5-6配方法把二次型化为标准形.ppt
第三节 正交变换法化二次型为标准型.
1 求矩阵A的特征值, 2 求特征值的特征向量, 3 将属于同一特征值的特征向量正交化, 4 单位化特征向量, 5 单位化的向量为列,构造正交矩阵;
从而正交对角化对称矩阵.
例1:设对称矩阵 2 2 4 A 2 4 2 2 2 4 求一个正交矩阵C,使得C T AC 为 对角矩阵,并写出此矩阵.
定理2 设 A为 n阶对称矩阵, 是A 的k 重特征根, 则矩阵A的对应于的特征 子空间的维数恰等于k ,即齐次线性方程组: ( E A) X 0的基础解系恰有k 个解向量, 亦即:r ( E A) n k , 从而对应特征值
恰有 k 个线性无关的特征向量.
对比复习:第五章 定理6:设0是n阶矩阵A的k 重特征值, 则A的对应于0的特征子空间的维数 不超过重数k .
此式表明,当C为正交矩阵时,由上式 所得的对角矩阵既与A合同,又与A相 似,且对角线元素全是A的全部特征值。
由第五章矩阵可以相似对角化的条件,只 要说明矩阵A的特征值都是实数,且一定 有n个特征向量组成的标准正交组,则问题 就可以得到完全解决. 定理1 n阶对称矩阵的特征值必为实数.
定理1的意义
由于对称矩阵A的特征值 i 为实数, 所以齐次 线性方程组 ( A i E)x 0 是实系数方程组 ,由 A i E 0知必有实的基础解 系, 从而对应的特征向量可 以取实向量.
T T T
T 1 T 1
(1 2 ) X X 2 0, 1 2 , 故:X X 2 0, 即二者正交.
由定理3,结合矩阵相似对角化的理论,
可得以下定理4:
定理4 对n阶对称矩阵A,一定存在 正交矩阵C ,使得: 1 2 T 1 C AC C AC O . n
配方法化二次型为标准型
1
12
2
3
23
(x1 x2)2 x22 5x32 4x2 x3
(yx21xy2)22(yx22 2x3)2 x32
1
2
3
y1 x1 x2 ,
y2
x2
2x3,
y3 x3.
x1 y1 y2 2 y3,
1 1 2
x2 y2 2y3,
C 0 1 2.
x3 y3.
0 0 1
例2
:
设二次型f
(x , 1
x, 2
x) 3
x2 1
x2 2
8x 2 3
4x x 13
4x2x3,
1.求一可逆变换将该二次型化为标准形;
2. f (x1, x2, x3) 1是什么曲面?
1. f (x1, x2 , x3 ) x12 x22 8x32 4x1x3 4x2x3 ( x1 2x3 )2 ( x2 2x3 )2 y12 y22.
y1 x1 2x3,
y2
x2
2x3,
y3 x3.
x1 y1 2 y3 , x2 y2 2 y3 , x3 y3.
1 0 2
C
0 0
1 0
12 .
2.由 A E 0 A的特征值为1 0, 2 1,3 9.
在正交变换下,可将 f 1化为 y 2 9y 2 1. 为椭圆
2
3
柱面。
正交变换保持向量长度不变,只有在正交变换下将二次 型化为标准形,才能确定它所表示的曲面类型。 注:设 Y=QX,Q为正交矩阵,则有
||Y||2=YTY=(QX)T(QX)=XTQTQX=XTX=||X||2.
注:配方法化二次型为标准形一般有两种情形:
化二次型为标准型的方法
化二次型为标准型的方法二次型是数学中一个重要的概念,它在线性代数、微积分和数学分析等多个领域都有着广泛的应用。
在二次型的研究中,将二次型化为标准型是一个常见的问题,也是解决二次型相关问题的重要步骤之一。
本文将介绍化二次型为标准型的方法,帮助读者更好地理解和掌握这一数学知识。
首先,我们需要明确什么是二次型。
二次型是关于 n 个变量的二次齐次多项式,一般形式为:$$。
f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{22}x_2^2+\cdots+a_{nn}x_n^2+2a_{12}x_1x_2+\cdots+2a_{ij}x_ix_j。
$$。
其中 $a_{ij}$ 为常数,$i\neq j$。
化二次型为标准型的方法主要是通过合适的线性变换将二次型化简为一种特殊的形式,使得二次型的计算和研究更加方便。
接下来,我们来介绍化二次型为标准型的具体方法。
首先,我们需要进行坐标变换。
设 $X=PY$,其中 $X=(x_1,x_2,\cdots,x_n)^T$,$Y=(y_1,y_2,\cdots,y_n)^T$ 为变量向量,$P$ 为可逆矩阵。
将 $X$ 代入二次型$f(x_1,x_2,\cdots,x_n)$ 中,得到:$$。
f(PY)=Y^TP^TAY。
$$。
其中 $A$ 为二次型的系数矩阵。
我们希望通过适当的选择 $P$,使得$Y^TP^TAY$ 化为标准型。
这就要求 $P^TAP$ 为对角矩阵,即 $P^TAP=D$,其中$D$ 为对角矩阵。
为了实现这一点,我们可以利用矩阵的对角化定理。
对于任意的实对称矩阵$A$,都存在一个正交矩阵 $P$,使得 $P^TAP$ 为对角矩阵。
这一定理为我们化二次型为标准型提供了理论基础。
具体地,我们可以按照以下步骤进行化二次型为标准型的操作:1. 计算二次型的系数矩阵 $A$;2. 求出 $A$ 的特征值和对应的特征向量;3. 构造正交矩阵 $P$,使得 $P^TAP$ 为对角矩阵;4. 将 $X=PY$ 代入原二次型,得到标准型。
正交变换法和配方法化二次型标准形
正交变换法和配方法化二次型标准形-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN正交变换法和配方法化二次型标准形的优劣研究摘要二次型的研究起源于解析几何,在平面解析几何中,通常需要把二次曲线与二次曲面方程化为标准方程.从代数学的观点看,这种变化过程就是通过变量的线性替换化简一个二次多项式,使之只含有各个变量的平方项的过程.这类问题在数学的各个分支及物理、力学和网络计算中都有重要应用.本文在对二次型概念的理解基础上,将二次型化为标准形的方法进行归纳整理,并做进一步的研究与讨论.总结出正交变换法和配方法化二次型标准形的优劣之处.关键词:二次型;标准形;配方法;正交变换法AbstractQuadratic study originated in analytic geometry. In graphic analytic geometry, usually need to second curve and surface equation into standard equation. From the point of view of algebra, the change process of replacement is through simplifying linear variable, a quadratic multinomial only contains the square of variables. This kind of question in each branch of mathematics, physics,mechanics and network computing have important applications.Based on the understanding of quadratic basis, induce the method of transform quadratic form into standard form, and further generalization of the research and discussion. Summarize the advantage and disadvantage of orthogonal transformation method and the method of completing square.Keywords: Quadratic form; Standard form; Method of completing square; Method of orthogonal transformation目录摘要 (Ⅰ)Abstract (Ⅱ)目录 (Ⅲ)1.引言 (1)2.定义 (1)3.定理及其证明 (2)4.方法步骤及例题 (5)配方法化二次型标准形 (5)正交变换法化二次型标准形 (7)两种方法的比较研究 (9)5.小结 (10)致谢 (12)参考文献 (13)1. 引言线性代数理论有着悠久的历史和丰富的内容,随着科学技术的发展,特别是电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学、社会科学、工程技术、经济、管理等各个领域.二次型理论在线性代数中占有举足轻重的地位,从对平方数的注意到对特殊二次型的研究,再到对一般二次型的探索与发展,中间经历了一个漫长曲折的历史过程,而实二次型的标准形与代数数论、数的几何等都有密切的联系,利用二次型可以把任何一个方阵JORDAN标准化,对研究矩阵是非常有用的,因此讨论化二次型为标准形的问题就成为教学的一个很重要的内容.文献[1]-[3]具体介绍了二次型的定义以及对二次型的研究情况,提出了化二次型为标准型的重要性.文献[4]-[6]提出了用正交变换法化二次型标准形的步骤及应用.文献[7]-[8]提出了用配方法化二次型标准形的步骤及应用.本文对化二次型为标准形的方法进行了归纳和总结,并做进一步的研究与讨论,这在理论上和应用上都有着十分重要的意义.2. 定 义定义 1:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式()n x x x f ,,,21 =11a 21x +22112x x a +…+2n n x x a 11+2222x a +…2n n x x a 22+…2n nn x a称为数域P 上的一个n 元二次型,简称二次型.定义 2:设n x x ,,1 ;n y y ,,1 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x22112222211212121111(1)称为由n x x ,,1 到n y y ,,1 的一个线性替换,简称线性替换.如果系数行列式 0≠ij c ,那么,线性替换(1)就称为非退化的.定义 3:在n 维欧式空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基.3. 定理及其证明定理 1:数域P 上任意一个二次型都可以经过非退化线性替换变成平方和2222211n n x d x d x d +++ 的形式.证明:对变量的个数n 作归纳法.对于n=1,二次型就是()21111x a x f =,已经是平方和了,现假定对n-1元的二次型,定理的结论成立.再设()∑∑===ni nj j i ij n x x a x x x f 2221,,, (ji ij a a =)分三种情形来讨论:1)ij a (n i ,,2,1 =)中至少有一个不为零,例如011≠a ,这时()n x x x f ,,,21 =∑∑∑∑====+++ni nj j i ij ni i i nj j j x x a x x a x x a x a 222112112111=∑∑∑===++n i nj j i ij n j j j x x a x x a x a 2221121112= 212111111⎪⎪⎭⎫ ⎝⎛+∑=-j j n j x a a x a -221111⎪⎪⎭⎫ ⎝⎛∑=-n j j j x a a +∑∑==n i n j j i ij x x a 22= 212111111⎪⎪⎭⎫ ⎝⎛+∑=-j j n j x a a x a +∑∑==n i n j j i ij x x b 22这里 ∑∑==ni nj j i ij x x b 22=-221111⎪⎪⎭⎫ ⎝⎛∑=-n j j j x a a +∑∑==n i n j j i ij x x a 22是一个n x x x ,,,32 的二次型. 令 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=∑=-n n nj jj x y x y x a a x y 222111111即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=∑=-n n nj jj x y x y x a a y x 222111111 这是一个非退化线性替换,它使()n x x x f ,,,21 =∑∑==+ni nj j i ij y y b y a 222111由归纳法假定,对∑∑==n i nj j i ij y y b 22有非退化线性替换⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c z y c y c y c z y c y c y c z 33223333232323232222能使它变成平方和2233222n n z d z d z d +++于是非退化线性变换 ⎪⎪⎩⎪⎪⎨⎧++=++==nnn n n nn y c y c z y c y c z y z 222222211就使()n x x x f ,,,21 变成()n x x x f ,,,21 =22222111n n z d z d z a +++ , 即变成平方和了.根据归纳法原理,定理得证.2)所有0=ii a ,但是至少有一01≠j a (j>1),不失普遍性,设012≠a令 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=+=nn z x z x z z x z z x 33212211它是非退化线性变换,且使 ()n x x x f ,,,21 = +21122x x a=()() +-+2121122z z z z a= +-2212211222z a z a , 这时上式右端是n z z z ,,,21 的二次型,且21z 的系数不为零,属于第一种情况,定理成立.3)011211====n a a a由于对称性,有013121====n a a a这时()n x x x f ,,,21 =∑∑==ni nj j i ij x x a 22是n-1元二次型,根据归纳法假定,它能用非退化线性替换变成平方和.定理2:对于任一个n 级实对称矩阵A ,都存在正交矩阵Q ,使得AQ Q 1-=AQ Q '=⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21其中n λλλ,,,21 是A 的n 个特征值.定理 3:对于n 维欧式空间中任意一组基n εεε,,,21 ,都可以找到一组标准正交基n ηηη,,,21 ,使L ()i εεε,,,21 =L ()i ηηη,,,21 ,n i ,,2,1 =.证明:设n εεε,,,21 是一组基,我们来逐个地求出向量n ηηη,,,21 . 首先,可取1111εεη=.一般地,假定已经求出m ηηη,,,21 ,它们是单位正交的,具有性质 L ()i εεε,,,21 =L ()i ηηη,,,21 ,m i ,,2,1 =.下一步求1+m η因为L ()m εεε,,,21 =L ()m ηηη,,,21 ,所以1+m ε不能被m ηηη,,,21 线性表出. 作向量()∑=+++-=mi i i m m m 1111,ηηεεξ.显然,01≠+m ξ,且()0,11=+ηξm ,m i ,,2,1 =令 111+++=m m m ξξη ,121,,,,+m m ηηηη 就是一单位正交向量组. 同时 L ()121,,,+m εεε =L ()121,,,+m ηηη 由归纳法原理,定理得证.定理 4:任意一个n 元二次型()n x x x f ,,,21 =AX X '(A 实对称),总可以经过正交变换QY X =(Q 为正交矩阵)化为标准形2222211n n y y y f λλλ+++= ,式中,n λλλ,,,21 是矩阵A =(ij a )的全部特征值,2222211n n y y y f λλλ+++= 称为二次型在正交变换下的标准形.证明:因为矩阵A 是实对称阵,由定理4可知,一定存在正交矩阵Q ,使得 AQ Q 1-=AQ Q '=A =⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21其中n λλλ,,,21 是矩阵A 的全部特征值.作正交变换QY X =,则()n x x x f ,,,21 =AX X '=()Y AQ Q Y ''=AY Y '=2222211n n y y y λλλ+++4. 方法步骤及例题配方法化二次型标准形用配方法化二次型为标准形的关键是消去交叉项,分如下两种情形处理: 情形1: 如果二次型()n x x x f ,,,21 含某文字例如1x 的平方项,而011≠a ,则集中二次型中含1x 的所有交叉项,然后与21x 配方,并作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+++=nn n n x y x y x c x c x c y 2212121111(P c ij ∈)则()n y y g y d f ,,2211 +=,其中()n y y g ,2是n y y ,,2 的二次型。
拉格朗日配方法(将二次型转化为标准型)
得标准形
2 2 f z1 z2 z3 , 2
所用可逆线性变换为 x1 z1 z 2 z 3 , x 2 z1 z 2 z 3 , x3 z3 .
1 1 0 1 0 1 C 1 1 0 0 1 2 0 0 1 0 0 1 3 1 1 1 1 1. 0 0 1
C
2 0.
二、小结
将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求.如果要求找出一个正交矩 阵,无疑应使用正交变换法;如果只需要找出一 个可逆的线性变换,那么各种方法都可以使用. 正交变换法的好处是有固定的步骤,可以按部就 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩.
思考题
化二次型 f x1 , x 2 , x 3 x1 x 2 x1 x 3 x 2 x 3 为标准形, 并写出所作的可逆线性 变换 .
思考题解答
解 由于所给二次型不含平 方项, 故令 x1 y1 y 2 , x 2 y1 y 2 , x y , 3 3 2 2 2 有 f ( y1 y 3 ) y 2 y 3 , z1 y1 y 2 , y1 z1 z 3 , 再令 z 2 y 2 , 或 y2 z2 , z y , y z , 3 3 3 3
拉格朗日配方法的步骤 1. 若二次型含有 xi 的平方项,则先把含有 x i 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性变换,就得到标准形; 2. 若二次型中不含有平方项,但是 aij 0 ( i j ),则先作可逆线性变换 x i yi y j k 1,2,, n且k i , j x j yi y j x y k k 化二次型为含有平方项的二次型,然后再按1中方 法配方.
化二次型为标准型
化二次型为标准型二次型是代数学中一个重要的概念,它在数学和物理学中都有着广泛的应用。
在矩阵理论中,我们经常需要将一个给定的二次型化为标准型,以便更好地进行计算和分析。
本文将介绍如何将一个二次型化为标准型的具体步骤和方法。
首先,我们来回顾一下什么是二次型。
在代数学中,二次型是指一个关于n个变量的二次齐次多项式,通常可以表示为一个对称矩阵的形式。
例如,对于n个变量x1, x2, ..., xn,一个二次型可以表示为以下形式:Q(x) = a11x1^2 + a22x2^2 + ... + annxn^2 + 2(a12x1x2 + a13x1x3 + ... + ann-1,nxn-1xn)。
其中,aij表示对应的系数,对称矩阵的对角线上的元素为二次项的系数,非对角线上的元素为交叉项的系数的一半。
接下来,我们将介绍如何将一个二次型化为标准型。
要将一个二次型化为标准型,我们需要进行以下步骤:1. 对二次型进行配方法,即通过合适的线性变换将二次型化为平方项的和的形式。
2. 通过正交变换将平方项的和的形式化为标准型。
首先,我们来看第一步,即如何通过配方法将二次型化为平方项的和的形式。
对于一个n元二次型Q(x),我们可以通过合适的线性变换将其化为以下形式:Q(x) = λ1y1^2 + λ2y2^2 + ... + λnyn^2。
其中,λ1, λ2, ..., λn为二次型的特征值,y1, y2, ..., yn为相应的特征向量。
这个过程就是对二次型进行配方法,将其化为平方项的和的形式。
接下来,我们来看第二步,即如何通过正交变换将平方项的和的形式化为标准型。
对于一个平方项的和的形式,我们可以通过正交变换将其化为标准型。
具体来说,我们可以找到一个正交矩阵P,使得P^TQP为对角矩阵,即将二次型化为标准型。
通过以上两个步骤,我们就可以将一个给定的二次型化为标准型。
这样做的好处在于,标准型更容易进行计算和分析,可以更清晰地展现二次型的性质和特征。
线代课件§6用配方法化二次型成标准形
4. 配方
最后,我们对每一项进行 配方,得到 $(x-g)^2 = D - g^2$,$(y-f)^2 = D f^2$ 和 $(z-h)^2 = D h^2$。
证明步骤详解
1. 引入配方法
2. 展开式子
这一步是为了将二次型转化为一个更易于处 理的形式,通过引入 $g, f, h$ 和 $D$,使得 二次型可以更容易地被配方。
证明结论总结
• 通过上述的证明过程,我们证明了二次型 $f(x,y,z) = ax^2 + by^2 + cz^2 + 2gx + 2fy + 2fz$ 可以被配方法化为标准形 $f(x,y,z) = a(x-g)^2 + b(y-f)^2 + c(z-h)^2 + D$。
05
配方法化二次型成标准形的应 用
配方法简介
01
配方法的定义:通过配方将二次型转化为完全平方的形式 ,从而将其化为标准形的方法。
02
配方法的步骤
03
1. 将二次型中的每一项写成平方项与线性项之和。
04
2. 将二次型中的平方项组合成完全平方项。
05
3. 将二次型中的线性项与完全平方项相加,得到标准形 。
06
配方法的适用范围:适用于任何实数域上的二次型,尤其 在实数域上的一元二次方程求解中有广泛应用。
理解了二次型标准形在解决实际问题 中的应用价值。
对未来研究的展望
深入研究其他化二次型为标准形 的方法,如三角分解法、正交变
换法等。
探索二次型标准形在各个领域的 应用,如物理学、工程学、经济
学等。
进一步研究二次型标准形与矩阵 理论之间的关系,以及其在矩阵 分解和特征值计算等领域的应用。
线性代数 用正交变换法换二次型为标准型-PPT文档资料
C , C , L C 是标准正交向量组(Page105, ch3-例27) 1 2 n
⑤ 若A、B为正交矩阵,则它们的乘积矩阵AB 也是正交矩阵. 二、正交变换 正交变换:设C为正交矩阵,X和Y是欧氏空间Rn中的n 维向量,则线性变换X=CY是Rn上的正交变换. 注:正交变换是一个非退化的线性变换。 正交变换的性质: 定理:设X=CY是欧氏空间Rn上的线性变换,则下列命题 等价: ① 线性变换X=CY为正交变换; ②在线性变换X=CY下,向量的内积不变,即: X C Y , X C Y 时 , X , X Y , Y 1 1 2 2 1 2 1 2 ③线性变换X=CY把Rn中的标准正交基变成标准正交基.
线性变换将其化为标准形。 问题:任一二次型能否通过正交变换将其化为标准形?
上述问题的等价描述:对于一实(Rn)对称矩阵A,能否
找到一正交矩阵C,使得
1 T 1 2 CA C C A C 成 立 . O n 注:上式表明用正交矩阵所得的矩阵合同即为矩阵的相似. 故标准形应该由矩阵的特征值 i 决定,且正交矩阵C的
对应 1 , 2 的特征向量,则 A X X , i 1 , 2 i i i
又因 T X , X A X , X X A X X , A X X , X 1 1 2 1 2 1 2 1 2 1 2 2
X , X 0 X , X 0 1 21 2 1 2
故结论成立. 定理:对n阶实对称矩阵A,必存在正交矩阵C,使
1 T 1 2 CA C CA C 成 立 . O n 证明:(利用数学归纳法+标准正交向量组的性质)
6-用配方法化二次型为标准型
成标准形, 并求所用的变换矩阵 . 由于所给二次型中无平方项, 解 由于所给二次型中无平方项,所以 x 1 = y1 + y 2 x 1 1 1 0 y 1 令 x 2 = y1 − y 2 , 即 x 2 = 1 − 1 0 y 2 x = y x 0 0 1 y 3 3 3 3
例1 化二次型
2 2 2 f = x1 + 2 x 2 + 5 x 3 + 2 x1 x 2 + 2 x1 x 3 + 6 x 2 x 3
为标准形 , 并求所用的变换矩阵 .
解
含有x1的项配方 含有平方项 2 2 2 f = x1 + 2 x2 + 5 x3 + 2 x1 x2 + 2 x1 x3 + 6 x2 x3
2 2 2 = x1 + 2x1 x2 + 2x1 x3 + 2 x 2 + 5 x 3 + 6 x 2 x 3 = ( x1 + x2 + x3 )2 去掉配方后多出来的项
2 2 2 2 − x2 − x3 − 2x2 x3 + 2x2 + 5x3 + 6 x2 + x3 ) + x2 + 4x3 + 4x2 x3 2
所用变换矩阵为
1 1 0 1 0 1 C = 1 − 1 0 0 1 2 0 0 1 0 0 1
3 1 1 = 1 − 1 − 1. 0 0 1
(C
= −2 ≠ 0 ).
二、小结
将一个二次型化为标准形,可以用正交变换 将一个二次型化为标准形,可以用正交变换 也可以用拉格朗日配方法 或者其它方法, 拉格朗日配方法, 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求. 这取决于问题的要求.如果要求找出一个正交矩 无疑应使用正交变换法; 阵,无疑应使用正交变换法;如果只需要找出一 个可逆的线性变换,那么各种方法都可以使用. 个可逆的线性变换,那么各种方法都可以使用. 正交变换法的好处是有固定的步骤, 正交变换法的好处是有固定的步骤,可以按部就 班一步一步地求解,但计算量通常较大; 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少, 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法, 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同, 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩. 数必定相同,项数等于所给二次型的秩.
合同变换化二次型为标准形
合同变换化二次型为标准形在数学和物理学的领域中,二次型是一种重要的数学工具,常用于描述各种现象和问题。
在一些具体的应用中,我们常常需要将一个二次型经过合同变换转化为标准形,以便更好地理解和处理问题。
本文将介绍如何将合同变换应用于二次型,将其转化为标准形。
一、什么是二次型?二次型是指具有如下形式的二次多项式:Q(x) = x^T A x = a_{11}x_1^2 + a_{22}x_2^2 + \ldots + a_{nn}x_n^2+ 2a_{12}x_1x_2 + \ldots + 2a_{ij}x_i x_j + \ldots + 2a_{n-1,n}x_{n-1}x_n其中x = [x_1, x_2, \ldots, x_n]^T为n维向量,A为n阶实对称矩阵。
二、合同变换的定义合同变换是指通过线性变换将二次型转化为另一个等价的二次型的过程。
两个二次型在等价的意义下具有相同的二次项系数,即二次型的标准形是唯一的。
三、合同变换的步骤下面介绍如何通过合同变换将一个二次型转化为标准形。
步骤1:求出二次型的矩阵A的特征值和特征向量。
步骤2:对特征值进行排序,设特征值为\lambda_1, \lambda_2,\ldots, \lambda_n。
步骤3:将特征值按照从小到大的顺序排列,构成对角矩阵D =diag(\lambda_1, \lambda_2, \ldots, \lambda_n)。
步骤4:将特征向量按列排列,构成矩阵P = [p_1, p_2, \ldots, p_n]。
步骤5:进行合同变换,得到标准形:Q(x) = x^T P^T D P x = y^T D y = d_1 y_1^2 + d_2 y_2^2 + \ldots + d_n y_n^2其中y = P x,为新的自变量。
四、合同变换的意义和应用合同变换的目的是通过特征值分解将原二次型转化为标准形,得到的标准形具有简洁的形式和易于分析的性质。
二次型的标准型和规范型
问题 : 设A为实对称矩阵,求一可逆矩阵P,使PT AP为对角矩阵. 方法 : (1)求一正交矩阵Q, 使QT AQ Q1AQ为对角矩阵. 令P Q即可. (2)求一正交变换x Qy(Q为正交矩阵), 将二次型f (x) xT Ax化为标准形. 令P Q即可. (3)求一可逆的线性变换x Py(P为可逆矩阵), 将二次型f (x) xT Ax化为 标准形, 则P即为所求.
命题1 二次型的标准形不唯一.
命题2 任一二次型都可经可逆的线性变换化为规范形:
g( y1,
y2 ,,
yn
)
d1 y12
dp
y
2 p
d
p
1
y
2 p
1
dr
yr2 ,
其中p r n, di 0,i 1,, r.
秩: r
正惯性指数: p
负惯性指数:r p
符号差: p (r p) 2 p r
dn
将二次型化为标准形:
1. 配方法
例1 将二次型f (x1, x2 , x3 ) x12 2x1x2 2x1x3 2x22 8x2 x3 5x32 化为标准形. 例2 将二次型f (x1, x2 , x3 ) 2x1x2 2x1x3 6x2 x3化为标准形. 注 : 无平方项(仅含交叉项)时,令... Th5.3(1)任一(实)二次型都可经有限次可逆的线性变换化为标准形. (2)实对称矩阵A, 可逆矩阵P,使PT AP为对角矩阵.
配方法化标准型
( x1 x 2 x 3 )2 ( x 2 2 x 3 )2
1 1 1 即 取 C 0 1 2 0 0 1
x Cy
f 的秩 = 2
1 0 0 0 1 0 0 0 0
C
1
AC
例2(P131例16) 化二次型为标准形 解
2
1 C 0 0
0 1 1
1 1 T 0 , 且 C AC 1
2
2
f y1
2 y2
2
2 y3
2
x1 y1 y 3 x Cy x2 y2 x y y 2 3 3
小结
二次型及其标准型
二次型
f X
T
可逆线性变换 X CY
标准形
f Y
T
C
AX
T
AC
Y
实对称阵
对角阵
正交变换
配方 初等变换
例3 设二次型
f x 1 x 2 c x 3 4 x 1 x 3 4 x 2 x 3 的秩为 2 .
2 2 2
1 . 求参数 c ; 2 . 求一可逆变换将该二次 型化为标准形 3 . f ( x 1 , x 2 , x 3 ) 1 是什么曲面 ? ;
T
三个变量的二次型:
T
0 1 0
由 A E 0 A 的 特 征 值 : 1 0, 2 1, 3 9 ,
在正交变换下
2 2 , 可将 f 化为 y 2 9 y 3 1 为椭圆柱面.
用初等变换法化二次型为标准形:
设 C
T
AC
则不妨设