数字信号处理 第三章02

合集下载

第数字信号处理讲义--3章_连续时间信号的采样

第数字信号处理讲义--3章_连续时间信号的采样
四舍五入量化方式如图3-9所示。当采样/保持电路输出的电压uS介于两个量化电平之间时,采用四舍五入的方式将其归并为最相近那个量化电平。例如,若uS = 5.49 V,就将其归并为5 V的量化电平,输 出的编码为101;若uS = 5.50 V,就将其归并为6 V的量化电平,输出的编码为110。可见,采用四舍五入量化方式,最大量化误差εmax只有量化单位的一半(Δ/2),比只舍不入量化方式的最大量化误差小。所以,目前大多数的A/D转换器都采用这种量化方式。
图3-6采样内插恢复
3.4连续时间信号的离散时间处理
随着信号传输和处理手段的数字化发展,越来越有必要将连续信号转化为离散信号处理。
一、C/D转换
C/D转换
时域分析频域分析
二、D/C转换
D/C转换
D/C变换整个是C/D变换的逆过程
三、连续时间信号的离散化处理
即:
例1:数字微分器
带限微分
例2:半抽样间隔延时
设带限于,要求
3.6利用离散时间信号处理改变采样频率
3.6.1脉冲串采样
3.5离散时间信号的连续时间处理
离散时间信号的连续时间处理
从时域角度看:
从频域角度看:
3.6.2离散信号抽取与内插
抽取——从序列中提取每第N个点上样本的过程。

2.内插
抽取又称为减抽样,内插又称为增抽样。
减抽样使信号的频带扩展,但提高了数据的传输率。
在采样前加一低通滤波器,以滤除高于2倍采样频率成分,以避免高频成分的干扰。
3.7.2 A/D转换中的量化误差
数字信号不仅在时间上是离散的,而且在取值上也不连续,即数字信号的取值必须为某个规定的最小数量单位的整数倍。
因此,为了将模拟信号转换成数字信号,还必须将采样/保持电路输出的采样值按照某种近似方式归并到相应的离散电平上,也就是将模拟信号在取值上离散化,我们把这个过程称为量化。将量化后的结果(离散电平)用数字代码来表示,称为编码。于单极性模拟信号,一般采用自然二进制编码;对于双极性模拟信号,则通常采用二进制补码。经过编码后得到的代码就是A/D转换器输出的数字量。

数字信号处理知识点整理Chapter3.

数字信号处理知识点整理Chapter3.

第三章 自适应数字滤波器3.1 引言滤波器的设计都是符合准则的最佳滤波器。

维纳滤波器参数固定,适用于平稳随机信号的最佳滤波;自适应滤波器参数可以自动地按照某种准则调整到最佳。

本章主要涉及自适应横向滤波器.....、自适应格型滤波器........、最小二乘自适应滤波器..........。

3.2 自适应横向滤波器自适应...线性组合....器.和自适应....FIR ...滤波器...是自适应信号......处理的基础.....。

3.2.1 自适应线性组合器和自适应FIR 滤波器自适应滤波器的矩阵表示式 滤波器输出:()()()1N m y n w m x n m -==-∑n 用j 表示,自适应滤波器的矩阵形式为T T j jj y ==X W W X 式中1212,,,,,,,TTN N w w w x x x ⎡⎤⎡⎤==⎣⎦⎣⎦W X误差信号表示为T T j j j j jj j e d y d d =-=-=-X W W X 与维纳滤波相同,先考虑最小均方误差准则:()2222T T j j j j dx xx E e E d y E e ⎡⎤⎡⎤⎡⎤=-=-+⎣⎦⎣⎦⎢⎥⎣⎦R W W R W2j E e ⎡⎤⎣⎦称为性能函数....,将其对每个权系数求微分,形成一个与权系数相同的列向量: 2221222,,,Tj j jj xx dx N E e E e E e w w w ⎡⎤⎡⎤⎡⎤⎡⎤∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥∇==-∂∂∂⎢⎥⎣⎦R W R令梯度为零,可得最佳权系数此时最小均方误差为:22*min T j j dx E e E d ⎡⎤⎡⎤=-⎣⎦⎣⎦W R 要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W ,先求自相关矩阵xx R 和互相关矩阵dx R 。

3.2.2 性能函数表示式及几何意义3.2.3 最陡下降法3.2.1给出了要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W 的理论求解方法,但实际很难应用。

数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件

数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件

所以
DFT[X(n)]=Nx(N-k) k=0, 1, …, N-1 5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
x(0)
1
N 1
X (k)
证: 由IDFT定义式
N k0
x(n)
1 N
N 1
X (k )WNkn
k 0
n 0, 1, , N 1
可知
x(0)
1
N 1
X (k)
教材第3章习题与上机题解答
1. 计算以下序列的N点DFT, 在变换区间0≤n≤N-1内,
(1) x(n)=1
(2) x(n)=δ(n) (3) x(n)=δ(n-n0) (4) x(n)=Rm(n)
0<n0<N 0<m<N
j2π mn
(5) x(n) e N , 0 m N
(6) x(n) cos 2π mn, 0 m N N
sin
(0
2π N
k
)
/
2
k 0, 1, , N 1

1 e j0N
X
7
(k
)
1
e
j(0
2 N
k)
(8) 解法一 直接计算:
k 0, 1, , N 1
x8 (n)
sin(0n)
RN
(n)
1 [e j0n 2j
e j0n ]RN
(n)
X8(n)
N 1
x8 (n)WNkn
n0
1
N 1
[e j0n
1 WNk
j π (m1)k
e N
sin
π N
mk
sin
π N

数字信号处理(方勇)第三章习题答案

数字信号处理(方勇)第三章习题答案

数字信号处理(方勇)第三章习题答案3-1 画出)5.01)(25.01()264.524.14)(379.02()(211211------+--+--=z zz z z z z H 级联型网络结构。

解:23-2 画出112112(23)(465)()(17)(18)z z z H z z z z --------+=--+级联型网络结构。

解:()x n ()y n 243-3 已知某三阶数字滤波器的系统函数为1211252333()111(1)(1)322z z H z z z z -----++=-++,试画出其并联型网络结构。

解:将系统函数()H z 表达为实系数一阶,二阶子系统之和,即:()H z 11122111111322z z z z ----+=+-++ 由上式可以画出并联型结构如题3-3图所示:)题3-3图3-4 已知一FIR 滤波器的系统函数为121()(10.70.5)(12)H z z z z ---=-++,画出该FIR 滤波器的线性相位结构。

解: 因为121123()(10.70.5)(12)1 1.30.9H z zz z z z z ------=-++=+-+,所以由第二类线性相位结构画出该滤波器的线性相位结构,如题3-4图所示:()x n 1-1-1z -题3-4图3-5 已知一个FIR 系统的转移函数为:12345()1 1.25 2.75 2.75 1.23H z z z z z z -----=+--++求用级联形式实现的结构流图并用MATLAB 画出其零点分布及其频率响应曲线。

解: 由转移函数可知,6=N ,且)(n h 偶对称,故为线性相位系统,共有5个零点,为5阶系统,因而必存在一个一阶系统,即1±=z 为系统的零点。

而最高阶5-z 的系数为+1,所以1-=z 为其零点。

)(z H 中包含11-+z 项。

所以:11()()(1)H z H z z -=+。

数字信号处理—原理、实现及应用(第4版)第3章 离散傅里叶变换及其快速算法 学习要点及习题答案

数字信号处理—原理、实现及应用(第4版)第3章  离散傅里叶变换及其快速算法 学习要点及习题答案

·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。

因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。

离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。

只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。

学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。

如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。

但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。

对于FFT 只要掌握其基本快速原理和使用方法即可。

3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。

3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。

(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。

数字信号处理教学课件第三章

数字信号处理教学课件第三章
X ( e j )
j n x ( n ) e
n
X (e j )是的连续周期函数。
1 x ( n) 2



X (e j )e jnd
时域 FT 连续,非周期
频域 非周期,连续
FS DTFT
连续,周期 离散,非周期
非周期,离散 周期,连续
10
四、离散傅里叶级数(DFS→DFT)
时域抽样
时域截断
时域周期延拓
周期延拓中的搬移通过与 ( t nTs ) 的卷积来实现 周期延拓后的周期函数具有离散谱
经过抽样、截断和延拓后,信号时域和频域都是离散、周期的。
3
学 习 方 法
从工程需要出发,理解信号频谱分析的实际问题。即

在实践中领悟处理原理的意义
从解决问题出发,理解各种信号处理方法的目的。即
上面讨论的三种傅里叶变换对,都不适用在计 算机上运算。我们感兴趣的是时域及频域都是离散 的情况,这就是离散傅里叶级数(变换)。
根据以上讨论: 时域:离散 频谱:周期 频域:离散 时域:周期 因此,DFS必是一种时域、频谱均为离散和周 期的一种傅里叶变换。
11
总之,一个域的离散必然造成另一个 |X ( j)| x (t) 1 域的周期延拓。
23
n n1 mN
0 n1 N 1 m为整数
~ ( n)是周期为N=8的序列,求n=19和n=-2两 例如,x 数对N的余数。 因为
n 19 3 2 8
((19 ))8 3
n 2 6 (1) 8
因此
~ x (19) ((19)) 8 x(3)
第3章 离散傅里叶变换
jIm(z)

数字信号处理课后答案+第3章(高西全丁美玉第三版)

数字信号处理课后答案+第3章(高西全丁美玉第三版)
kn X (k ) = ∑ x(n)W N n =0 =0 N −1
所以
kn DFT[ X (n)] = ∑ X (n)W N n =0 N −1
N −1 mn kn = ∑ ∑ x(m)W N W N n =0 m =0
N −1
n = ∑ x ( m)∑ W N ( m + k ) m =0 n =0
X (k ) − W X (k ) = ∑ WNkm − ( N − 1)
k N m =1
kn = ∑ W N − 1 − ( N − 1) = − N n =0 N −1
N −1
所以,
X (k ) =
−N , k ≠ 0 ,即 k 1 − WN N ( N − 1) k =0 2 X (k ) = −N k = 1, 2, ⋯, N − 1 k 1 − WN
=
1− e
−j
2π (m−k ) N N 2π (m−k ) N
1− e
−j
N = 0
k =m k≠m
0≤k≤N-1
(6) X (k ) = ∑ cos
n =0
N −1
1 2π kn mn ⋅ WN = (e 2 N n =0

N −1
j
2π mn N
+e
-j
2π 2π mn - j kn N )e N
j
2π mn N ,
0<m< N

2π x(n) = cos mn , 0 < m < N N
(7) (8) (9)
x(n)=ejω0nRN(n) x(n)=sin(ω0n)RN(n) x(n)=cos(ω0n)RN(N)

数字信号处理第三章习题作业答案

数字信号处理第三章习题作业答案

1 e 当 k 2, 4, 6,... 时,X 1 (k ) 0

序列3:
x3 (n) x1 (n) x1 (n 4)
根据序列移位性质可知
X 3 (k ) X1 ( k ) e j k X1 ( k ) (1 e j k )
即 x(n) 是以 n 0 对称轴的奇对称
故这三个序列都不满足这个条件
(3)由于是8点周期序列,其DFS:
nk X (k ) x(n )WN x (n )e n 0 n 0 N 1 7 j 2 nk 8
序列1:
X 1 (k ) e
n 0
3
y 解: 序列 x(n) 的点数为 N1 6 , (n) 的点数为 N 2 15, 故 x(n) y (n) 的点数应为
N N1 N 2 1 20
是线性卷积以15为周期周期延拓后取主值序列 19( N 1) 0
15 ( L)
又 f (n) 为 x(n) 与 y (n) 的15点的圆周卷积,即L=15。
第三章习题讲解
n 1, 0 n 4 h(n) R4 (n 2) 3.设 x(n) 其他n 0, h 令 x(n) x((n))6 , ( n) h((n)) 6 ,
试求 x(n) 与 h (n) 的周期卷积并作图。
解:
y ( n ) x ( m )h ( n m )
4 ( L N 1)
15 ( L)
34 ( L N 1)
混叠点数为N-L=20-15=5 n 0 ~ n 4( N L 1) 故 f (n)中只有 n 5到 n 14的点对应于 x(n) y (n)

数字信号处理(方勇)第三章习题答案

数字信号处理(方勇)第三章习题答案

3-1 画出)5.01)(25.01()264.524.14)(379.02()(211211------+--+--=z zz zzzz H 级联型网络结构。

解:243-2 画出112112(23)(465)()(17)(18)z z zH z z zz--------+=--+级联型网络结构。

解:()x n ()y n 243-3 已知某三阶数字滤波器的系统函数为1211252333()111(1)(1)322zzH z z zz-----++=-++,试画出其并联型网络结构。

解:将系统函数()H z 表达为实系数一阶,二阶子系统之和,即:()H z 11122111111322z zzz----+=+-++由上式可以画出并联型结构如题3-3图所示:)题3-3图3-4 已知一FIR 滤波器的系统函数为121()(10.70.5)(12)H z z z z ---=-++,画出该FIR滤波器的线性相位结构。

解: 因为121123()(10.70.5)(12)1 1.30.9H z z z z z z z ------=-++=+-+,所以由第二类线性相位结构画出该滤波器的线性相位结构,如题3-4图所示:()x n 1-1-1z -题3-4图3-5 已知一个FIR 系统的转移函数为:12345()1 1.25 2.75 2.75 1.23H z zzzzz-----=+--++求用级联形式实现的结构流图并用MATLAB 画出其零点分布及其频率响应曲线。

解: 由转移函数可知,6=N ,且)(n h 偶对称,故为线性相位系统,共有5个零点,为5阶系统,因而必存在一个一阶系统,即1±=z 为系统的零点。

而最高阶5-z 的系数为+1,所以1-=z 为其零点。

)(z H 中包含11-+z 项。

所以:11()()(1)H z H z z -=+。

1()H z 为一四阶子系统,设12341()1H z bz cz bz z ----=++++,代入等式,两边相等求得12341()10.2530.25H z z z z z ----=+-++,得出系统全部零点,如图3-5(b )所示。

数字信号处理—基于计算机的方法第3章答案

数字信号处理—基于计算机的方法第3章答案

3-2 (a) Sketch the naturally sampled PAM waveform that results from sampling a 1-kHz sine wave at a 4-kHz rate.(b) Repeat part (a) for the case of a flat-topped PAM waveform.Solution:3-4 (a)Show that an analog output waveform (which is proportional to the original input analog waveform) may be recovered from a naturally sampled PAM waveform by using the demodulation technique showed in Fig.3-4.(b) Find the constant of proportionality C, thatis obtained with this demodulation technique , where w(t) is the oriqinal waveform and Cw(t) is the recovered waveform. Note that C is a function of n ,where the oscillator frequency isnfs.Solution:()()()()()()1111sin sin 2cos sin 2cos cos sin [cos 2cos cos sin 2cos s s jk ts k k k jk ts k k s s k s s s s s k n kt kT s t c ek d k d ded d k tk dk dk d w t w t d d k t k d v t w t n tk d w t d n t n d dd k t n tn k ddωωτππωπππωπωππωππωω∞∞-=-∞=-∞∞∞-=-∞=∞=∞=≠-⎡⎤=∏=⎢⎥⎣⎦==+⎡⎤=+⎢⎥⎣⎦==++∑∑∑∑∑∑2]s n t ω211cos cos 222s s n t n tωω=+after LPF:()()()sin sin o w t w t n d d n d n ddn dcw t c ππππ==∴=3-7 In a binary PCM system, if the quantizing noise is not to exceed P ± percent of the peak-to-peak analog level, show that the number of bits in each PCM word needs to be⎪⎭⎫⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛≥P pn 50log 32.350log 10] [log 10102(Hint: Look at Fig. 3-8c.)Solution:Binary PCM M=n2levelsforPPq V P n 100||≤We need)50(log)10(log 50log 5025011002 size step 1022pP n PM P M V P MV nPPPP ≥⎪⎭⎫⎝⎛≥≥=≤≤==δ)(log )(log )(log )(log )(log x b a x x b a b b a ==3-8 The information in an analog voltagewaveform is to be transmitted over a PCM system with a ±0.1% accuracy (full scale). The analog waveform has an absolute bandwidth of 100 Hz and an amplitude range of –10 to +10V .(a) Determine the minimum sampling rate needed.(b) Determine the number of bits needed in each PCM word.(c) Determine the minimum bit rate required in the PCM signal.(d) Determine the minimum absolute channel bandwidth required for transmission of this PCM signal. Solution:(a) Determine the minimum sampling rate needed./sec samples 200)100(22===B f s(b) Determine the number of bits needed in each PCM word.Using the results given in prob. 3-7.(c) Determine the minimum bit rate required in the PCM signal.s f w ords n bits K bits (9)200 1.8 w ord sec sec R ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(d) Determine the minimum absolute channelbandwidth required for transmission of this920.1%0.1%24250025125009V V V M and n bits a PC M w ord δδδ±=±→====>=→PCM signal.For binary PCM D=RHz9002==⇒D B3-9 An 850-Mbyte hard disk is used to store PCM data. Suppose that a voice-frequency (VF) signal is sampled at 8 ksamples/s and the encoded PCM is to have an average SNR of at least 30dB. How many minutes of VF conversation (i.e., PCM data) can be stored on the hard disk? Solution:53002.6230lg 1022=→=∴=≥=⎪⎭⎫⎝⎛n n M dB MM N S nsec 58sec 40sec 405sec 8kbytes bits byte kbits R kbits sample bits ksamples n f R s =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⇒=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==min13,47min 833,2minsec/60sec 10170sec 10170sec10170sec 10510850sec585033336hrs T kbytes Mbytes T ==⨯=⨯=⇒⨯=⨯⨯==3-10 An analog signal with a bandwidth of 4.2 MHz is to be converted into binary PCM and transmitted over a channel, The peak-signal quantizing noise ratio at the receiver output must be at least 55 dB.(a) If we assume that 0=Pe and that there is no ISI, what will be the word length and the number of quantizing steps needed?(b) What will be the equivalent bit rate? (c) What will be the channel null bandwidth required if rectangular pulse shapes are used? Solution:(a) If we assume that 0eP = and that there is no ISI, what will be the word length and the num-ber of quantizing steps needed? Using(3-18),lengthword 9 34.85577.402.6bitsn use n n dB N S peak =⇒≥⇒≥+=⎪⎭⎫⎝⎛steps quantizing 512229===nM(b)sec Mbits6.75Sample bits 9sec 4.8ecMsamples/s4.8)MHz 2.4(22log=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=====Msamplesn f R f f s anasFor rectangular pulse shapeMHz 6.75==R B null3-12 G iven an audio signal with spectralcomponents in the frequency band 300 to 3000Hz, assume that a sampling rate of 7KHz will be used to generate a PCM signal .Design an appropriate PCM system as follows:a. Draw a block diagram of the PCM system , including the transmitter, channel, receiver.b. S pecify the number of uniform quantization steps needed and the channel null bandwidth required , assume that the peak signal-to-noise ratio at the receiver output needs to be at least 30dB and that polar NRZ signaling is used.c. Discuss how nonuniform quantization canbe used to improve the performance of the system.Solution: (a) 略 (b)lengthword 5 10.43077.402.6bitsn use n n dB N S peak=⇒≥⇒≥+=⎪⎭⎫ ⎝⎛stepsquantizing 32225===nM7sam ples/sec 7 5bits K bits 35 sec Sam ple sec s s f K K sam plesR f n =⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭()KHzR B null 35==∴( c) uniform quantizing : for all samples,the quantizing noise power is the same 122δ=N↑→↓→NS signal big N S signal smalluniform quantizing is not good for small signal.Nonuniform quantizing: samples are nonlinear processed,Small signal is amplified↑→N S(or small signal ---using small step size ↑→N S )3-14 In a PCM system , the bits error rate dueto channel noise is 10-4. Assume that peak signal-to-noise ratio on the received analog signal needed to be at least 30dB.(a) Find the minimum number of quantizing steps that can be used to encode the analog signal into a PCM signal.(b) If the original analog signal had an absolute bandwidth of 2.7kHz , what is the null bandwidth of PCM signal for the polar NRZ signaling case.Solution: (a) 410-=PedB N S PKout30≥⎪⎭⎫⎝⎛()2231000141PK out S M N M Pe⎛⎫=≥ ⎪+-⎝⎭52206.19===≥n M M use M nKz f s 4.57.22=⨯=27KHz R /274.55===⨯==nullsB sKb nf R 3-17 For a 4 bit PCM system , calculate and sketch a plot of the output SNR(in decibels) as a function of the relative input level , ()20lg rmsx V for(a) A PCM system that uses 10μ= law companding(b) A PCM system that uses uniform quantizationWhich of these system is better to use in practice? Why?Solution: n = 4 bits ---- a PCM word (a)()()()6.02 4.7720lg ln 16.024 4.7720lg ln 11021.25dB SNn dBμ=+-+⎡⎤⎣⎦=⨯+-+⎡⎤⎣⎦=(b)() 6.02 4.7720lg ()6.024 4.7720lg ()28.8520lg ()rm s dBrm s rm s S N n x V x V x V =++=⨯++=+3-19 A multilevel digital communication system sends one of 16 possible levels over the channel every 0.8 ms .(a) What is the number of bits corresponding to each level? (b) What is the baud rate? (c) What is the bit rate? Solution:(a) What is the number of bits corresponding to each level?2164/lL l bits level==⇒=(b) What is the baud rate?311,2500.810secN sym bol D baudT -===⨯(c) What is the bit rate?kbits/sec5)250,1(4===lD R3-20 A multilevel digital communication system is to operate at a data rate of 9,600 bits/s.(a) If 4-bit words are encoded into each level for transmission over the channel, what is the minimum required bandwidth for the channel?(b) Repeat part (a) for the case of 8-bit encoding into each level. Solution:(a) If 4-bit words are encoded into each level for transmission over the channel. What is the min-imum required bandwidth for the channel?(b) Repeat part (a) for the case of 8-bit encoding into each level.600600)1200(2121baud 120089600minHz B HzD B D ===≥==3-24 Consider a random data pattern consisting of binary 1’s and 0’s, where the probability of obtaining either a binary 1 or abinary 0 is21. Calculate the PSD for thefollowing types of signaling formats as a function of b T ,the time needed to send 1 bit of data:(a) Polar RZ signaling where the pulse width isbT 21=τ.(b) Manchester RZ signaling where the pulse width isbT 41=τ. What is the first nullbandwidth of these signals? What is the spectral efficiency for each of these signaling cases? Solution:(a) Polar RZ signaling where the pulse width is bT 21=τ.sin(/2)()[()]2/2b b b T fT F f F f t fT ππ==and the data are independent from bit to bit1:1:210,2n n b a AV AV →+→-,依概率依概率()222:01,221,2nn knFor k A a a a and I A +=⎧⎪⎪===⎨⎪-⎪⎩依概率依概率()2222111(0)()22n n i ii R a a P A A A ===⨯+-⨯=∑The first-null bandwidth is RT B bnull 22==andthe bandwidth efficiency is12R B η==(b) Manchester RZ signaling where the pulse width isbT 41=τ. What is the first nullband-width of these signals? What is the spectral efficiency for each of these signaling cases?()()2,0:3400,0A k Thus R k k ⎧==-⎨≠⎩()()22S s2222222()P ()336T sin (/2)12(/2)sin (/2)4(/2)sj k f T k b b b b b b b F f fR k a T fT A T fT A T fT fT eπππππ∞=-∞=-⎛⎫= ⎪⎝⎭=∑Equation (3-36) can also be used to evaluate the PSD for RZ Manchester signaling where the pulse shape is shown in the figure.⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=-22)sin()(τωτωτπτπτj j ee f f f F⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⇒2sin )sin(2)(ωττπτπτf f j f FUsing (3-40) and (3-36), the PSD forManchester signaling is()()2222)][sin(sin 4)(τπτπτπτf f f T A f p b⎥⎦⎤⎢⎣⎡=IfbT 41=τ, this becomes2224sin 44sin 41)(⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=b b b b fT fT fT T A f p πππThe first-null bandwidth is RT B bnull 44==and thespectral efficiency is41=η(bits/sec)/Hz.3-29 The data stream 01101000101 appears at the input of a differential encoder. Depending on the initial start-up condition of the encoder, find out two possible differential encoded data streams that can appear at the output. Solution:3-30 Create a practical block diagram for a differential encoding system. Explain how thesystem work by showing the encoding and decoding for the sequence 001111010001. Assume that the reference digit is a binary 1. Show that error propagation can not occur. Solution:3-34 The information in an analog waveform is first encoded into binary PCM and then converted to a multilevel signal for transmission over the channel. The number of multilevels is eight. Assume that the analog signa has a bandwidth of 2700Hz and is tobe reproduced at the receiver output with an accuracy of 1%±(full scall).(a) Determine the minimum bit rate of the PCM signal.(b) Determine the minimum baud rate of the multilevel signal.(c) Determine the minimum absolute channel bandwidth required for transmission of this PCM signal. Solution:1221%50624100V M n V V δδδ±=±→=→==→= m in ()62270032.4/()28332.410.83()5.42s la R nf kb s b L L l R D kBdlD c B kH z==⨯⨯=========3-35 A binary waveform of 9600bits/s is converted into an octal (Multilevel) waveform that is pass through a channel with a raisedcosine-rolloff Nyquist filter characteristic . The channel has a conditioned (equalized) phase response out to 2.4kHz .(a) What is the baud rate of the multilevel signal?(b) What is the rolloff factor of the filtercharacteristic?Solution:09600()8332003()(1)(1) 2.40.52R a L l D Bdl D b B f r r kH z r =→=====+=+=→=3-37 A binary communication system uses polar signal. The overall impulse response is designed to be of thesin x xtype, as given byEq(3-67),so that there will be no ISI. The bitrate is 300/s R f bit s ==.(a) What is the baud rate of the polar signal? (b) Plot the waveform of polar signal at the system output when the input binary data is 01100101. Can you discern the data by looking at this polar waveform? Solution:1502s T f B H z==(b)sin ()s e s f t h t f t ππ=1()eSsf H f f f ⎛⎫= ⎪⎝⎭∏1Ss f DT ==3-43 Using the results of prob.3-42, demonstrate that the following filter characteristics do or do not satisfy Nyquist ’s criterion for eliminating ISI (0022s f f T ==).()()00122eT a H f fT ⎛⎫=⎪⎝⎭∏()()00223eT b H f fT ⎛⎫=⎪⎝⎭∏Solution:()()000012222e T T f a H ffT f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭∏∏()()0000232322eT T f b H f fT f ⎛⎫⎪⎛⎫==⎪⎪⎝⎭⎪⎝⎭∏∏3-45 An analog signal is to be converted into a PCM signal that is a binary polar NRZ line code. The signal is transmitted over a channel that is absolutely bandlimited to 4kHz. Assume that the PCM quantizer has 16 steps and that the overall equivalent system transfer function is of the raised cosine-rolloff type with r =0.5.(a) Find the maximum PCM bit rate that can be supported by this system without introducing ISI.(b) Find the maximum bandwidth that canbe permitted for the analog signal . Solution:()0:164 a PC M w ord 40.522 5.33/1T T M n B kH zr B a R D f kb sr==→=====⨯=+量化器()analog analog 2 5.331000667224s b R nf n B R B H zn=≥⋅⨯∴≤==⨯3-47 Multilevel data with an equivalent bit rate of 2,400 bits/s is sent over a channel using a four-level line code that has a rectangular pulse shape at the output of the transmitter. The overall transmission system (i.e., the transmitter, channel, and receiver) has an r =0.5 raised cosine-rolloff Nyquist filtercharacteristic.(a) Find the baud rate of the received signal.(b) Find the 6-dB bandwidth for this transmission system.(c) Find the absolute bandwidth for the system. Solution:(a) Find the baud rate of the received signal.242=⇒==l L l2400/1200aud2D R l B ===(b) Find the 6-dB bandwidth for thistransmission system.611(1200)600H z 22dB B D ===(c) Find the absolute bandwidth for the system.113(1)(10.5)(1200)(1200)900224absolute T B B r D H z==+=+==3-54 One analog waveform w 1(t ) is bandlimited to 3 kHz, and another, w 2(t), is bandlimited to 9 kHz. These two signals are to be sent by TDM over a PAM-type system. (a) Determine the minimum sampling frequency for each signal, and design a TDM commutator and decommutator to accommodate the signals.(b) Draw some typical waveforms for w 1(t ) and w 2(t ), and sketch the corresponding TDM PAM waveform. Solution:(a) Determine the minimum sampling frequency for each signal, and design a TDM commutator and decommutator to accommodate the signals. TDM1122(): 3kH z 6ksam ples/sec (): 9kH z 18ksam ples/secs s t B f t B f ωω=⇒==⇒=(b) Draw some typical waveforms for w 1(t ) and w 2(t ), and sketch the corresponding TDM PAM waveform.3-56 Twenty-three analog signals , each with a bandwidth of 3.4kHz, are sampled at an 8-kHz rate and multiplexed together with a synchronization channel (8kHz)into a TDM PAM signal. This TDM signal is passed through a channel with an overall raised cosine-rolloff Nyquist filter characteristic of r=0.75.(a) Draw a block diagram for the system, indicating the fc of the commutator and the overall pulse rate of the TDM PAM signal.(b) Evaluate the absolute bandwidth required for the channel.Solution:248k pulses/sec=192k pulses/sec D =⨯()()192k pulse/sec110.75168kH z 22D B r =+=+=3-58 Rework Prob.3-56 for a TDM pulse code modulation system in witch an 8-bit quantizer is used to generate the PCM words for each of the analog inputs and an 8-bit synchronization word is used in the synchronization channel.Solution:3-59 Design a TDM PCM system that will accommodate four 300-bit/s (synchronous) digital inputs and one analog input that has a bandwidth of 500Hz. Assume that the analog samples will be encoded into 4-bit PCM word. Draw a block diagram for your design, analogous to Fig.3-39, indicating the data rates at the various points on the diagram. Explain how your design works.Solution:3-60 Design a TDM PCM system that will accommodate two 2400-bit/s synchronous digital inputs and an analog input that has a bandwidth of 2700 Hz. Assume that the analog input is sampled at 1.11111 times the Nyquist rate and converted into 4-bit PCM word. Draw a block diagram for your design, and indicate the data rates at the various points on your diagram. Explain how your TDM scheme works.Solution:。

数字信号处理答案第三章

数字信号处理答案第三章
1 . Note the pole-zero cancellation at z = 2
= = =
0 0 1 j 2πn e 10 , n = 1, 2, . . . , k. 2
3.3
(a) X1 (z ) = = = = The ROC is (b)
1 3 ∞ 0
1 1 ( )n z −n − 1 ( )n z −n + 3 2 n=−∞ n=0 1
1 −1 1− 3 z
+ +
1 ( )n z n − 1 2 n=0 1 − 1, 1− 1 2z −1 2 z)

1
1−1 −1 3zFra bibliotek(1 −
5 6 1 −1 )(1 3z
< |z | < 2. X2 (z ) = = = 1 ( )n z −n − 2n z −n 3 n=0 n=0 1 1−
1 −1 3z ∞ ∞
nan cosw0 nz −n nan ejw0 n + e−jw0 n −n z 2 60
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1.

数字信号处理第三章习题解答

数字信号处理第三章习题解答
(3)最少采样点数 ;
(4)在频带宽度不变的情况下,将频率分辨率提高一倍的N值。
解:
(1)已知
(2)
(3)
(4)频带宽度不变就意味着采样间隔T不变,应该使记录时间扩大一倍为0.04s实现频率分辨率提高一倍(F变为原来的1/2)
18.我们希望利用 长度为N=50的FIR滤波器对一段很长的数据序列进行滤波处理,要求采用重叠保留法通过DFT来实现。所谓重叠保留法,就是对输入序列进行分段(本题设每段长度为M=100个采样点),但相邻两段必须重叠V个点,然后计算各段与 的L点(本题取L=128)循环卷积,得到输出序列 ,m表示第m段计算输出。最后,从 中取出B个,使每段取出的B个采样点连接得到滤波输出 。
————第三章————
离散傅里叶变换DFT
3.1 学习要点
3.1.1DFT的定义、DFT与Z变换(ZT)、傅里叶变换(FT)的关系及DFT的物理意义
1.DFT的定义
设序列 为有限长序列,长度为 ,则定义 的 点离散傅立叶变换为
(3.1)
的 点离散傅立叶逆变换为
(3.2)
其中, , 成为DFT变换区间长度。
学习DFT的性质时,应与傅里叶变换的性质对照学习,要搞清两者的主要区别。我们知道,傅里叶变换将整个时域作为变换区间,所以在其性质中,对称性以原点为对称点,序列的移动范围无任何限制。
然而,DFT是对有限长序列定义的一种变换,也就是说,DFT变换区间为 。这一点与傅立叶变换截然不同,由于 及 区间在DFT变换区间以外,所以讨论对称性时,不能再以原点作为对称点,而是以 点作为对称点。为了区别于无限长共轭对称序列,用 和 分别表示有限长(或圆周)共轭对称序列和共轭反对称序列。其定义为
即 隐含周期性,周期为 。

数字信号处理 答案 第三章

数字信号处理 答案 第三章

解: x1 ( n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x( n) 。 (1)绘出 x( n) 与 x( n) 的线性卷积结果的图形。 (2)绘出 x( n) 与 x( n) 的 4 点循环卷积结果的图形。 (3)绘出 x( n) 与 x( n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷 积之间的关系。
j [(2π k /10) + (π /10)]
={
3.7
N ,k=m或 k=−m 2 0,其 他
图 P3.7 表示的是一个有限长序列 x( n) ,画出 x1 ( n) 和 x2 (n) 的图形。 (1) x1 ( n) = x ⎡ ⎣( n − 2 ) ⎤ ⎦ 4 R4 (n)
(2) x2 ( n) = x ⎡ ⎣( 2 − n ) ⎤ ⎦ 4 R4 (n)
解: (1) X ( k )
= ∑ δ (n)WNnk = δ (0) = 1, 0 ≤ k ≤ N − 1
n=0
N −1
(2) X ( k ) =
∑ δ [(n − n )]
n =0 0
N −1
N
RN (n)WNnk = WNn0 k , 0 ≤ k ≤ N − 1
(3) (4)
X (k ) = ∑ a W
− jω N
−j
N ω 2
j
N ω 2
−j
N ω 2
⎛N ⎞ sin ⎜ ω ⎟ N −1 ) ⎝ 2 ⎠ e− j 2 ω = sin
ω
2
⎛N ⎞ sin ⎜ ω ⎟ ⎝ 2 ⎠ , ϕ (ω ) = − N − 1 ω | X (e jω ) |= ω 2 sin 2

中国石油大学《数字信号处理》第三章 假频现象、折叠频率

中国石油大学《数字信号处理》第三章 假频现象、折叠频率
此性质表示两个并联系统h1(n)和h2(n)。
第三节 离散信号的褶积 ax1 (k ) x2 (k )
其中,a为常数。
5、任一序列x(k)与单位冲激序列δ (t)的褶积和等 于序列本身x(k),即
x( k ) ( k ) x( k )
z (k ) x(k ) y (k ) x0 x 1 x2 xn 0 m个 0 0 x0 x1 xn 0 0 0 x0 0 0 0 0 0 0 0 x0 x m 1 0 0 y0 z0 0 0 y1 z 1 0 0 y2 z2 0 0 ym zn 0 0 0 z n 1 n个 x1 x0 0 z mn

y (n) T [ x(n)] T [

m
x(m) (n m)]
m
m
x(m)T [ (n m)] x(m)h(n m)
x ( n) h( n)
上式为x(n)与h(n)的线性褶积,它说明线性时不变系统 的响应等于输入序列与单位脉冲响应序列的褶积。
第三节 离散信号的褶积 三、离散褶积的运算 y(n) x(n) h(n)
褶积的计算过程包括以下四个步骤:
m
x(m)h(n m)

反褶、移位、相乘、求和
1) 反褶 :先将x(n)和h(n)的变量 n 换成 m,变成x(m) 和h(m),再将h(m)以 m=0为轴反褶成h(-m)。 2) 移位:将h(-m)移位n,变成 h(n-m);当n为正数, 右移n位,n为负数,左移n位。 3) 相乘:将 h(n-m)与x(m)在相同的对应点相乘。 4) 求和:将所有对应点乘积累加起来,就得到n时刻 的褶积值,对所有的n重复以上步骤,就可得到所 有的褶积值y(n)。

数字信号处理_第三章

数字信号处理_第三章
x(1) h(0) h(1) x(2) x(3) h(2) x(0) h( L 1)
x( L 1) x( L 2) y (0)c x(0) y (1) x(1) x(0) x( L 1) c y (2)c = x(2) x(1) x(0) x( L 1) x( L 2) x( L 3) y ( L 1)c
DFTx2 (n) X 2 (k )
二、循环移位性质
1、序列的循环移位(圆周移位)定义: 一个有限长序列 x(n) 的圆周移位定义为
y(n) xn mN RN n

(1) 先将x(n)作 周 期 ~ x延 (n) 拓 xnN
~ n mN (2) 延 拓 后 再 进 x (n 行 m移 ) x位
1 e
e
k j 38
sin(k / 2) sin(k / 8)
15 j
0k 7
2kn 16
(2)N 16 时 X (k ) x(n) W
n 0 N 1 nk N
R4 (n)e
n 0
e
n 0
3
kn j2 16

1 e
4k j2 16 k j2 16

~ 周期序列 x (n) 是有限长序列x(n)的周期延拓。
x (n) 0 n N 1 ~ x(n) 其它 0

x(n) ~ x (n) RN (n)
x (n) 的主值序列。 有限长序列x(n)是周期序列 ~
二、DFT的隐含周期性
如:
0
x(n)
n N-1

胡广书数字信号处理第3章_2

胡广书数字信号处理第3章_2
3.6 用 DFT 计算线性卷积
x(n), n = 0,1,L , N − 1
h(n), n = 0,1,L , M − 1

都是非周期
y ( n) = x ( n) ∗ h( n) =
k =−∞
∑ x ( k ) h( n − k )
DFT有快 速算法
L = N + M −1 如何用DFT来实现
存在什么矛盾
于 时
-0.4 -0.3 -0.2 -0.1 0 0.1 (a) N=6 0.2 0 度
间 长 度 反 比
用计算机分析和处理信号时,信号总是有 限长,其长度即是矩形窗的宽度,要想分辨出
ω1 , ω 2 处的两个频谱,数据长度必须满足:
4π k < ω1 − ω 2 N k 对矩形窗,k = 1 ,其他类型的窗函数, > 1
几点建议:
1. 抽样频率应为正弦频率的整数倍; 2. 抽样点数应包含整周期,数据长度 最好是2的整次幂; 3. 每个周期最好是四个点或更多; 4. 数据后不要补零。 按以上要求,对离散正弦信号做 DFT 得到的频谱正好是线谱,完全等同于 连续正弦信号的线谱。
3.9
二维傅立叶变换
多用于图像处理:
x(0,1) L x(0, N 2 − 1) x(0, 0) x(1, 0) x(1,1) L x(1, N 2 − 1) x(n1 , n2 ) = M M M M x( N1 − 1, 0) x( N1 − 1,1) L x( N1 − 1, N 2 − 1)
L = N + M −1
x( n) n = 0,1,L , N − 1
y ( n)
y ( n) = x ( n) ∗ h( n) = x′(n) ⊗ h′(n)

数字信号处理课后第三章习题答案

数字信号处理课后第三章习题答案

第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
题3解图
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
4. 证明DFT的对称定理, 即假设X(k)=DFT[x(n)], 证明 DFT[X(n)]=Nx(N-k) 证: 因为
kn X (k ) x(n)WN n 0 N 1
1 x(n) N
所以
DFT[ X (n)] X (n)W
n 0
N 1
N 1
kn N
N 1 mn kn x(m)WN WN n 0 m 0
N 1
n ( m k ) x(m)WN m 0 n 0
N 1
第3章
由于
离散傅里叶变换(DFT)及其快速算法 (FFT)

n 0
N 1
n( m k ) WN
N 0
m N k m N k , 0≤ m ≤ N 1
k=0, 1, …, N-1
所以 DFT[X(n)]=Nx(N-k)
5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
证: 由IDFT定义式
1 N 1 x(0) X (k ) N k 0
- j mn - j kn 1 j N mn 2π kn (6) X (k ) cos mn WN (e e N )e N 2 N n 0 n 0

N 1

N 1



1 e 2 n 0
N 1
j
2π ( mk ) n N
1 e 2 n 0
1knnknnnnknnnnknnwkx2j2j102j10e1e1e1??????????????????????12100nkkn?离散傅里叶变换dft及其快速算法fft第3章211001011nnknnnnxknwnkn????????????30010010011nknnnnknknnnxknnwwnnwkn?????????????00nnn??1j10sin1e1sinkmmmkknnnnnknnmkwnxkwrkwkn??????????????????????4离散傅里叶变换dft及其快速算法fft第3章52j2j102j102je1eekmnkmnnnnkmnknnnnmnnwkx??????????????je1kmn?????????mkmkn00kn1离散傅里叶变换dft及其快速算法fft第3章6knnnnnnmnnmnnknnwmnnkx2j10102j2jeee212cos????????????????2211jj0011ee22nnmknmknnnnn?????????????????????????????????2j2j2j2je1e1e1e121kmnnkmnkmnnkmn离散傅里叶变换dft及其快速算法fft第3章20nkmknmkmknm????????????0kn170002j211jj71eeeknnnnknnknnnxkw?????????????072j00ee1enknnnxkw???????0210j202sin2e0112sin2nknnknknkn???????????????????????离散傅里叶变换dft及其快速算法fft第3章或110e1e12jj700??????nkkxknn????8解法一直接计算

数字信号处理第三版(姚天任、江太辉) 答案 第三章

数字信号处理第三版(姚天任、江太辉) 答案 第三章

第三章离散傅里叶变换及其快速算法习题答案参考3.1 图P3.1所示的序列(xn 是周期为4的周期性序列。

请确定其傅里叶级数的系数(X k。

解:(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.2 (1设(xn 为实周期序列,证明(x n 的傅里叶级数(X k 是共轭对称的,即*((X k X k =− 。

(2证明当(xn 为实偶函数时,(X k 也是实偶函数。

证明:(1 111**((([(]((N nk N n N N nk nkNNn n Xk x n W Xk x n W xn W X−−=−−−==−=−===∑∑∑ k(2因(xn 为实函数,故由(1知有 *((Xk X k =− 或*((X k X k −= 又因(xn 为偶函数,即((x n x n =− ,所以有(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.3 图P3.3所示的是一个实数周期信号(xn 。

利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级数的系数(Xk ,确定以下式子是否正确。

(1,对于所有的k; ((10Xk X k =+ (2((Xk X k =− ,对于所有的k; (3; (00X=(425(jkX k eπ,对所有的k是实函数。

解:(1正确。

因为(x n 一个周期为N =10的周期序列,故(X k 也是一个周期为N=10的周期序列。

(2不正确。

因为(xn 一个实数周期序列,由例3.2中的(1知,(X k 是共轭对称的,即应有*((Xk X = k −,这里(X k 不一定是实数序列。

(3正确。

因为(xn (0n ==在一个周期内正取样值的个数与负取样值的个数相等,所以有 10(0N n Xx −=∑ (4不正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n =0 5 N −1
∀k
% (n)W6kn =∑ x % ( n) e = ∑x % (0) = 60 X % (1) = 9 − j 3 3 X % (2) = 3 + j 3 X
n =0 n =0
5
−j
2π nk 6
% (3) = 0 X % (4) = 3 − j 3 X % (5) = 9 + j 3 3 X
0 ≤ k ≤ N −1
时域序列周期化
采样,周期性离散频率函数
§3-3 离散傅里叶级数(DFS)
假定 ~ x (n + N ) = ~ x (n), N ~ 周期
~ x (n) = x (n),
~ X (k ) = ∑ ~ x ( n) e
n =0 △ N −1 −j
0 ≤ n ≤ N −1
2π kn N
~ ~ arg[ X (k )] = − arg[ X (−k )] 奇对称
j arg X ( e jω )
幅度是ω的偶函数 X (e jω ) = X (e− jω )
jω − jω 相位是ω的奇函数arg X (e ) = − arg X (e )
% (k ) X 2
§3-3 离散傅里叶级数(DFS)
周期卷积计算例题 课本P75
§3-3 离散傅里叶级数(DFS)
周期卷积计算例题 习题集P38 3
n + 1 0 ≤ n ≤ 4 ,求h(n) = R4 ( n − 2 ) x ( n) = 0 其他 % ( n) = h ( ( n) ) % ( n) = x ( ( n) ) 6 , h 令x 6 % (n)的周期卷积 % (n)和h 求x % (n) = % ( n) = x % ( n) h 解:y
1 ~ ′ 令 x ( n) = N
代入(3-11)式
~ ∑ X ( k )e
k =0 N −1 N −1 k =0 m=0
N −1
N −1
~ ~ 可见 x (n) → X ( k ) (3-11) ~ ~ 问题 X (k ) → ? x (n)
j 2π kn N
1 = N 1 = N
~ ( ∑ ∑ x ( m )e % ( m)∑ e ∑x
N −1
j
2π k ( n−m ) N
可以证明
∑e
k =0
N −1 − j 2π k ( n − m ) N
1 n = m + Nl = 0 n ≠ m + Nl
正交定理
1 ′ % ∴ x ( n) = N

% ( k )e ∑X
N −1 k =0
j
2π kn N
N −1 % % ( n) = ∑ x ( m) = x m =0 n=m
∗ ∗ − jω DTFT x n = X e ( ) ( )
jω ∗ ∗ DTFT x n X e − = ( ) ( )
x ( n ) ↔ X ( e jω )
x ∗ ( n ) ↔ X ∗ ( e − jω )
x ∗ ( − n ) ↔ X ∗ ( e jω )
~ DFS ~ x (n) ← → X (k )
△ −j 2π N
WN = e
→ WN因子
1 ~ ~ x (n) = IDFS X ( k ) = N

[
]
~ − kn X ( k ) W ∑ N , ∀n
k =0
N −1
§3-3 离散傅里叶级数(DFS)
DFS例题:习题集P37 1
% (n) = {14 12 10 8 6 10},求DFS 已知x % (k ) = DFS [ x % ( n) ] = ∑ x % (n)WNkn , 解:X
DFS DFS % ( k ), 则x % (k ) % (n) ← % (n − m) ← 若x →X → WNmk X
(2)频域移位
IDFS IDFS % (k ) ← % (k − l ) ← % (n), 则X % ( n) 若X →x → WN− nl x
§3-3 离散傅里叶级数(DFS)
ห้องสมุดไป่ตู้
假定 x(n) = 0, 当n < 0, n > N − 1 (有限长)
N −1 ~ jω X (e ) = ∑ x(n)e − jωn n =0
% (k ) = X (e jω ) | X

2π ω= k N
= ∑ x ( n )e
n=0
N −1
−j
2π kn N
% (k + N ) =X
(3 − 11)
(3-13)
1 ~ ∴ x ( n) = N
j kn ~ N X ( k ) e ∑

~ X (k ) → ~ x ( n)
§3-3 离散傅里叶级数(DFS)
结合(3-11)、(3-13)式, 为方便起见,令 DFS变换:
N −1 ~ △ kn X (k ) = DFS [~ x ( n)] = ∑ ~ x (n)WN , ∀k n=0
m =0 m =0 N −1
N −1
*
周期卷积
m = −∞ N −1

+∞

仅一个周期
~ x ( n) = ~ x (n + N )
m =0
~ x2 ( n )
时域周期卷积 ← → 频域相乘
§3-3 离散傅里叶级数(DFS)
3.周期卷积特性 (2)频域
1 % DFS % % % % x(n) = x1 (n) x2 (n) ← → X (k ) = X 1 (k ) N 时域相乘 ← → 频域周期卷积
§3-3 离散傅里叶级数(DFS)
§3-3 离散傅里叶级数(DFS)
(3)
实序列:x ( n ) ↔ X (e jω )
∀~ x ( n) = ~ x * ( n)
实序列
1.x ( n ) = x∗ ( n ) ⇒ X (e jω ) = X ∗ (e − jω )
~ ~* X (k ) = X (−k ) 共轭对称 ~ ~ X (k ) = X (−k )
Re { x ( n )} = 1 1 ∗ x n + x n ↔ X (e jω ) + X ∗ (e − jω ) = X e (e jω ) ( ) ( ) 2 2 1 1 ∗ jω ∗ − jω jω j Im { x ( n )} = x n x n X e X e X e − ↔ ( ) − ( ) = ( ) ( ) ( ) o 2 2 1 1 ∗ jω ∗ jω jω xe ( n ) = x n + x − n ↔ X ( e ) + X ( e ) = Re X ( e )} ( ) ( ) { 2 2 1 1 ∗ xo ( n ) = x n − x − n ↔ X (e jω ) − X ∗ (e jω ) = j Im { X (e jω )} ( ) ( ) 2 2
§3-3 离散傅里叶级数(DFS)
二、DFS的主要性质
1.线性特性 迭加原理
~ x3 (n) = a~ x1 (n) + b~ x2 ( n ) ~ ~ ~ X 3 (k ) = DFS [a~ x1 (n) + b~ x2 (n)] = aX 1 ( k ) + bX 2 (k )
2.移位特性 (1)时域移位
偶对称
Re { X (e jω )} = Re { X (e− jω )} ⇒ − jω jω X e X e = − Im ( ) Im ( )} { } { X (e jω )实部是偶函数,虚部是奇函数 3.极坐标形式:X (e ) = X (e ) e
jω jω
jω jω jω X (e ) = Re { X (e )} + j Im { X (e )} 2. ∗ − jω − jω − jω X (e ) = Re { X (e )} − j Im { X (e )}
数字信号处理
周治国
2016.9
第三章 离散傅里叶变换
§3-3 离散傅里叶级数(DFS)
一、DFS变换的推导
由DTFT推导DFT
− jωn x ( n ) e ∑ +∞
由DTFT
Q X (e ) = X (e

X (e ) =
j (ω + 2π )

n = −∞
)
~ jω △ ∴ 令 X ( e ) = X ( e jω )
m =0 k =0 N −1 j
−j
2π km N
)e
j
2π kn N
2π k ( n−m ) N
§3-3 离散傅里叶级数(DFS)
%(n ) x

1 N
N 1 k 0
% (k )e X 1 N
N −1 k =0
j
2 kn N
1 = N
m =0
% ( m)∑ e ∑x
k =0
N −1
∑ x ( m) h( n − m)
m
= {14 12 10 8 6 10}
§3-3 离散傅里叶级数(DFS)
4.对称特性 (1)
~ DFS ~ ∀x (n) ← → X ( k )
jω DTFT x n X e = ( ) ( )
~* * DFS ~ 则 x (n) ← → X (− k ) ~* * DFS ~ x (−n) ← → X (k )
3.周期卷积特性 (1)时域
~ ~ DFS DFS ~ ~ ∀x1 (n) ← → X 1 (k ), x2 (n) ← → X 2 (k ) ~ ~ ~ X (k ) = X 1 (k ) X 2 (k )
相关文档
最新文档