 已知(a22a5)3 x(a22a 5)1 x,则x的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵ a22a 5 ( a 1)24≥4 1,∴函数 y(a22a5)x在(∞,∞)上是增函数,∴ 3x 1x ,解得x 1.∴ x 的取值范围是1,∞.44评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与 1 的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例 3求函数 y 1 6x 2的定义域和值域.解:由题意可得 16x2≥ 0 ,即 6x 2≤ 1 ,∴ x 2 ≤ 0 ,故 x ≤ 2.∴函数 f (x) 的定义域是∞,2 .令 t6x 2,则 y1t ,又∵ x≤ 2 ,∴ x 2 ≤ 0 .∴ 0 6x 2≤ 1 ,即 0 t ≤ 1 .∴ 0 ≤ 1 t 1,即 0 ≤ y 1 .∴函数的值域是01,.评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.4.最值问题例 4函数y a2x2a x1(a 0且a 1)在区间[ 11],上有最大值14,则 a 的值是 _______.分析:令 t a x可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令t a x,则t0 ,函数y a2 x2a x 1 可化为y(t1)2 2 ,其对称轴为t1.∴当 a 1 时,∵x11,,∴1≤ a x≤ a ,即1≤ t ≤ a .a a∴当 t a 时,y max(a1)2214.解得 a 3 或 a 5 (舍去);当 0 a 1 时,∵x11,,∴ a ≤ a x≤1,即 a ≤ t ≤1,a a1时, y max12∴ t1214 ,a a解得 a 1或 a1(舍去),∴ a 的值是 3 或1.353评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.5.解指数方程例 5 解方程3x 232x80 .解:原方程可化为9 (3x )280 3x9 0 ,令 t3x (t0),上述方程可化为9t 280t 9 0 ,解得t9或 t1(舍去),∴ 3x9,∴ x 2 ,经检验原方程的9解是 x 2 .评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.6.图象变换及应用问题例 6 为了得到函数y 9 3x 5 的图象,可以把函数y3x的图象().A.向左平移 9 个单位长度,再向上平移 5 个单位长度B.向右平移 9 个单位长度,再向下平移 5 个单位长度C.向左平移 2 个单位长度,再向上平移 5 个单位长度D.向右平移 2 个单位长度,再向下平移 5 个单位长度分析:注意先将函数 y9 3x 5 转化为t3x 2 5 ,再利用图象的平移规律进行判断.解:∵ y 9 3x 5 3x 2 5 ,∴把函数y 3 x的图象向左平移2个单位长度,再向上平移 5 个单位长度,可得到函数y 93x 5 的图象,故选(C).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小:(1)若,比较与;(2)若,比较与;(3)若,比较与;()若,且,比较 a 与 b;4 a 与 b.()若,且,比较5解:(1)由,故,此时函数为减函数.由,故.( 2)由,故.又,故.从而.而(3)由.,因,故.又,故.从(4)应有.又因.因若,故,则.从而.又,故,这与已知,这样矛盾.(5)应有.又因.因若,且,则,故.又.从而,故,这样有,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线则分别是指数函数与 1 的大小关系是 ( ).,和的图象 ,(分析 : 首先可以根据指数函数单调性 , 确定, 在轴右侧令, 对应的函数值由小到大依次为 ,故应选 .小结 : 这种类型题目是比较典型的数形结合的题目 , 第(1) 题是由数到形的转化 , 第(2) 题则是由图到数的翻译 , 它的主要目的是提高学生识图 , 用图的意识 . 求最值3,求下列函数的定义域与值域 .1(1)y =2 x 3 ; (2)y=4x +2x+1+1.11解:(1) ∵ x-3 ≠0,∴ y =2 x 3 的定义域为{ x | x ∈R 且 x ≠3}. 又∵ ≠x 310,∴ 2 x 3 ≠1,1∴y =2 x 3 的值域为{ y |y>0 且 y ≠1}.(2)y = 4x +2x+1+1 的定义域为 R. ∵ 2x >0, ∴ y = 4x +2x+1+1= (2 x ) 2+2· 2x +1=x2(2 +1) >1.∴ y =4x +2x+1 +1 的值域为{ y | y>1}.4,已知-1≤x ≤2, 求函数 f(x)=3+2 ·3x+1-9 x 的最大值和最小值解:设 t=3 x, 因为 -1 ≤ x ≤ 2,所以1t 9 ,且 f(x)=g(t)=-(t-3)2+12, 故当 t=33即 x=1 时, f(x) 取最大值 12,当 t=9 即 x=2 时 f(x) 取最小值 -24 。
指数函数习题(经典含答案及详细解析)
2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。
指数函数习题及答案完整版
指数函数习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】指数函数习题一、选择题1.定义运算ab=,则函数f(x)=12x的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若AB,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2]D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由ab=得f(x)=12x=答案:A2.解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4.解析:由题意得:A =(1,2),a x -2x >1且a >2,由AB 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5.解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数, 注意a 8-6>(3-a )×7-3,所以,解得2<a <3. 答案:C6.解析:f (x )<x 2-a x <x 2-<a x ,考查函数y =a x 与y =x 2-的图象, 当a >1时,必有a -1≥,即1<a ≤2, 当0<a <1时,必有a ≥,即≤a <1, 综上,≤a <1或1<a ≤2. 答案:C7.解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =,得a =.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=,得a =.故a =或. 答案:或8.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9.解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110.解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +)2+,∴当-4≤x ≤1时,t max =,此时x =-,t min =0,此时x =-4或x =1. ∴0≤t ≤.∴0≤≤.∴函数y =2341()2x x --+[,1].由t =-x 2-3x +4=-(x +)2+(-4≤x ≤1)可知,当-4≤x ≤-时,t 是增函数, 当-≤x ≤1时,t 是减函数. 根据复合函数的单调性知:y =1()2[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11.解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,],故当t =,即x =-1时, y max =(+1)2-2=14. ∴a =或-(舍去). 综上可得a =3或.12.解:法一:(1)由已知得3a +2=183a =2a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。
指数练习题及答案
指数练习题及答案一、选择题1. 计算下列哪个指数表达式的值等于32:A. \(2^5\)B. \(4^3\)C. \(5^2\)D. \(3^4\)2. 如果 \(a^m = b^n\),且 \(a\) 和 \(b\) 都是正整数,\(m\) 和\(n\) 都是正整数,那么下列哪个选项是正确的?A. \(a = b\)B. \(m = n\)C. \(a = b^{\frac{1}{n}}\)D. 无法确定3. 指数函数 \(y = 2^x\) 的图像在 x 轴上的截距是:A. 0B. 1C. -1D. 没有截距4. 以下哪个表达式是正确的:A. \((a^m)^n = a^{mn}\)B. \((a^m)^n = a^{n^m}\)C. \((a^m)^n = a^{n/m}\)D. \((a^m)^n = a^{m/n}\)5. 如果 \(x\) 和 \(y\) 是正数,且 \(x^2 = y^3\),那么 \(x\)和 \(y\) 的关系是:A. \(x = y\)B. \(x = y^{\frac{3}{2}}\)C. \(x = y^{\frac{2}{3}}\)D. \(x = y^2\)二、填空题6. 计算 \(3^3\) 的结果是______。
7. 如果 \(2^6 = 64\),那么 \(2^{12}\) 等于______。
8. 根据指数法则,\((a \cdot b)^n = a^n \cdot b^n\),那么 \((3 \cdot 5)^2\) 等于______。
9. 如果 \(4^x = 16\),那么 \(x\) 的值是______。
10. 计算 \((\frac{1}{2})^{-2}\) 的结果是______。
三、解答题11. 证明:\((a^m)^n = a^{mn}\)。
12. 给定 \(a = 2\),\(m = 3\),\(n = 4\),计算 \((a^m)^n\)。
指数函数精典习题
指数函数精典习题姓名函数图象:作出以下函数图象(1)2xy=(2)1()2xy=(3)12xy+=(4)21xy=+(5)2xy-=(6)||2xy=(7)||2xy-=(8)221xy-=+解析式、定义域、值域、识图问题1、若集合{}{}23,,2,xA y y x RB y y x x R==∈==-+∈,A B⋂=________.2、若3()(),012xf x x=<<,则有()A、()1f x> B、0()1f x<< C、1() 1.5f x<< D、0() 1.5f x<<3、函数12xy+=的图象是下图中的()、4、函数y=)A、(,0]-∞ B、(,1]-∞ C、[0,)+∞ D、[1,)+∞5、函数2xy-=的值域是()A、(0,1)B、(0,1]C、(0,)+∞ D、(,)-∞+∞6、01,1a b<<<-,则函数()xf x a b=+的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限7、若13()273x<<,则()A、13x-<< B、1x<-或3x> C、31x-<<- D、13x<<8.函数⎪⎩⎪⎨⎧>≤-=-,,12)(21xxxxfx,满足1)(>xf的x的取值范围()A.)1,1(-B.),1(+∞- C.}2|{-<>xxx或 D.}11|{-<>xxx或9、已知0a>_________________.10、已知指数函数()y f x=,且3()225f-=()y f x=的解析式是()A、32y x= B、5xy-= C、5y x= D、5xy=11、求函数11()()()1,[3,2]42x xf x x=-+∈-的值域画出函数|13|-=xy的图象,并利用图象回答:k为何值时,方程|3x-1|=k无解?有一解?有两解?比较大小问题1、比较下列各组数的大小:(1)0.2_______25 ; (2)0.63()4-_______343()4-;(3)134()5-_______0.35()4;(4)0.53()2_______2、设1.50.90.4812314,8,2y y y-⎛⎫=== ⎪⎝⎭,则()A、312y y y>> B、213y y y>> C、132y y y>> D、123y y y>>3、设.)32(,)32(2.15.1-==ba那么实数a、b与1的大小关系正确的是 ( )A. 1<<ab B. 1<<ba C. ab<<1 D. ba<<14、311213,32,2-⎪⎭⎫⎝⎛的大小顺序有小到大依次为_____________。
指数函数练习题
指数函数练习题1. 计算下列指数函数的值:- \( f(x) = 2^x \) 当 \( x = 3 \)- \( g(x) = 3^x \) 当 \( x = -2 \)- \( h(x) = 5^x \) 当 \( x = 0.5 \)2. 确定下列指数函数的单调性:- \( f(x) = 4^x \)- \( g(x) = (1/2)^x \)3. 给定函数 \( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \),求当 \( x \) 增加时,函数值 \( y \) 的变化趋势。
4. 用指数函数表示下列数列的通项公式:- \( 2, 4, 8, 16, \ldots \)- \( 1/8, 1/4, 1/2, 1, \ldots \)5. 已知 \( f(x) = 2^x \),求 \( f(-2) \) 和 \( f(2) \) 的值。
6. 给定 \( y = 3^x \),求 \( x \) 使得 \( y = 27 \)。
7. 证明指数函数 \( y = a^x \)(其中 \( a > 0 \) 且 \( a \neq1 \))在其定义域内是连续的。
8. 一个细菌种群每分钟翻倍,初始时有 100 个细菌。
使用指数函数描述 30 分钟后细菌的数量。
9. 一个投资账户的本金为 \( P \),年利率为 \( r \)(以小数形式表示),假设每年复利一次,求该账户 \( t \) 年后的金额。
10. 已知 \( f(x) = 10^x \),求 \( f(-1) \),\( f(0) \),和\( f(1) \) 的值。
11. 给定 \( y = 2^x \),求 \( x \) 使得 \( y = 32 \)。
12. 证明对于所有 \( x > 0 \),指数函数 \( y = e^x \) 总是大于\( y = x \)。
13. 一个物体从高度 \( h \) 落下,忽略空气阻力,其下落距离\( s \) 可以用 \( s = 0.5gt^2 \) 表示,其中 \( g \) 是重力加速度,\( t \) 是时间。
指数函数专题训练
指数函数专题训练1. 指数函数的定义和特性- 指数函数可以用如下形式表示:f(x) = a^x,其中a是一个常数,称为底数,x是指数。
- 指数函数的定义域是所有实数,值域是正实数。
- 当底数a大于1时,指数函数是增长函数;当0 < a < 1时,指数函数是减少函数。
- 指数函数的图像为一个逐渐增长或减少的曲线,且不会与x 轴相交。
- 指数函数有以下的性质:- a^0 = 1,任何数的0次方都等于1。
- a^x * a^y = a^(x+y),指数相加时,底数相乘。
- a^x / a^y = a^(x-y),指数相减时,底数相除。
2. 指数函数的图像和性质探究- 结合实际情境,探究指数函数的图像和性质。
例如,比较a 为2和a为0.5时的指数函数图像,观察它们的变化趋势。
- 使用计算工具绘制指数函数的图像,并根据图像,讨论指数函数在不同区间上的增长或减少速度。
- 研究指数函数的性质,例如指数函数的导数和二阶导数,沿着它的图像观察变化趋势,并探究导数和二阶导数与指数函数相关的规律。
3. 指数函数的应用- 研究指数函数在实际问题中的应用,如金融领域中的复利计算,人口增长模型等。
- 研究指数函数在自然科学中的应用,如放射性衰变的模型,生态系统中的物种扩张模型等。
- 研究指数函数在工程领域中的应用,如电路中的电流增长和衰减模型,生物医学工程中的光强度计算模型等。
4. 指数函数的变形和拓展- 研究具有不同底数和指数的指数函数,探索它们的图像和性质。
- 研究含有常数和其他函数的指数函数,例如f(x) = a^x + b,探讨对图像和性质造成的影响。
- 考虑复数底数和指数的指数函数,研究它们的图像和性质。
5. 指数函数的计算和求解问题- 学习如何计算和化简含有指数函数的复合函数。
- 学习如何解指数函数的方程和不等式,例如a^x = b,a^x > b 等。
- 学习如何利用指数函数求解实际应用问题,例如利用指数函数计算复利、模拟人口增长等。
指数函数练习题(包含详细答案)
1.给出下列结论: ②n a n =|a |(n >1,n ∈N *,n 为偶数);④若2x =16,3y =127,则x +y =7.其中正确的是( )A .①②B .②③C .③④D .②④答案 B解析 ∵2x =16,∴x =4,∵3y =127,∴y =-3.∴x +y =4+(-3)=1,故④错.2.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)答案 C3.函数f (x )=3-x -1的定义域、值域是( )A .定义域是R ,值域是RB .定义域是R ,值域是(0,+∞)C .定义域是R ,值域是(-1,+∞)D .以上都不对答案 C解析 f (x )=(13)x -1,∵(13)x >0,∴f (x )>-1.4.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 答案 D解析 y 1=21.8,y 2=21.44,y 3=21.5,∵y =2x 在定义域内为增函数,∴y 1>y 3>y 2.5.函数f (x )=a x -b 的图像如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 答案 D6.(2014·成都二诊)若函数f (x )=(a +1e x -1)cos x 是奇函数,则常数a 的值等于( ) A .-1B .1C .-12D.12 答案 D7.(2014·山东师大附中)集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .R 答案 B8.函数f (x )=3·4x -2x 在x ∈[0,+∞)上的最小值是( )A .-112B .0C .2D .10 答案 C解析 设t =2x ,∵x ∈[0,+∞),∴t ≥1.∵y =3t 2-t (t ≥1)的最小值为2,∴函数f (x )的最小值为2.9.已知函数f (x )=⎩⎨⎧x -1,x >0,2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且只有两个不同的实根,则实数k 的取值范围为( )A .(-1,2]B .(-∞,1]∪(2,+∞)C .(0,1]D .[1,+∞) 答案 A解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可.10.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变化时,函数b =g (a )的图像可以是( ) 答案 B解析 函数y =2|x |的图像如图.当a =-4时,0≤b ≤4;当b =4时,-4≤a ≤0.11.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 答案 (-2,-1)∪(1,2)解析 函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则0<a 2-1<1,解得1<a <2或-2<a <-1.12.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.答案 2解析 ∵y =a x 在[0,1]上为单调函数,∴a 0+a 1=3,∴a =2.13.(2014·沧州七校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.答案 [2,+∞)解析 f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧ (13)2x -4,x ≥2,(13)4-2x , x <2.∴单调递减区间为[2,+∞).14.若0<a <1,0<b <1,且,则x 的取值范围是________.答案 (3,4)解析 log b (x -3)>0,∴0<x -3<1,∴3<x <4.15.若函数y =2-x +1+m 的图像不经过第一象限,则m 的取值范围是______.答案 m ≤-216.是否存在实数a ,使函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值是14?答案 a =3或a =13解析 令t =a x ,则y =t 2+2t -1.(1)当a >1时,∵x ∈[-1,1],∴a x ∈[1a ,a ],即t ∈[1a ,a ].∴y =t 2+2t -1=(t +1)2-2在[1a ,a ]上是增函数(对称轴t =-1<1a ).∴当t =a 时,y max =(a +1)2-2=14.∴a =3或a =-5.∵a >1,∴a =3.(2)当0<a <1时,t ∈[a ,1a]. ∵y =(t +1)2-2在[a ,1a ]上是增函数, ∴y max =(1a +1)2-2=14.∴a =13或a =-15.∵0<a <1,∴a =13.综上,a =3或a =13.17.(2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中a ,b 满足a ·b ≠0.(1)若a ·b >0,判断函数f (x )的单调性;(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围.答案 (1)a >0,b >0时,f (x )增函数;a <0,b <0时,f (x )减函数(2)a <0,b >0时,x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ;a >0,b <0时,x <log 1.5⎝ ⎛⎭⎪⎫-a 2b 解析 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,∴f (x 1)-f (x 2)<0,∴函数f (x )在R 上是增函数.当a <0,b <0时,同理,函数f (x )在R 上是减函数.(2)f (x +1)-f (x )=a ·2x +2b ·3x >0.当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ; 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .18.已知函数f (x )=-2x2x +1. (1)用定义证明函数f (x )在(-∞,+∞)上为减函数;(2)若x ∈[1,2],求函数f (x )的值域;(3)若g (x )=a 2+f (x ),且当x ∈[1,2]时g (x )≥0恒成立,求实数a 的取值范围.答案 (1)略 (2)[-45,-23] (3)a ≥85(2)∵f (x )在(-∞,+∞)上为减函数,∴f (x )的值域为[-45,-23].(3)当x ∈[1,2]时,g (x )∈[a 2-45,a 2-23].∵g (x )≥0在x ∈[1,2]上恒成立,∴a 2-45≥0,∴a ≥85.。
指数函数练习题
指数函数练习题1.指数函数的基本概念指数函数是数学中一类重要的函数,常用于描述指数增长或指数衰减的情况。
其一般形式为:$y = a \cdot b^x$,其中 $a$ 和$b$ 是常数,$b。
0$ 且 $b \neq 1$。
指数函数的特点包括:当 $b。
1$ 时,函数呈指数增长趋势;当 $0 < b < 1$ 时,函数呈指数衰减趋势;当 $b = 1$ 时,函数退化为常数函数。
2.指数函数的求解与应用指数函数的求解主要涉及确定常数 $a$ 和 $b$ 的值,以及利用函数的性质进行计算。
示例1.已知函数 $y = 3 \cdot 2^x$,求当 $x = 2$ 时的函数值。
示例1.已知函数 $y = 3 \cdot 2^x$,求当 $x = 2$ 时的函数值。
解答:将 $x = 2$ 代入函数表达式中,得到 $y = 3 \cdot 2^2 = 12$。
因此,当 $x = 2$ 时,函数值为 12.示例2.某车辆的初始价格为 10 万元,每年贬值 5%,求经过 5 年后车辆的价格。
示例2.某车辆的初始价格为 10 万元,每年贬值5%,求经过 5 年后车辆的价格。
解答:设经过 $x$ 年后车辆的价格为 $y$,则满足指数衰减的函数关系为 $y = 10 \times (1-0.05)^x$。
代入 $x = 5$,得到 $y = 10 \times (1-0.05)^5 \approx 7.788$ 万元。
因此,经过 5 年后车辆的价格约为 7.788 万元。
指数函数在实际生活中有广泛的应用,例如金融领域的复利计算、生物学中的指数增长模型、电子电路中的放大器响应曲线等。
3.指数函数的练习题练习题1.若指数函数 $y = a \cdot b^x$ 过点 $(1,4)$,并且在$x = 2$ 处的斜率为 1,求函数的表达式。
练习题1.若指数函数 $y = a \cdot b^x$ 过点 $(1,4)$,并且在 $x = 2$ 处的斜率为 1,求函数的表达式。
指数函数(经典题、易错题)
指数函数(经典题、易错题)指数函数(经典题、易错题)一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.315.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)7.(2011?山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.B.C.1D.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d10.(2012?四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)12.函数y=3x﹣1的图象大致是()A.B.C.D.13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>117.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(1,2)D.19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a20.(2005?山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.4321.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.B.c>a>bC.a>b>cD.b>a>c二.填空题(共2小题)23.函数的单调递增区间是_________ .24.(2005?上海)方程4x+2x﹣2=0的解是_________ .指数函数(经典题、易错题)参考答案与试题解析一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:结合指数函数数在[0,1]上的单调性可求.解答:解:∵0≤x≤1且函数单调递减∴故选D点评:本题主要考查了指数函数的单调性的应用,属于基础试题.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2+2x﹣1=(x+1)2﹣2≥﹣2∴y=≤=4∴0<y≤4故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:画出f(x)的图象,由f(x)图象f(x)可得的值域.解答:解:函数的图象如图:由f(x)的图象可得:f(x)的值域为(0,+∞).故选B.点评:本题考查指数函数的值域,用到了指数函数的图象.4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.31考点:指数函数的定义、解析式、定义域和值域;函数的最值及其几何意义.1091931专题:计算题.分析:由x∈[1,2],知2≤2x≤4,把y=4x+2x+1+5转化为y=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.解答:解:∵x∈[1,2],∴2≤2x≤4,∴y=4x+2x+1+5=(2x)2+2×2x+5=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.故选C.点评:本题考查指数函数的性质和应用,解题时要认真审题,注意配方法的合理运用.5.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:设t=|x|可得出t∈[0,2],根据指数函数的单调性求出值域即可.解答:解:设t=|x|∵函数y=3|x|﹣1的定义域为[﹣1,2],∴t∈[0,2]∴y=3t﹣1∴y=3t﹣1在t∈[0,2]的值域为[0,8]故选B.点评:本题考查了指数函数的定义域和值域,求出函数y=3t﹣1的定义域是解题的关键,属于基础题.6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2≥0∴y=≤=1∴0<y≤1故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.7.(2011?山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.B.C.1D.考点:指数函数的图像与性质.1091931专题:计算题.分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d考点:指数函数的图像与性质.1091931专题:综合题.分析:通过作直线x=1与图象交于四点,利用这几个点的位置关系,从而确定a,b,c,d的大小关系.解答:解:∵a1=a,∴作直线x=1与图象分别交于A,B,C,D点,则它们纵坐标分别为:a,b,c,d由图a>b>c>d故选A.点评:本题考查了指数函数的图象与性质,同时考查了数形结合的思想方法,是个基础题.9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d考点:指数函数的图像与性质.1091931专题:数形结合.分析:要比较a、b、c、d的大小,根据函数结构的特征,作直线x=1,与y=ax,y=bx,y=cx,y=dx 交点的纵坐标就是a、b、c、d,观察图形即可得到结论.解答:解:作辅助直线x=1,当x=1时,y=ax,y=bx,y=cx,y=dx的函数值正好是底数a、b、c、d直线x=1与y=ax,y=bx,y=cx,y=dx交点的纵坐标就是a、b、c、d观察图形即可判定大小:b<a<d<c故选:C.点评:本题主要考查了指数函数的图象与性质,同时考查了数形结合的数学思想,分析问题解决问题的能力,属于基础题.10.(2012?四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.考点:指数函数的图像变换.1091931专题:计算题.分析:a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,由此得出结论.解答:解:函数y=ax﹣a(a>0,a≠1)的图象可以看成把函数y=ax的图象向下平移a个单位得到的.当a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,故选C.点评:本题主要考查指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于中档题.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)考点:指数函数的图像变换.1091931专题:计算题.分析:我们可以用待定系数法解答本题,先设出平移向量的坐标,根据函数图象的平移法则,我们可以求出平移后函数的解析式,根据已知我们可构造出一个关于h,k的二元一次方程组,解方程组即可求出平移向量的坐标.解答:解:设平移向量=(h,k)则函数y=2x﹣2+3的图象平移后得到的函数解析式为:y=2x﹣h﹣2+3+k即x﹣h﹣2=x+1且3+k=﹣1解得h=﹣3,k=﹣4故向量=(﹣3,﹣4)故选A点评:本题考查的知识点是函数图象的平移变换,其中根据平移法则“左加右减,上加下减”构造关于h,k的二元一次方程组,是解答本题的关键.12.函数y=3x﹣1的图象大致是()A.B.C.D.考点:指数函数的图像变换.1091931专题:作图题.分析:可利用排除法解此选择题,由特殊点(0,0)在函数图象上可排除A、B;由特殊性质函数的值域为(﹣1,+∞),排除C,即可得正确选项解答:解:由函数y=3x﹣1的图象过(0,0)点,排除A、B,由函数y=3x﹣1的值域为(﹣1,+∞),排除C故选 D点评:本题考查了指数函数的图象变换,排除法解选择题13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:令2x=t,t>0,则函数f(x)=t2+t+1,利利用二次函数的性质求出值域.解答:解:令2x=t,t>0,则函数f(x)=t2+t+1=﹣>﹣=1,且由二次函数的性质知,函数f(x)=﹣无最大值,故值域为(1,+∞).故选 C.点评:本题考查指数函数的单调性和值域,二次函数的值域的求法,体现了换元的思想.14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c考点:指数函数的单调性与特殊点.1091931专题:常规题型.分析:利用幂的运算性质将a化简;由于三个数同底;研究指数函数的单调性,判断出三个数的大小.解答:解:∵∵是同底数的幂考查指数函数是减函数故选D点评:本题考查指数函数的单调性取决于底数的范围、考查利用指数函数的单调性比较幂的大小.15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:令令x﹣1=0求出x的值,代入解析式求出定点的坐标.解答:解:令x﹣1=0得,x=1,代入数y=ax﹣1=1,∴函数y=ax﹣1的图象一定过点(1,1),故选B.点评:本题考查了指数函数的图象过定点(0,1)的应用,令指数为零求解即可,是基础题.16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>1考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:不妨设 a=﹣1,b=﹣2,代入各个选项进行检验可得 A、C、D 都不正确,只有B正确,从而得到结论.解答:解:令 a=﹣1,b=﹣2,代入各个选项进行检验可得 A、C、D 都不正确,只有B正确,故选B.点评:本题考查不等式的性质,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.17.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:分别判断出各段函数在其定义区间的单调性,根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数.解答:解:外层函数是,内层函数是y=x2+2x由题意可得外层函数是减函数∵根据复合函数同增异减的性质∴只要找到y=x2+2x的减区间即可∵y=x2+2x的对称轴是x=﹣1∴它的减区间为(﹣∞,﹣1)∴函数的增区间为(﹣∞,﹣1).点评:复合函数的单调性一般是看函数包含的两个函数的单调性(1)如果两个都是增的,那么函数就是增函数(2)一个是减一个是增,那就是减函数(3)两个都是减,那就是增函数.18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(1,2)D.(0,2)考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:由a0=1,可得当x=1时,函数y=ax﹣1+1=a0+1=2,从得到函数y=ax﹣1+1(0<a≠1)的图象必经过的定点坐标.解答:解:由a0=1,可得当x=1时,函数y=ax﹣1+1=a0+1=2,故函数y=ax﹣1+1(0<a≠1)的图象必经过点(1,2),故选C.点评:本题主要考查指数函数的单调性及特殊点,属于基础题.19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a考点:指数函数单调性的应用.1091931专题:计算题.分析:先取中间量1,利用指数函数的图象性质,判断c最小,排除C、D;再将a、b两数变形比较,即可得正确选项解答:解:利用指数函数的图象性质知a>1,b>1,而c<1,故c最小,排除C、D∵a=<31=3,b==53=125∴b>a故选B点评:本题主要考查了幂的大小的比较,利用指数函数图象和幂的运算性质比较大小的技巧20.(2005?山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.43考点:指数函数单调性的应用.1091931专题:常规题型.分析:结合函数y=0.4x,y=3x,y=log4x的单调性判断各函数值与0和1的大小,从而比较大小.解答:解:∵0<0.43<0.40=1,30.4>30=1,log40.3<log0.41=0∴log40.3<0.43<30.4故选C点评:本题是指数函数与对数函数的单调性的简单应用,在比较指数(对数)式的大小时,若是同底的,一般直接借助于指数(对数)函数的单调性,若不同底数,也不同指(真)数,一般与1(0)比较大小.21.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a考点:指数函数单调性的应用.1091931专题:证明题.分析:先利用指数函数y=为R上的单调减函数,比较a、b的大小,排除A、B,再利用幂函数y=x3在R上为增函数,比较b、c的大小,即可得正确选项解答:解:考察函数y=为R上的单调减函数,∴,即a<b,排除A、B;∵b3=,c3==,∴b3>c3,考察幂函数y=x3在R上为增函数,∴b>c,排除D;故选 C点评:本题主要考查了指数函数、幂函数的图象和性质,利用函数的单调性比较大小的方法和技巧,属基础题22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.b>c>aB.c>a>bC.a>b>cD.b>a>c考点:指数函数单调性的应用;不等式比较大小.1091931专题:计算题.分析:将log0.22看作函数y=log0.2x当x=2时所对应的函数值小于零,将a=0.22看作函数y=0.2x 当x=2时所对应的函数值小于1,将b=20.2看作函数y=2x当x=0.2时所对应的函数值大于1.解答:解:根据对数函数的性质可知c=log0.22<0根据指数函数的性质可知0<0.22<1,20.2>1∴b>a>c故选D点评:本题主要考查在数的比较中,我们要注意函数思想的应用.二.填空题(共2小题)23.函数的单调递增区间是(﹣1,+∞).考点:指数函数综合题.1091931专题:计算题.分析:令t=x2+2x﹣3,则y=3t,本题即求函数t=x2+2x﹣3的增区间,由二次函数的性质可得函数t=x2+2x﹣3的增区间为(﹣1,+∞).解答:解:函数=,令t=x2+2x﹣3,则y=3t.故本题即求函数t=x2+2x﹣3的增区间.由二次函数的性质可得函数t=x2+2x﹣3的增区间为(﹣1,+∞),故答案为(﹣1,+∞).点评:本题主要考查指数型复合函数的单调性的应用,二次函数的性质,属于中档题.24.(2005?上海)方程4x+2x﹣2=0的解是0 .考点:指数函数综合题.1091931专题:计算题;转化思想.分析:先换元,转化成一元二次方程求解,进而求出x的值.解答:解:令t=2x,则t>0,∴t2+t﹣2=0,解得t=1或t=﹣2(舍)即2x=1;即x=0;故答案为0.点评:考查了指数运算,对于不是同底的指数问题,首先换成同一底数,体现了换元的思想,在换元中注意新变量的取值范围.属容易题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,填空题1有下列四个命题:其中正确的个数是()①正数的偶次方根是一个正数;②正数的奇次方根是一个正数; ③负数的偶次方根是一个负数;④负数的奇次方根是一个负数。
A .0B .1C .2D .3 2、38-的值是()A .2B .-2 C .2±D .8 3、给出下列等式:①2a a =;②2()a a =;③33a a =;④33()a a =.其中不一定正确的是()A .①B .②C .③D .④4、042(4)a a -+-有意义,则实数a 的取值范围是() A .2a ≥B .24a ≤<或4a >C .2a ≠D .4a ≠5、若233441(12)a a a -+=-,则实数a 的取值范围是() A .12a ≥B .12a ≤C .1122a -≤≤D .R6、1216-的值为()A .4B .14C .2D .127、下列式子正确的是()A .1236(1)(1)-=-B .3355(2)2-=-C .255()a a -=-D .120-=8、将322-化为分数指数幂的形式为()A .122-B .122--C .132-D .562-9.函数13x y =-的定义域是()A 、(,0]-∞B 、(,1]-∞C 、[0,)+∞D 、[1,)+∞10.01,1a b <<<-,则函数()xf x a b =+的图象不经过()A 、第一象限B 、第二象限C 、第三象限D 、第四象限 11.设137x=,则() A 、21x -<<-B 、32x -<<-C 、10x -<<D 、01x << 12、若13()273x<<,则() A 、13x -<<B 、1x <-或3x >C 、31x -<<-D 、13x <<二,填空题1、已知0a >,将a a a 化为分数指数幂的形式为_________________.2、计算或化简:(1)238()27-=___________(2)12113342(2)(3)x y x y --=_________________;3、已知38,35ab==,则233a b -=________________;4、若416,x =且x R ∈,则x =_________________. 5、求下列各式的值:(1)4823=____________;(2)425625=_________ (3)3313630.12548--=____________6.若0a >,且1a ≠,则函数21x y a -=+的图象一定过定点___________.7.比较下列各组数的大小:(1)0.2(3)_______25(3);(2)0.63()4-_______343()4-;(3)134()5-_______0.35()4;(4)0.53()2_______22()5 8.已知0.80.81m n>>,则m 、n 、0的大小关系为___________.9.0.70.50.80.8,0.8, 1.3,ab c ===则a 、b 、c 的大小关系为___________.10.函数121x y =-的定义域是___________,值域是___________.11.某厂2004年的产值为a 万元,预计产值每年以5%递增,该厂到2016年的产值是()A 、13(15%)a +万元B 、12(15%)a +万元 C 、11(15%)a +万元D 、1210(15%)9+万元 6、函数2282x x y -++=的定义域是___________,值域是___________,增区间是___________,减区间是___________. 一、 选择题 1、 下列各式中,正确的是___.(填序号) ①12()a a -=-;②133aa -=-;③2(0)a a a =-<;④3443()()()a aa b b=≠、b 0.2、 已知a b R ∈、,则等式22()()()a b a b b a --=--成立的条件是___.A .a b > B.a b < C.a b = D.a b ≤ 3、下列运算正确的是___.A.2332()()a a -=-B.235()a a -=-C.235()a a -=D.236()a a -=- 4、函数xa x f )1()(2-=是R 上的减函数,则a 的取值范围是() A.1 B.12 C.2 D.2a a a a ><<<>5、下列关系式中正确的是()C.211233331.51.511112 D.22222--⎛⎫⎛⎫⎛⎫⎛⎫<<<< ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6、当[]1,1-∈x 时函数23)(-=xx f 的值域是()7、函数xa y =在[]1,0上的最大值与最小值的和为3,则a =() A.21B.2 C.4D.41 8、下列函数中指数函数的个数是(???). ?①23x y =-②13x y +=?③3x y =??④3y x =A 。
0个?????B 。
1个?????C 。
2个???????D .3个9、计算机成本不断降低,若每隔3年计算机价格降低13,现在价格为8100元的计算机,则9年后的价格为() 2 y 20 x y-2A 2400元?????B 900元?????C 300元?????D 3600元二、 填空题 10.已知234x -=,则x =___.11.设0.90.48 1.512314,8,()2y y y -===,则123,,y y y 的大小关系是___.12.函数()f x 的定义域为[1,4],则函数(2)xf -的定义域为___.13.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2xf x =,则(2)f -=___. 三、解答题1.计算141030.7533270.064()[(2)]160.012-----+-++- 2.画出函数121x y -=-图像,并求定义域与值域。
3.求函数y =1151x x--的定义域.练习题2一、选择题1.下列函数中指数函数的个数是(). ①②?③??④A .0个?B .1个??C .2个?D .3个 2.若,,则函数的图象一定在()A .第一、二、三象限?B .第一、三、四象限C .第二、三、四象限?D .第一、二、四象限 3.已知,当其值域为时,的取值范围是()A .?B .C .??D .4.若,,下列不等式成立的是() A .??B .?C .??D .5.已知且,,则是()A.奇函数?B.偶函数C.非奇非偶函数?D.奇偶性与有关6.函数()的图象是()7.函数与的图象大致是(?).8.当时,函数与的图象只可能是()9.在下列图象中,二次函数与指数函数的图象只可能是()10.计算机成本不断降低,若每隔3年计算机价格降低,现在价格为8100元的计算机,则9年后的价格为().??A.2400元B.900元??C.300元?D.3600元二、填空题1.比较大小:(1);??(2)______1;??(3)______2.若,则的取值范围为_________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.已知的定义域为,则的定义域为__________.7.当时,,则的取值范围是__________.8.时,的图象过定点________.9.若,则函数的图象一定不在第_____象限.10.已知函数的图象过点,又其反函数的图象过点(2,0),则函数的解析式为____________.11.函数的最小值为____________.12.函数的单调递增区间是____________.13.已知关于的方程有两个实数解,则实数的取值范围是_________.14.若函数(且)在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列下列各数:,,,,,,,2.设有两个函数与,要使(1);(2),求、的取值范围.3.已知,试比较的大小.4.若函数是奇函数,求的值.5.已知,求函数的值域.6.解方程:(1);?(2).7.已知函数(且)(1)求的最小值;?(2)若,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的成本共下降了19%,若每年下降的百分率相等,求每年下降的百分率10.某工厂今年1月、2月、3月生产某产品分别为1万件、1.2件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以选用二次函数或函数(其中、、为常数),已知四月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?请说明理由.11.设,求出的值.12.解方程.练习题3一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是()A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ()A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于()A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为( )A.0个B.1个C.2个D.0个或1个 7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是()A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25nn->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a ba ,则函数()xx x f -⊗=22的值域为_________________ 17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过230m ; ③浮萍从24m 蔓延到212m 需要经过1.5个月; ④浮萍每个月增加的面积都相等;⑤若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值:2 1 0 y/m 2 t/月2 3814(1)33221122a a a a----;(2)1122a a-+;(3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x +-=132)(是奇函数,求常数m 的值;(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?。