人教版九年级上册数学同步备课教案-第24章-24.4 第2课时 圆锥的侧面积和全面积
人教版-数学-九年级上册-24.4.2 圆锥的侧面积与全面积 教案
圆锥的侧面积与全面积教学目标分析知识与技能:1.认识圆锥,了解圆锥的相关概念。
2.探索圆锥侧面积、全面积计算公式。
3.会应用公式解决有关问题。
过程与方法:通过探究、观察、分析、计算,在活动中培养学生探究问题能力,合作交流意识。
并在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。
情感态度与价值观:引导学生对问题观察、质疑,激发他们的好奇心和求知欲,使学生在运用数学知识解决问题的活动中获得成功的体验,建立学习的自信心。
并且鼓励学生思维的多样性,发展创新意识。
重难点分析教学重点:理解圆锥的相关概念,探索圆锥的侧面积的计算公式。
教学难点:探索圆锥侧面积的计算公式。
教学模式:“十二字”教学模式教学过程(一)出示学习目标1.认识圆锥,了解圆锥的相关概念2.探索圆锥侧面积、全面积计算公式3.会应用公式解决有关问题(二)自学指导认真阅读课本112-113页(例题2以前)的内容重点解决:1. 理解圆锥母线的概念。
2.思考圆锥的侧面展开图是什么形状?应怎样计算它的面积?认真解决课本思考中的三个问题并完成填空。
(三)检查自学1.圆锥的高和母线等概念。
思考:圆锥的底面半径、高线、母线长三者之间有怎样的关系: a2=h2+r22.圆锥的侧面展开图(1)沿着圆锥的母线,把一个圆锥的侧面展开,得到一个什么图形?这个扇形的弧长与底面的周长有什么关系?(2)圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?圆锥的 ____________就是其侧面展开图扇形的弧长,圆锥的 ___________就是其侧面展开图扇形的半径。
3.圆锥的侧面积和全面积引导学生理解圆锥的侧面积计算公式的推导过程,能准确的应用公式解决问题。
(四)当堂训练A组1. 根据下列条件求值(其中r、h、a 分别是圆锥的底面半径、高线、母线长)(1)a = 2,r=1 则 h =_______(2) h =3, r=4 则 a =_______(3) a = 10, h = 8 则 r=_______2.已知圆锥的底面直径为4,母线长为6,则它的侧面积为_________.3.已知圆锥底面圆的半径为2 cm ,高为√5,则这个圆锥的侧面积为_________;全面积为_________.B组1.(立体——平面)若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是2.(平面——立体)现有一个圆心角为90°,半径为8 cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为______ .C组1.已知△ABC 中,∠ACB=90°,AC=3cm,BC=4cm,将△ABC绕直角边AC旋转一周,求所得圆锥的侧面积?(五)小结谈谈本节课的收获和困惑(六)作业:114页练习题1,2。
九年级数学上册第二十四章24.4弧长和扇形面积24.4.2圆锥的侧面积和全面积备课资料教案新版新人教版
第二十四章 24.4.2圆锥的侧面积和全面积知识点1:圆锥的基本概念圆锥的组成:圆锥可以看成由一个直角三角形绕一条直角边所在直线旋转一周而成的图形,这条直线叫做圆锥的轴,垂直于轴的边旋转而成的面叫做圆锥的底面,它的底面是一个圆形,斜边旋转而成的面叫做圆锥的侧面.圆锥的母线:连接圆锥的顶点和底面圆周上任意一点的线段叫做圆锥的母线.圆锥的高:圆锥的顶点和底面圆心的距离叫做圆锥的高.圆锥的基本特征:①圆锥的轴通过底面的圆心,并且垂直于底面;②圆锥的母线长都相等;③经过圆锥的轴的平面被圆锥截得的图形是等腰三角形.知识点2:圆锥的侧面展开图沿一条母线将圆锥的侧面剪开并展平,其侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,弧长等于圆锥的底面圆周长.知识点3:圆锥的全面积设圆锥的底面半径为r,母线长为l,则它的侧面积和全面积分别为S侧= l·2πr=πrl;S全=S侧+S底=πrl+πr2=πr(l+r).关键提醒:(1)圆锥的面积计算,只要分清底面半径和母线,就可直接计算,但要看清是侧面积还是全面积;(2)圆锥的侧面展开图的圆心角的度数n°,可由L==2πr求得,即n=或n=.考点1:圆锥的侧面展开图与圆锥相关概念的综合运用【例1】圆锥底面半径为250px,高为10cm.(1)求圆锥的表面积;(2)若一只蚂蚁从底面一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离.解:(1)圆锥的母线长SA==40(cm),圆锥侧面展开图扇形的弧长l=2π·OA=20π(cm), ∴S侧=l·SA=400π(cm2),S底=πOA2=100π(cm2).∴S表= S底+ S侧= 500π(cm2).(2)沿母线SA将圆锥的侧面展开,得圆锥的侧面展开图,则线段AM的长就是蚂蚁所走的最短距离,由(1)知SA=1000px,弧AA'= 20πcm,∠ASM==90°.又SA'=AS=1000px,SM=3A'M,∴SM=SA=750px.在Rt△ASM中, AM===50(cm).所以蚂蚁所走的最短距离是1250px.点拨:利用底面半径、高及母线组成的直角三角形构造勾股定理求出母线长,进而借助扇形面积公式求出表面积;蚂蚁在圆锥表面上行走一圈,而圆锥侧面展开后为扇形,故可在展开图(扇形)上求点A到点M 的最短距离(即AM的长).考点2:利用圆锥的侧面展开图解决实际问题【例2】如图,半圆形铁皮半径为225px,小明同学打算用它制作一圆锥形盒子,他先作半径OC,使∠BOC=120°,用扇形OBC作圆锥侧面,再在扇形OAC中剪一最大的圆作底面,你认为小明能做成吗?说说你的理由.若行,请问圆锥的高是多少?解:用圆心角为120°的扇形做成圆锥的侧面,所需要的底面半径是=2πr,所以r=3.在扇形OAC中剪一最大的圆作底面,说明圆O'与各边及弧相切,由切线长定理可知∠O'OE=30°,O'E⊥OA,得到O'O=2O'E,又因为两圆内切,O'O=9- O'E,即2O'E=9- O'E,通过计算可得O'E=3=r,所以小明能做成,此时圆锥的高为=6.点拨:用圆心角为120°的扇形做成圆锥的侧面,关键是看做成侧面的扇形的弧长与底面圆的周长是否吻合.考点3:利用圆锥的知识设计方案【例3】工人师傅要在一边长为1000px的正方形铁皮上裁剪下一块完整的圆和一块完整的扇形,使之恰好做成一个圆锥形模型.(1)请你帮助工人师傅设计三种不同的裁剪方案(画出示意图);(2)哪种设计方案使得正方形铁皮的利用率最高(不用证明)?求出此时圆锥模型底面圆的半径.解:(1)设计方案的示意图如图所示:(2)使得正方形铁皮的利用率最高的裁剪方案为第一种.设圆的半径为r,扇形的半径为R,则由题意知×2R×π=2r×π,故R=4r.∵正方形的边长为1000px,∴BD=40cm.∵☉O与扇形的切点E、圆心O在BD上,∴R+r+r=BD.将R=4r,BD=40代入上式,解得r=cm.故使得正方形铁皮的利用率最高时,圆锥模型底面圆的半径为cm.点拨:本题主要考查勾股定理和圆锥的侧面展开图等知识,此题的关键是正确设计图案,原则上要保证扇形的弧长与底面的周长相等.根据图中的线段长度关系列方程解题是一种常用方法.。
九年级数学上册第二十四章24.4弧长和扇形面积24.4.2圆锥的侧面积和全面积备课资料教案新版新人教版
第二十四章 24.4.2圆锥的侧面积和全面积知识点1:圆锥的基本概念圆锥的组成:圆锥可以看成由一个直角三角形绕一条直角边所在直线旋转一周而成的图形,这条直线叫做圆锥的轴,垂直于轴的边旋转而成的面叫做圆锥的底面,它的底面是一个圆形,斜边旋转而成的面叫做圆锥的侧面.圆锥的母线:连接圆锥的顶点和底面圆周上任意一点的线段叫做圆锥的母线.圆锥的高:圆锥的顶点和底面圆心的距离叫做圆锥的高.圆锥的基本特征:①圆锥的轴通过底面的圆心,并且垂直于底面;②圆锥的母线长都相等;③经过圆锥的轴的平面被圆锥截得的图形是等腰三角形.知识点2:圆锥的侧面展开图沿一条母线将圆锥的侧面剪开并展平,其侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,弧长等于圆锥的底面圆周长.知识点3:圆锥的全面积设圆锥的底面半径为r,母线长为l,则它的侧面积和全面积分别为S侧= l·2πr=πrl;S全=S侧+S 2=πr(l+r).底=πrl+πr关键提醒:(1)圆锥的面积计算,只要分清底面半径和母线,就可直接计算,但要看清是侧面积还是全面积;(2)圆锥的侧面展开图的圆心角的度数n°,可由L==2πr求得,即n=或n=.考点1:圆锥的侧面展开图与圆锥相关概念的综合运用【例1】圆锥底面半径为250px,高为10cm.(1)求圆锥的表面积;(2)若一只蚂蚁从底面一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离.解:(1)圆锥的母线长SA==40(cm),圆锥侧面展开图扇形的弧长l=2π·OA=20π(cm), ∴S侧=l·SA=400π(cm2),S底=πOA2=100π(cm2).∴S表= S底+ S侧= 500π(cm2).(2)沿母线SA将圆锥的侧面展开,得圆锥的侧面展开图,则线段AM的长就是蚂蚁所走的最短距离,由(1)知SA=1000px,弧AA'= 20πcm,∠ASM==90°.又SA'=AS=1000px,SM=3A'M,∴SM=SA=750px.在Rt△ASM中, AM===50(cm).所以蚂蚁所走的最短距离是1250px.点拨:利用底面半径、高及母线组成的直角三角形构造勾股定理求出母线长,进而借助扇形面积公式求出表面积;蚂蚁在圆锥表面上行走一圈,而圆锥侧面展开后为扇形,故可在展开图(扇形)上求点A到点M的最短距离(即AM的长).考点2:利用圆锥的侧面展开图解决实际问题【例2】如图,半圆形铁皮半径为225px,小明同学打算用它制作一圆锥形盒子,他先作半径OC,使∠BOC=120°,用扇形OBC作圆锥侧面,再在扇形OAC中剪一最大的圆作底面,你认为小明能做成吗?说说你的理由.若行,请问圆锥的高是多少?解:用圆心角为120°的扇形做成圆锥的侧面,所需要的底面半径是=2πr,所以r=3.在扇形OAC中剪一最大的圆作底面,说明圆O'与各边及弧相切,由切线长定理可知∠O'OE=30°,O'E⊥OA,得到O'O=2O'E,又因为两圆内切,O'O=9- O'E,即2O'E=9- O'E,通过计算可得O'E=3=r,所以小明能做成,此时圆锥的高为=6.点拨:用圆心角为120°的扇形做成圆锥的侧面,关键是看做成侧面的扇形的弧长与底面圆的周长是否吻合.考点3:利用圆锥的知识设计方案【例3】工人师傅要在一边长为1000px的正方形铁皮上裁剪下一块完整的圆和一块完整的扇形,使之恰好做成一个圆锥形模型.(1)请你帮助工人师傅设计三种不同的裁剪方案(画出示意图);(2)哪种设计方案使得正方形铁皮的利用率最高(不用证明)?求出此时圆锥模型底面圆的半径.解:(1)设计方案的示意图如图所示:(2)使得正方形铁皮的利用率最高的裁剪方案为第一种.设圆的半径为r,扇形的半径为R,则由题意知×2R×π=2r×π,故R=4r.∵正方形的边长为1000px,∴BD=40cm.∵☉O与扇形的切点E、圆心O在BD上,∴R+r+r=BD.将R=4r,BD=40代入上式,解得r=cm.故使得正方形铁皮的利用率最高时,圆锥模型底面圆的半径为cm.点拨:本题主要考查勾股定理和圆锥的侧面展开图等知识,此题的关键是正确设计图案,原则上要保证扇形的弧长与底面的周长相等.根据图中的线段长度关系列方程解题是一种常用方法.。
九年级数学上册 24.4 弧长和扇形面积 24.4.2 圆锥的侧面积和全面积教案 新人教版
24.4.2圆锥的侧面积和全面积例1(教材114页例3)蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为12m2,高为3.2m,外围高1.8m的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?五、达标测评(8')1.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为_____cm2.2.圆锥底面圆的直径为6cm,高为4cm,则它的全面积为______cm2.3.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为______.4.亮亮想制作一个圆锥模型,模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底,请你帮他计算这块铁皮的半径为_____cm.六、小组评价与总结(4')圆锥的侧面展开图是什么?如何计算圆锥的侧面积和全面积?你还有什么疑惑?七、布置作业“习题24.4”,5板书设计教学反思:上部圆锥的高为:3.2-1.8=1.4(m).圆柱的底面圆半径为:圆柱的侧面积为:圆锥的母线长为:圆锥侧面展开扇形的弧长为圆锥的侧面积为:1. 40π这个例题也是弧长、扇形面积公式在圆锥中的应用.在计算扇形面积时,学生常常把圆锥底面半径当做是扇形的半径,所以在解题前要理解清楚这个扇形中各个元素与圆锥各个元素之间的关系,即扇形的半径是圆锥的母线,扇形的弧长是圆锥底面圆的周长.1、2题是圆锥的侧面积和全面积的计算,3、4题则较难,这两题教师作图引导学生分析问题,再由学生讨论交流完成,并写出解题过程.教师先提出问题,然后让学生进行回顾与思考,反思学习体会,完善知识结构.。
九年级人教版数学上册第24章:24.4 教案(2)
一、学习目标(一)学习知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.学习重点1. 经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.学习难点 经历探索圆锥侧面积计算公式.二、知识准备一段长为2的弧所在的圆半径是3 ,则此扇形的圆心角为_________,扇形的面积为_________。
三、学习内容1、圆锥的侧面展开图的形状2、圆锥的侧面展开图是一个扇形,如图,设圆锥的母线长为a ,底面圆的半径为r ,那么这个圆锥的侧面展开图中扇形的半径即为母线长a ,扇形的弧长即为底面圆的周长2πr ,根据扇形面积公式可知S =21·2πr ·a =πra .因此圆锥的侧面积为S 侧=πra .圆锥的侧面积与底面积之和称为圆锥的全面积,全面积为S 全=πr 2+πra .练习:半径为10的扇形,圆心角为144°,用这个扇形围成一个圆锥的侧面,这个圆锥的地面半径_____________;圆锥的高_____________(精确到0.1)例1、用铁皮制作圆锥形容器盖,其尺寸要求如图所示。
求所需铁皮的面积S(精确到1cm 2)例2、半径为2的圆形纸片中,剪一个圆心角为900的扇形(图中阴影部分)(1)求这个扇形的面积(结果保留π);(2)用所剪的扇形纸片围成一个圆锥的侧面,求这个扇形的底面圆半径;(3)在被剪掉的3块余料中,能否从中选取一块剪出一个圆作为(2)中所围成的圆锥的底面?四、知识梳理1、———————————————————————叫圆锥的母线。
人教版数学九年级上册24.4《圆锥的侧面积》教学设计
人教版数学九年级上册24.4《圆锥的侧面积》教学设计一. 教材分析《圆锥的侧面积》是人教版数学九年级上册第24章《圆锥》的一部分,本节内容是在学生已经掌握了圆锥的基本概念、性质以及圆锥的体积计算的基础上进行学习的。
本节课的主要内容是引导学生探究圆锥的侧面积的计算方法,并能够运用所学知识解决实际问题。
教材通过实例和活动,让学生经历探究过程,培养学生的空间想象能力和数学思维能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和数学思维能力,他们对圆锥的基本概念和性质有一定的了解。
但是,对于圆锥的侧面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,教师需要通过实例和活动,引导学生理解和掌握圆锥侧面积的计算方法。
三. 教学目标1.理解圆锥侧面积的概念,掌握圆锥侧面积的计算方法。
2.能够运用圆锥侧面积的知识解决实际问题。
3.培养学生的空间想象能力和数学思维能力。
四. 教学重难点1.圆锥侧面积的概念。
2.圆锥侧面积的计算方法。
五. 教学方法1.采用问题驱动的教学方法,通过实例和活动,引导学生探究圆锥侧面积的计算方法。
2.利用多媒体辅助教学,展示圆锥的形状和性质,帮助学生更好地理解和掌握知识。
3.采用小组合作学习的方式,让学生在探究过程中相互交流、相互学习。
六. 教学准备1.多媒体教学设备。
2.圆锥模型。
3.相关教学PPT。
七. 教学过程1.导入(5分钟)教师通过展示圆锥模型,引导学生回顾圆锥的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示圆锥侧面积的实例,引导学生观察和思考,让学生初步了解圆锥侧面积的概念。
3.操练(15分钟)教师学生进行小组合作学习,让学生通过实际操作,探究圆锥侧面积的计算方法。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)教师通过PPT展示一些关于圆锥侧面积的计算题目,让学生独立完成,检验学生对知识的掌握情况。
5.拓展(5分钟)教师通过PPT展示一些实际问题,让学生运用圆锥侧面积的知识进行解决,提高学生的应用能力。
人教版九年级数学上册教案:24.4 圆锥的侧面积
圆锥的侧面积教学目标(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点经历探索圆锥侧面积计算公式.教学方法观察——想象——实践——总结法教具准备一个圆锥模型(纸做)投影片两张第一张:(记作§3.8A)第二张:(记作§3.8B)教学过程Ⅰ.创设问题情境,引入新课[师]大家见过圆锥吗?你能举出实例吗?[主]见过,如漏斗、蒙古包.[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.[生]圆锥的表面是由一个圆面和一个曲面围成的.[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.Ⅲ.新课讲解一、探索圆锥的侧面展开图的形状[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.[生]圆锥的侧面展开图是扇形.[师]能说说理由吗?[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?[生]是扇形.[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.二、探索圆锥的侧面积公式[师]圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底面圆的周长2πr,根据扇形面积公式可知S=12·2πr·l=πrl.因此圆锥的侧面积为S侧=πrl.圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S 全=πr 2+πrl .三、利用圆锥的侧面积公式进行计算.投影片(§3.8A)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58cm ,高为20cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积.现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长.在高h 、底面圆的半径r 、母线l 组成的直角三角形中,根据勾股定理求出母线l ,代入S 侧=πrl 中即可.解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582πl =2258()202+π≈22.03cm , S 圆锥侧=πrl ≈12×58×22.03=638.87cm 2. 638.87×20=12777.4cm 2. 所以,至少需要12777.4cm 2的纸.投影片(§3.8B)如图,已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据S 侧=360n πR 2或S 侧=πrl 可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB 垂直于底面圆,在Rt △ABC 中,由OC 、AB =BC 、AC 可求出r ,问题就解决了.解:在Rt △ABC 中,AB =13cm ,AC =5cm ,∴BC =12cm .∵OC ·AB =BC ·AC ,∴r =OC =.∴S 表=πr (BC +AC )=π×6013×(12+5) =102013π cm 2. Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算.Ⅴ.课后作业习题3.11Ⅵ.活动与探究探索圆柱的侧面展开图在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高.圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线.容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的.如图,把圆柱的侧面沿它的一条母线剪开,展在一个平面上,侧面的展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长,另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高.[例1]如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD.已知AD=18cm,AB =30cm,求这个圆柱形木块的表面积(精确到1cm2).解:如图(2),AD是圆柱底面的直径,AB是圆柱的母线,设圆柱的表面积为S,则S=2S圆+S侧.∴S=2π(182)2+2π×182×30=162π+540π≈2204cm2.所以这个圆柱形木块的表面积约为2204cm2.板书设计§3.8 圆锥的侧面积一、1.探索圆锥的侧面展开图的形状;2.探索圆锥的侧面积公式;3.利用圆锥的侧面积公式进行计算.二、课堂练习三、课时小结四、课后作业回顾与思考教学目标(一)教学知识点1.掌握本章的知识结构图.2.探索圆及其相关结论.3.掌握并理解垂径定理.4.认识圆心角、弧、弦之间相等关系的定理.5.掌握圆心角和圆周角的关系定理.(二)能力训练要求1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.3.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力.4.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.(三)情感与价值观要求通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用.教学难点上面这些内容的推导及应用.教学方法教师引导学生自己归纳总结法.教具准备投影片三张:第一张:(记作A)第二张:(记作D第三张:(记作C)教学过程Ⅰ.回顾本章内容[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.[师]很好,大家对所学知识掌握得不错.本章的内容可归纳为三大部分,第一部分由圆引出了圆的概念、对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对称性方面又学习了垂径定理,圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线的作图;第三部分是圆和圆的位置关系.这三部分构成了全章内容,结构如下:(投影片A)Ⅱ.具体内容巩固[师]上面我们大致梳理了一下本章内容,现在我们具体地进行回顾.一、圆的有关概念及性质[生]圆是平面上到定点的距离等于定长的所有点组成的图形.定点为圆心,定长为半径.圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性.[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径.把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳.如果车轮不是圆形,坐在车上的人会觉得非常颠.二、垂径定理及其逆定理[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分.每个定理都是一个命题,每个命题都有条件和结论.在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等).在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等).从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理.下面我们就用一些具体例子来区别它们.(投影片B)1.如图(1),在⊙O中,AB、AC为互相垂直的两条相等的弦,OD⊥AB,OE⊥AC,D、E 为垂足,则四边形ADOE是正方形吗?请说明理由.2.如图(2),在⊙O中,半径为50mm,有长50mm的弦AB,C为AB的中点,则OC垂直于AB吗?OC的长度是多少?[师]在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢?[生]在第1题中,OD 、OE 都是过圆心的,又OD ⊥AB 、OE ⊥AC ,所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C 是弦AB 的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理.[师]很好,在家能用这两个定理完成这两个题吗?[生]1.解:∵OD ⊥AB ,OE ⊥AC ,AB ⊥AC ,∴四边形ADOE 是矩形.∵AC =AB ,∴AE =AD .∴四边形ADOE 是正方形.2.解:∵C 为AB 的中点,∴OC ⊥AB ,在Rt △OAC 中,AC =12AB =25mm ,OA =50mm . ∴由勾股定理得OC =22225025253OA AC -=-=(mm).三、圆心角、弧、弦之间关系定理[师]大家先回忆一下本部分内容.[生]在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.[师]下面我们进行有关练习(投影片C)1.如图在⊙O 中,弦AB 所对的劣弧为圆的13,圆的半径为2cm ,求AB 的长.[生]解:由题意可知»AB 的度数为120°, ∴∠AOB =120°.作OC ⊥AB ,垂足为C ,则∠AOC =60°,AC =BC .在Rt △ABC 中,AC =OA sin60°=2×sin60°=233= ∴AB =2AC =3.四、圆心角与圆周角的关系 [生]一条弧所对的圆周角等于它所对的圆心角的一半.在同圆或等圆中,同弧或等弧所对的圆周角相等.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.五、弧长,扇形面积,圆锥的侧面积和全面积[师]我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用.[生]弧长公式l =180n R π,π是圆心角,R 为半径. 扇形面积公式S =2360n R π或S =12lR .n 为圆心角,R 为扇形的半径,l 为扇形弧长. 圆锥的侧面积S 侧=πrl ,其中l 为圆锥的母线长,r 为底面圆的半径.S 全=S 侧+S 底=πrl +πr 2.Ⅲ.课时小结本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积.Ⅳ.课后作业复习题 A组Ⅴ.活动与深究弓形面积如图,把扇形OAmB的面积以及△OAB的面积计算出来,就可以得到弓形AmB的面积.如图(1)中,弓形AmB的面积小于半圆的面积,这时S弓形=S扇形-S△OAB;图(2)中,弓形AmB的面积大于半圆的面积,这时S弓形=S扇形+S△OAB;图(3)中,弓形AmB的面积等于半圆的面积,这时S弓形=12S圆.例题:水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m,求截面上有水的弓形的面积(精确到0.01m2).解:如图,在⊙O中,连接OA、OB,作弦AB的垂直平分线,垂足为D,交»AB于点C.∵OA=0.6,DC=0.3,∴OD=0.6-0.3=0.3,∠AOD=60°,AD=0.3.∵S弓形ACB=S扇形OACB-S△OAB,∴S扇形OACB=120360·0.62=0.12π(m2),S△OAB=12AB·OD=12×0.30.3=0.32)∴S弓形ACB=0.12π-0.30.22(m2).板书设计回顾与思考一、1.圆的有关概念及性质;2.垂径定理及其逆定理;3.圆心角、弧、弦之间关系定理;4.圆心角与圆周角的关系;5.弧长、扇形面积、圆锥的侧面积和全面积.二、课时小结三、课后作业回顾与思考(2)教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B 的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB 的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.∵四边形ABCD为矩形,∴OA=OC=OB=OD.∴A、B、C、D四点到定点O的距离都等于矩形对角线的一半.∴A、B、C、D四点在以O为圆心,OA为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O 的半径r =5cm ,圆心O 到直线l 的 距离d =OD =3 m .在直线l 上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点对于⊙O 的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt △OPD 中,∵OD =3,PD =4,∴OP 222234OD PD ++5=r .所以点P 在圆上.同理可知OR 22OD DR +5,OQ 22OD DQ +5.所以点R 在圆内,点Q 在圆外.2.如图(2),菱形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB 、△BOC 、△COD 、△DOA 都是直角三角形,又由于E 、F 、G 、H 分别是各直角三角形斜边上的中点,所以OE 、OF 、OG 、OH 分别是各直角三角形斜边上的中线,因此有OE =12AB ,OF =12BC ,OG =12CD ,OH =12AD ,而AB =BC =CD =DA .所以OE =OF =OG =OH .即各中点E 、F 、G 、H 到对角线的交点O 的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.当d<r时,直线和圆相交;当d=r时,直线和圆相切;当d>r时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:∵A点的坐标是(-4,3),∴A点到x轴、y轴的距离分别是3和4.又因为⊙A的半径为4,∴A点到x轴的距离小于半径,到y轴的距离等于半径.∴⊙A与x轴、y轴的位置关系分别为相交、相切.由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.2.如图(2),AB是⊙O的直径,C是⊙O上的一点,∠CAE=∠B,你认为AE与⊙O相切吗?为什么?分析:1.由⊙O与AC相切可知OE⊥AC,又∠C=90°,所以△AOE∽△ABC,则对应边成比例,OA OEBA BC=.求出半径和OA后,由OA-OD=AD,就求出了AD.2.根据切线的判定,要求AE与⊙O相切,需求∠BAE=90°,由AB为⊙O的直径得∠ACB=90°,则∠BAC+∠B=90°,所以∠CAE+∠BAC=90°,即∠BAE=90°.[师]请大家按照我们刚才的分析写出步骤.[生]1.解:∵∠C=90°,AC=12,BC=9,∴由勾股定理得AB=15.∵⊙O切AC于点E,连接OE,∴OE⊥AC.∴OE∥BC.∴△OAE∽△BAC.∴OA OEAB BC=,即AB OE OEAB BC-=.∴15159OE OE-=.∴OE=458∴AD=AB-2OD=AB-2OE=15-458×2=154.2.解:∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAB+∠B=90°.∴∠CAE=∠B,∴∠CAB+∠CAE=90°,即BA⊥AE.∵BA为⊙O的直径,∴AE与⊙O相切.3.圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d=R+r时是外切,当d=R-r(R>r)时是内切.[师]下面我们还可以用d与R,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d>R+r时,两圆外离;当R-r<d<R+r时,两圆相交;当d<R-r(R>r)时,两圆内含.(投影片E)设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?①R=6cm,r=3cm,d=4cm;②R=6cm,r=3cm,d=0;③R=3cm,r=7cm,d=4cm;④R=1cm,r=6cm,d=7cm;⑤R=6cm,r=3cm,d=10cm;⑥R=5cm,r=3cm,d=3cm;⑦R=3cm,r=5cm,d=1cm.[生](1)∵R-r=3cm<4cm<R+r=9cm,∴⊙O1与⊙O2的位置关系是相交;(2)∵d<R-r,∴两圆的位置关系是内含;(3)∵d=r-R,∴两圆的位置关系是内切;(4)∵d=R+r,∴两圆的位置关系是外切;(5)∵d>R+r,∴两圆的位置关系是外离;(6)∵R-r<d<R+r,∴两圆的位置关系是相交;(7)∵d<r-R,∴两圆的位置关系是内含.三、有关外接圆和内切圆的定义及画法[生]过不在同一条直线上的三个点可以确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,它是三角形三边垂直平分线的交点.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.和三角形三边都相切的圆;叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心.因此,作三角形的内切圆时,只要作两条角平分线就找到了圆心,以这点与任一边之间的距离为半径,就可作出三角形的内切圆.Ⅲ.课堂练习1.画三个半径分别为2cm、2.5cm、4cm的圆,使它他们两两外切.2.两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E,则DE与BC的位置关系怎样?DE与BC之间有怎样的数量关系?(DE 12 BC)Ⅳ.课时小结。
24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)
24.4 弧长和扇形公式(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.4 弧长和扇形公式(第二课时),内容包括:圆锥的侧面积.2.内容解析圆锥的侧面展开图是平面图形与空间几何体相互转换的教学内容,是培养学生空间想象能力和动手操作能力的重要内容.由于圆锥的侧面展开图是一个扇形,因此,利用弧长和扇形面积公式,可通过计算它的展开图的面积求得圆锥的侧面积,进而可以求出其全面积.结合圆锥侧面积和全面积的学习,有助于培养学生的空间想象能力.基于以上分析,确定本节课的教学重点是:计算圆锥的侧面积和全面积.二、目标和目标解析1.目标1)理解圆锥的相关概念.2)理解圆锥侧面积的计算公式,并会运用公式解决问题.2.目标解析达成目标1)的标志是:理解圆锥、圆锥的高、圆锥的母线、圆锥的侧面积、圆锥的全面积等概念.达成目标2)的标志是:理解圆锥侧面积的计算公式,并会运用公式解决问题.三、教学问题诊断分析本节课学习圆锥的侧面积和全面积,是弧长和扇形面积公式的应用,在研究圆锥侧面展开图时,需要学生具备一定的空间观念,能认识立体图形与平面图形之间的联系,并利用这种关系进行分析,这对学生来说是一个难点.本节课的教学难点是:圆锥侧面积公式的推导.四、教学过程设计(一)探究新知【问题一】观察下面几何体,你发现了什么?师生活动:教师提出问题,学生通过观察图形发现以上几何体都是由一个底面和一个侧面围成的几何体.从而教师给出圆锥、母线、圆锥的高的概念.【设计意图】理解圆锥、母线、圆锥的高的概念【问题二】观察下图,你觉得圆锥的高与底面、底面圆心有什么关系?师生活动:学生通过观察图形发现:圆锥的高通过底面的圆心,并垂直于底面.【问题三】圆锥的母线有多少条?你发现了什么?师生活动:学生通过观察图形发现:圆锥的母线有无数条,它们的长都相等.【问题四】圆锥的底面圆半径r、高h、母线l三者之间有什么关系呢?师生活动:先由学生通过观察图形给出自己的见解,再由教师引导与总结得出:圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,所以圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所构成的图形,满足l2=h2+r2,利用这一关系,已知任意两个量,可以求出第三个量.【设计意图】让学生理解圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,满足l2=h2+r2.【问题五】将一个扇形纸片的两条半径重合,所围成的几何体是_____________.师生活动:学生通过动手操作,给出答案(圆锥体).【问题六】圆锥体展开后是什么样子的呢?师生活动:学生根据本节课所学,可以得出:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成.【问题七】展开的扇形弧长和底面圆之间有什么关系呢?师生活动:学生根据本节课所学,可以得出:扇形的弧长=底面圆的周长.【问题八】圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?师生活动:学生根据本节课所学,可以得出:扇形的半径与圆锥中的母线相等.【问题九】如何计算圆锥的侧面积?l×2πr= πr l(r表示圆锥底面的半径,l表示圆锥的母线长)师生活动:S扇形= 12【设计意图】让学生理解圆锥侧面积计算公式的推导过程.(二)典例分析与针对训练例1 已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是___________cm2【针对训练】1. 已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.2. 已知圆锥的母线长为5cm,侧面积为15π cm2,则这个圆锥的底面圆半径为_____cm.3. 圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5 √3cm B.10cm C.6cm D.5cm4. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180°C.240°D.300°5. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15πC.20πD.30π6. 如图,聪聪用一张半径为6cm、圆心角为120°的扇形纸片做成一个圆锥,则这个圆锥的高为()A.4√2cm B.2√2cm C.2√3cm D.√3cm7.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的半径是_______,圆锥的高是__________,侧面积是____________.【设计意图】利用圆锥侧面积公式进行计算.(三)探究新知【问题十】如何计算圆锥的表面积?师生活动:学生根据本节课所学,可以得出:S表=S扇+S底=πr l+πr2 .【设计意图】让学生掌握圆锥表面积的计算方法.(四)典例分析与针对训练例2 蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12m2,高为3.2 m,外围高1.8m的蒙古包,至少需要多少m2的毛毡?(π取3.142,结果取整数).【针对训练】1. 如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5√29)πm2B.40πm2C.(30+5√21)πm2D.55πm22. 用铁皮制作圆锥形容器盖,其尺寸要求如图所示.(1)求圆锥的高;(2)求所需铁皮的面积S(结果保留π).3. 如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm),电镀时,如果每平方米用锌0.11kg,电镀100个这样的锚标浮筒,需要用多少锌?【设计意图】考查学生对计算圆锥表面积方法的掌握情况.(五)直击中考1.(2023·山东东营中考真题)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6⏜的长为()2.(2023·湖南中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA′A.4πB.6πC.8πD.16π3.(2023·浙江宁波中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)4.(2023·四川内江中考真题)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是.5.(2023·湖南娄底中考真题)如图,在△ABC中,AC=3,AB=4,BC边上的高AD=2,将△ABC绕着BC所在的直线旋转一周得到的几何体的表面积为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考的内容,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.简述圆锥的相关概念?3.简述与圆锥面积计算的相关公式?(七)布置作业P114:练习第1题,第2题P115:习题24.4 第5题,第9题五、教学反思。
九年级数学上册24.4.2圆锥的侧面积和全面积教案(新版)新人教版
24.4.2圆锥的侧面积和全面积【教学目标】1.知识目标(1)知道圆锥各部分的名称(2)理解圆锥的侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积.2.能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.3.情感目标教给学生立体图形与平面图形的思维转换,讲清扇形各元素与圆锥各元素之间的关系.【重点难点】1.圆锥的侧面积公式的推导与应用.2.综合弧长与扇形面积的计算公式计算圆锥的侧面积.【教学过程】一.新课导入观察自己制作的圆锥.在小学大家已学过圆椎,在生活中我们也常常遇到圆椎形的物体,涉及到圆椎形物体的侧面积和全面积的计算问题如何计算呢?这就是今天要学的圆椎的侧面展开图研究的内容。
(幻灯展示生活中常遇的圆椎形物体,如:冰激凌筒、烟囱顶、等),前面展示的物体都是圆椎.在小学,大家已学过圆椎,哪位同学能说出圆椎有哪些特征?(安排举手的学生回答:圆柱的底面是圆面,侧面是曲面.)二.新课展开、重难点突破1、圆锥的基本概念在右图的圆锥中,连结圆锥的顶点S和底面圆上任意一点的线段SA、SA1……叫做圆锥的母线,连接顶点S与底面圆的圆心O的线段叫做圆锥的高。
2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系右图中,将圆锥的侧面沿母线l剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形的弧长等于什么?3、圆锥侧面积计算公式从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S圆锥侧=S扇形=·2πr · l = πrl4、圆锥全面积计算公式S圆锥全=S圆锥侧+S圆锥底面= πr l +πr 2=πr(l +r)例1、一个圆锥形零件的母线长为a,底面的半径为r,求这个圆锥形零件的侧面积和全面积.解圆锥的侧面展开后是一个扇形,该扇形的半径为a,扇形的弧长为2πr,所以S侧=×2πr×a=πra;S底=πr2;S=πra+πr2.答:这个圆锥形零件的侧面积为πra,全面积为πra+πr2例2 在右图中的扇形中,半径R=10,圆心角θ =144°,用这个扇形围成一个圆锥的侧面。
人教版九年级数学上册24.4.2《圆锥的侧面积和全面积》教学设计
人教版九年级数学上册24.4.2《圆锥的侧面积和全面积》教学设计一. 教材分析《圆锥的侧面积和全面积》是人教版九年级数学上册第24章“圆锥”的一部分。
本节内容是在学生已经掌握了圆锥的定义、性质以及圆锥的体积计算的基础上进行学习的,是进一步深化学生对圆锥的理解和认识。
教材从实际应用出发,引导学生探究圆锥的侧面积和全面积的计算方法,从而提高学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于圆锥的基本概念和性质有一定的了解。
但是,对于圆锥的侧面积和全面积的计算方法,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等途径,自主探究圆锥的侧面积和全面积的计算方法。
三. 教学目标1.让学生掌握圆锥的侧面积和全面积的计算方法。
2.培养学生的空间想象能力和解决问题的能力。
3.提高学生的合作交流和自主探究能力。
四. 教学重难点1.圆锥的侧面积和全面积的计算方法。
2.如何将实际问题转化为数学问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生自主探究圆锥的侧面积和全面积的计算方法。
2.利用多媒体课件和实物模型,帮助学生直观地理解圆锥的侧面积和全面积的概念。
3.采用小组合作交流的方式,让学生在讨论中解决问题,提高学生的合作交流能力。
六. 教学准备1.多媒体课件和实物模型。
2.圆锥的侧面展开图和全面积计算公式。
3.练习题和答案。
七. 教学过程1.导入(5分钟)教师通过展示圆锥的实物模型,引导学生回顾圆锥的定义和性质。
然后提出问题:“圆锥的侧面积和全面积如何计算呢?”从而引出本节课的主题。
2.呈现(10分钟)教师利用多媒体课件,展示圆锥的侧面展开图,引导学生观察和思考圆锥的侧面积和全面积的计算方法。
在这个过程中,教师引导学生发现圆锥的侧面积等于侧面展开图的面积,全面积等于底面积加上侧面积。
3.操练(10分钟)教师给出一些圆锥的侧面积和全面积的计算题目,让学生独立完成。
九年级数学上册 24.4 第2课时 圆锥的侧面积和全面积教案1 新人教版(2021年最新整理)
(贵州专用)2017秋九年级数学上册24.4 第2课时圆锥的侧面积和全面积教案1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((贵州专用)2017秋九年级数学上册24.4 第2课时圆锥的侧面积和全面积教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(贵州专用)2017秋九年级数学上册24.4 第2课时圆锥的侧面积和全面积教案1 (新版)新人教版的全部内容。
第2课时圆锥的侧面积和全面积1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.一、情境导入扇子是引风用品,夏令必备之物.中国扇文化有着深厚的文化底蕴,与竹文化、道教文化有着密切关系.历来中国有“制扇王国”之称.观察可以发现扇形是圆的一部分,你会求扇形的面积吗?二、合作探究探究点一:圆锥的侧面展开图【类型一】求圆锥的侧面积小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )A.270πcm2 B.540πcm2C.135πcm2 D.216πcm2解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.【类型二】求圆锥底面的半径用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1。
人教版九年级数学上册24.4圆锥的侧面积和全面积(2)教案
第二十四章 圆 24.4 弧长和扇形面积第2课时 圆锥的侧面积和全面积课题24.4 圆锥的侧面积和全面积(2)授课人教学目标知识技能 会计算圆锥的侧面积和全面积,并会解决实际问题;数学思考增强学生用数学知识解决实际问题的能力,同时还可以培养学生的空间观念; 问题解决 掌握圆锥的侧面积和全面积的计算方法,并可以解决一些实际问题; 情感态度引导学生对圆锥展开图的认识,培养学生空间观念,激发学生的好奇心和求知欲,并在运用数学知识解答实际问题点的活动中获取成功的体验,建立学习的自信心;教学重点 圆锥的侧面积和全面积的计算;教学难点 明确圆锥各个元素与侧面展开图扇形的各元素的对应关系;授课类型 新授课课时 第二课时教具多媒体教学活动教学步骤师生活动设计意图 回顾((多媒体演示) 问题:1.弧长和扇形面积的计算公式是什么?2.什么是圆锥?请描述圆锥的形状,并列举生活常见的圆锥的形状. 师生活动:教师引导学生进行解答,并适时作出补充和讲解.让学生独立思考后,教师做好总结,为本课学习做好准备. 活动一: 创设情境 导入新课 【课堂引入】 (多媒体展示)伴随着优美的音乐进入了蒙古大草原,看到了雪白的蒙古包,看到雪白的蒙古包感受到圆锥的存在. 老师展示圆锥形小帽,出示问题:你能用手上的长方形白纸折叠出这种圆锥形帽子吗? 学生先认真观察圆锥形帽子,再尝试用手中的长方形白纸折叠圆锥形帽子.小组内讨论、交流做法,教师做好巡视指导.初步尝试、体验,产生悬念,造成认知冲突,从而激发学生兴趣,使学生产生强烈的求知欲望.活动二:实践探究交流新知1. 探究圆锥的展开图:活动一:老师展示圆锥形小帽子,结合实物介绍圆锥的底面、侧面、母线、高等概念.学生边听、边理解、边记忆.活动二:老师沿圆锥的一条母线剪开,然后用双面胶粘贴在黑板上,老师引导学生通过观察得出圆锥的侧面展开图是扇形.问题:怎样才能制作出这种圆锥形的小帽子?”老师引导学生观察、分析、比较出展开扇形与圆锥的关系,进行演示,让学生有意识地观察.学生分组讨论,合作探究出展开的扇形半径、弧长与圆锥的母线,底面周长的关系.教师做好总结:①圆锥的侧面展开图是一个扇形;②圆锥的母线是展开图中扇形的半径;③圆锥底面圆的周长是展开图中扇形的弧长;④圆锥的侧面积是展开图中扇形的面积;2.探究面积公式:问题:如果设圆锥的底面半径为r,母线为l,那么圆锥侧面积怎么计算?全面积呢?教师引导学生进行思考后,全班进行交流,最后学生写出认为正确的计算公式,教师给予讲解.圆锥的侧面积就是展开图中扇形的面积,扇形的弧长等于圆锥底面圆的周长2πr,半径为圆锥的母线l,根据扇形面积.公式得:圆锥的全面积是由一个底面和一个侧面组成,所以全面积是.教师与学生共同总结,归纳,给予学生充分的时间观察图形,理解公式.1.学生在小学已经初步认识了圆锥,但对底面、侧面,尤其是母线、高等概念的理解可能还不是很到位,在此通过实物对这些概念作一简介,既形象又直观,为后面的探究和推导展开扇形的圆心角公式和圆锥的侧面积公式做好了准备。
九年级数学上册(人教版)配套教学教案24.4第2课时圆锥的侧面积和全面积1
全新修订版教学设计(教案)九年级数学上册老师的必备资料家长的帮教助手学生的课堂再现人教版(RJ)第2课时圆锥的侧面积和全面积1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.一、情境导入扇子是引风用品,夏令必备之物.中国扇文化有着深厚的文化底蕴,与竹文化、道教文化有着密切关系.历来中国有“制扇王国”之称.观察可以发现扇形是圆的一部分,你会求扇形的面积吗?二、合作探究探究点一:圆锥的侧面展开图【类型一】求圆锥的侧面积小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( ) A.270πcm2 B.540πcm2C.135πcm2 D.216πcm2解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.【类型二】求圆锥底面的半径用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A.2πcm B.1.5cm C.πcm D.1cm解析:设底面半径为r,根据底面圆的周长等于扇形的弧长,可得:2πr=120×3π180,∴r=1,故选 D.方法总结:用扇形围成圆锥时,扇形的弧长是底面圆的周长.扇形的弧长公式为l =nπr180.【类型三】求圆锥的高小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是( )A.4cmB.6cmC.8cmD.2cm解析:如图,∵圆锥的底面圆周长=扇形的弧长=6πcm,圆锥的底面圆周长=2π·OB,∴2π·OB=6π解得OB=3.又∵圆锥的母线长AB=扇形的半径=5cm,∴圆锥的高OA=AB2-OB2=4cm.故答案选 A.方法总结:这类题要抓住两个要点: 1.圆锥的母线长为扇形的半径; 2.圆锥的底面圆周长为扇形的弧长.再结合题意,综合运用勾股定理、方程思想就可解决.【类型四】圆锥的侧面展开图的圆心角一个圆锥的侧面积是底面积的2倍,则此圆锥侧面展开图的圆心角是( )。
人教版九年级上册数学同步教学课件-第24章-24.4 第2课时圆锥的侧面积和全面积
(1)l = 2,r=1 则 h=___3____.
(2) h =3, r=4 则 l =___5____. (3) l = 10, h = 8 则r=__6_____.
hl
Or
数学课堂教学课件设计
2 圆锥的侧面展开图
新课讲解
思考:圆锥的侧面展开图是什么图形?
圆锥的侧面展开图是扇形
数学课堂教学课件设计
数学课堂教学课件设计
新课讲解
解:如图是一个蒙古包示意图.
根据题意,下部圆柱的底面积为12m2,高为h2=1.8m;上
部圆锥的高h1=3.2-1.8=1.4(m).
圆柱的底面圆的半径
h1
r 12 1.95( 4 m),
h2
侧面积为2π×1.954×1.8≈22.10(m2),
r
圆锥的母线长为 l 1.9542 1.42 2.404m.
扇形
l
o
r
新课讲解
问题:
1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形, 这个扇形的弧长与底面的周长有什么关系? 2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一 条线段相等?
数学课堂教学课件设计
★概念对比
要点归纳
r
扇 形 l n r
180 l
l
侧面 展开图
C 2 r
r
o
1.其侧面展开图扇形的半径=母线的长l
则这个圆锥的侧面积为 240πcm2 ,全面积为 384πcm2 .
2.一个圆锥形的冰淇淋纸筒,其底面直径为6cm, 高为4cm, 围成这样的冰淇淋纸筒所需纸片的面积为( D )
A.66cm2
B.30cm2
C. 28cm2
D.15cm2
初中数学九年级上册(人教版)精品学案-24.4 第2课时 圆锥的侧面积和全面积2.doc
24.4.2 圆锥的侧面积和全面积姓 名: 班级: 组别: 评定等级【自主学习】(一)复习巩固:1.弧长的计算公式: .2.扇形面积的计算公式: .3.已知扇形的面积为4cm 2,弧长为4cm ,求扇形的半径.(二)新知导学1.圆锥的侧面展开图圆锥的侧面展开图是一个 .圆锥的母线就是扇形的 .圆锥底面圆的周长就是扇形的 .2.如果圆锥的母线长为l ,底面的半径为r ,那么S 侧= ,S 全= .【合作探究】1.已知圆锥的母线长6 cm ;底面半径为 3 cm ,求圆锥的侧面展开图中扇形的圆心角.2.已知:一个圆锥的侧面展开图是圆心角为36°的扇形,扇形面积为10 cm 2.求这圆锥的表面积.【自我检测】1.已知圆锥的高为5,底面半径为2,则该圆锥侧面展开图的面积是( )A .25π B .2π C .5π D .6π2.圆锥的高为3cm , 母线长为5cm , 则它的表面积是( )cm2.A .20pB .36pC .16pD .28p3.已知圆锥的底面半径为 3 , 母线长为12 , 那么圆锥侧面展开图所成扇形的圆角为( )A .180°B .120°C .90°D .135°4.如果圆锥的高与底面直径相等 , 则底面面积与侧面积之比为( )A .1∶5B .2∶5C .∶D .2∶35.边长为a 的等边三角形 , 绕它一边上的高所在直线旋转180° , 所得几何体的表面积为( )A .243aB .243a πC .243a πD .π2a6.若底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高是( )cm .A .8B .91C .6D .47.在一个边长为4cm 正方形里作一个扇形(如图所示) , 再将这个扇形剪下卷成一个圆锥的侧面 , 则这个圆锥的高为( )cm .A .253B .15C .7D .13 8.用圆心角为120° , 半径为6cm 的扇形围成圆锥的侧面 , 则这个圆锥的高为( )A .4B .42C .22D .329.△ABC 中 , AB=6cm , ∠A=30° , ∠B=15° , 则△ABC 绕直线AC 旋转一周所得几何体的表面积为( )cm 2.A .(18+92)πB .18+92C .(36+182)πD .36+18210.圆锥的母线长为10cm , 底面半径为3cm , 那么圆锥的侧面积为( )cm2.A .30B .30pC .60pD .15p11.粮仓的顶部是圆锥形,这个圆锥的底面直径是4 m ,母线长3 m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A .6 m2B .6πm2C .12 m2D .12πm212.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( )A .aB .a 33C .a 3D .a 23 13.一个圆锥的高为310cm ,侧面展开图是一个半圆,则圆锥的全面积是( )A .200πcm2B .300πcm2C .400πcm2D .360πcm214.一个圆锥形的烟囱帽的侧面积为2000πcm2,母线长为50cm ,那么这个烟囱帽的底面直径为( )A .80cmB .100cmC .40cmD .5cm15.已知圆锥的母线长是10cm ,侧面展开图的面积是60πcm2,则这个圆锥的底面半径是 cm .16.已知圆锥的底面半径是2cm ,母线长是5cm ,则它的侧面积是 .17.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积CB A。
人教版九年级上册数学教案全集24.4第2课时圆锥的侧面积和全面积1
第2课时圆锥的侧面积和全面积1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.一、情境导入扇子是引风用品,夏令必备之物.中国扇文化有着深厚的文化底蕴,与竹文化、道教文化有着密切关系.历来中国有“制扇王国”之称.观察可以发现扇形是圆的一部分,你会求扇形的面积吗?二、合作探究探究点一:圆锥的侧面展开图【类型一】求圆锥的侧面积小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )A.270πcm2 B.540πcm2C.135πcm2 D.216πcm2解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.【类型二】求圆锥底面的半径用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A.2πcm B.1.5cm C.πcm D.1cm解析:设底面半径为r,根据底面圆的周长等于扇形的弧长,可得:2πr=120×3π180,∴r=1,故选D.方法总结:用扇形围成圆锥时,扇形的弧长是底面圆的周长.扇形的弧长公式为l=nπr180.【类型三】求圆锥的高小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是()A.4cmB.6cmC.8cmD.2cm解析:如图,∵圆锥的底面圆周长=扇形的弧长=6πcm ,圆锥的底面圆周长=2π·OB ,∴2π·OB =6π解得OB =3.又∵圆锥的母线长AB =扇形的半径=5cm ,∴圆锥的高OA =AB 2-OB 2=4cm.故答案选A.方法总结:这类题要抓住两个要点:1.圆锥的母线长为扇形的半径;2.圆锥的底面圆周长为扇形的弧长.再结合题意,综合运用勾股定理、方程思想就可解决.【类型四】圆锥的侧面展开图的圆心角一个圆锥的侧面积是底面积的2倍,则此圆锥侧面展开图的圆心角是( )A .120°B .180°C .240°D .300°解析:设圆锥的母线长为R ,底面半径为r ,则由侧面积是底面积的2倍可知侧面积为2πr 2,则2πr 2=πRr ,解得R =2r ,利用弧长公式可列等式2πr =n π·2r180,解方程得n =180°.故选B.方法总结:解决关于圆柱和圆锥的侧面展开图的计算问题时,将立体图形和展开后的平面图形的各个量的对应关系联系起来至关重要.三、板书设计教学过程中,强调学生应熟练掌握相关公式并会灵活运用.要充分发挥空间想象力,把立体图形与展开后的平面图形各个量准确对应起来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时圆锥的侧面积和全面积
一、基本目标
【知识与技能】
1.了解圆锥母线的概念,理解圆锥侧面积计算公式.
2.理解圆锥全面积的计算公式,并会应用公式解决问题.
【过程与方法】
通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.
【情感态度与价值观】
1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.
2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.
二、重难点目标
【教学重点】
圆锥侧面积和全面积的计算.
【教学难点】
探索圆锥侧面积计算公式.
环节1自学提纲,生成问题
【5 min阅读】
阅读教材P113~P114的内容,完成下面练习.
【3 min反馈】
1.圆锥是由一个__底面__和一个__侧面__围成的几何体,连接圆锥__顶点__和底面圆周上任意一点的线段叫做圆锥的母线,连接顶点和__底面圆心__的线段叫做圆锥的高.2.圆锥的侧面展开图是一个__扇形__,其半径为圆锥的__母线__,弧长是圆锥底面圆的__周长__.
3.圆锥的母线l,圆锥的高h,底面圆的半径r,存在关系式:__l2=h2+r2__,圆锥的侧面积S=__πlr__;圆锥的全面积S全=S底+S侧=__πr2__+__πlr__.
4.已知圆锥的底面直径为4,母线长为6,则它的侧面积为__12π____.
5.圆锥的底面半径为3 cm ,母线长为6 cm ,则这个圆锥侧面展开图扇形的圆心角是__180°__. 6.如果圆锥的高为3 cm ,母线长为5 cm ,则圆锥的全面积是__36π__ cm 2.
环节2 合作探究,解决问题
【活动1】 小组讨论(师生对学)
【例1】圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58 cm ,高为20 cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1 cm 2)
【互动探索】(引发学生思考)首先理解“纸帽”的侧面展开图是什么?其次要求纸帽的面积,即求圆锥的侧面积,需要哪些条件?
【解答】设纸帽的底面半径为r cm ,母线长为l cm.
则r =582π,l =⎝⎛⎭
⎫582π2+202≈22.03(cm), S 圆锥侧=πrl ≈12
×58×22.03=638.87(cm 2). 638.87×20=12777.4(cm 2).
至少需要12777.4 cm 2的纸.
【互动总结】(学生总结,老师点评)在解决实际问题时,首先要考虑求的是圆锥的侧面积还是全面积,确定好以后,找到需要的数据,代入公式计算即可.
【活动2】 巩固练习(学生独学)
1.圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是__180°__.
2.一个扇形,半径为30 cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为__10_cm__.
3.如图所示,已知扇形AOB 的半径为6 cm ,圆心角的度数为120°,若将此扇形围成一个圆锥.
(1)求围成的圆锥的侧面积;
(2)求该圆锥的底面半径.
解:(1)圆锥的侧面积=120π×62
360
=12π(cm 2). (2)设该圆锥的底面半径为r .
根据题意,得2πr =120π×6180
,解得r =2. 即圆锥的底面半径为2 cm.
【活动3】 拓展延伸(学生对学)
【例2】如图,已知Rt △ABC 的斜边AB =13 cm ,一条直角边AC =5 cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.
【互动探索】(引发学生思考)要求这个几何体的表面积,解题的关键是先分析出这个几何体的表面积由哪些部分组合而成,再选择相应的公式进行求解.
【解答】在Rt △ABC 中,AB =13 cm ,AC =5 cm ,
∴BC =12 cm.
∵OC ·AB =BC ·AC ,
∴r =OC =BC ·AC AB =5×1213=6013
(cm). ∴S 表=πr (BC +AC )=π×6013
×(12+5) =102013
π (cm 2). 【互动总结】(学生总结,老师点评)在计算组合体的表面积时,需要将其拆分成简单的几何体,分别计算各几何体的表面积,注意重叠的部分不需要计算.
环节3 课堂小结,当堂达标
(学生总结,老师点评)
请完成本课时对应练习!。