基于空间电磁能的无线传感器自供能系统及自供能方法
传感器都有哪些种类(总结篇)
性电路消除热电势与温度的⾮线性误差,最后放⼤转换为4~20mA电流输出信号。
为防⽌热电偶测量中由于电偶断丝⽽使控温失效造成事故,传感器中还设有断电保护电路。
当热电偶断丝或接解不良时,传感器会输出最⼤值(28mA)以使仪表切断电源。
⼀体化温度传感器具有结构简单、节省引线、输出信号⼤、抗⼲扰能⼒强、线性好、显⽰仪表简单、固体模块抗震防潮、有反接保护和限流保护、⼯作可靠等优点。
⼀体化温度传感器的输出为统⼀的 4~20mA信号;可与微机系统或其它常规仪表匹配使⽤。
也可⽤户要求做成防爆型或防⽕型测量仪表。
液位1、浮球式液位传感器浮球式液位传感器由磁性浮球、测量导管、信号单元、电⼦单元、接线盒及安装件组成。
⼀般磁性浮球的⽐重⼩于0.5,可漂于液⾯之上并沿测量导管上下移动。
导管内装有测量元件,它可以在外磁作⽤下将被测液位信号转换成正⽐于液位变化的电阻信号,并将电⼦单元转换成4~20mA或其它标准信号输出。
该传感器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出最⼤电流不超过28mA,因⽽能够可靠地保护电源并使⼆次仪表不被损坏。
2、浮简式液位传感器浮筒式液位传感器是将磁性浮球改为浮筒,它是根据阿基⽶德浮⼒原理设计的。
浮筒式液位传感器是利⽤微⼩的⾦属膜应变传感技术来测量液体的液位、界位或密度的。
它在⼯作时可以通过现场按键来进⾏常规的设定操作。
3、静压或液位传感器该传感器利⽤液体静压⼒的测量原理⼯作。
它⼀般选⽤硅压⼒测压传感器将测量到的压⼒转换成电信号,再经放⼤电路放⼤和补偿电路补偿,最后以4~20mA或0~10mA电流⽅式输出。
真空度真空度传感器,采⽤先进的硅微机械加⼯技术⽣产,以集成硅压阻⼒敏元件作为传感器的核⼼元件制成的绝对压⼒变送器,由于采⽤硅-硅直接键合或硅-派勒克斯玻璃静电键合形成的真空参考压⼒腔,及⼀系列⽆应⼒封装技术及精密温度补偿技术,因⽽具有稳定性优良、精度⾼的突出优点,适⽤于各种情况下绝对压⼒的测量与控制。
新能源汽车电磁感应无线充电技术的研究
磁耦合谐振式技术是众多无线电能传输技术中的一种,它包括磁耦合感应式无线电能传输、磁耦合 谐振式无线电能传输和磁耦合双模无线电能传输。
磁耦合谐振式技术的理论是耦合模式。首先在发射侧电源变换电路依次由 380 V 交流电整流、斩波 和逆变成高频交流电,再通过发射线圈形成电能传输磁场变成电磁场能量,最后经接收线圈作用后形成2. 常见的无ຫໍສະໝຸດ 充电技术2.1. 磁场共振式
磁场共振式是通过线圈进行能量耦合,通过电磁线圈产生的电流,实现电能的传递。无线充电的 关键设备是电力发送器和电力接收器,即感应线圈,其中包括大电流 FPC 线圈和及精密金属线圈,FPC 具有一致性好,柔性强等优点,而精密线圈则具有电器性能占优,设计简单的特点。电力发送器符合 WPC 标准的设备线圈有到 50%占空比谐振半桥的作用。电力接收器关键电路是用于接收电力初级线圈,将未 稳压的经过稳压调节电路,尤其是负责身份的认证和电源要求的所有通信。但由于所需线圈直径较大, 两端频率要求相同,又要防止相同频率电磁波进行干扰,在技术上仍存在极大困难。技术电路图如图 1。
优点:传输速度快,可有效解决兼容性。 缺点:过度依赖谐振腔功能,设备技术成本要求高;发射和接受装置须在 同轴或圆心偏差在一定个范围内,否则会导致传输效率低或失谐。 应用:电动车无线充电,手机无线充电。
优点:技术简单;电能利用高,成本低,节能环保;易操作,安全可靠; 电能转化效率高,技术应用成熟。 缺点:远距离传输会降低传输电能效率,只能在短距离的范围里传输;设 备体积大,充电范围和位置都要固定,金属感应接触器发热快。 应用:电磁炉,电动牙刷,手机,电动汽车等。
彭海洋 等
3. 电磁感应无线充电技术的设计原理
无线充电技术是一种新型的能量传输技术,该技术摆脱线路的限制,是的电器电源不用接触便可充 电,在安全性、可靠性、便捷灵活性显示出比传统接触式充电器具有更高的优势。如今,无线充电技术 已从梦想变成了现实,从科技研究转移到了实际的生活应用领域。
磁流变阻尼器的自传感与自供能原理及关键技术
磁流变阻尼器的自传感与自供能原理及关键技术磁流变阻尼器是一种利用磁流变效应来实现阻尼控制的装置。
它具有自传感和自供能的特点,可以在无需外部电源的情况下实现阻尼控制,因此在工业生产和机械控制领域得到广泛应用。
磁流变阻尼器的自传感原理是指在磁场作用下,磁流变材料内部会产生感应电动势,这个电动势可以用来检测磁流变材料的变形情况。
当磁流变材料受到外力作用时,会发生形变,从而改变磁场分布,进而产生感应电动势。
通过测量这个电动势的大小,可以得到磁流变材料的变形情况,从而实现阻尼控制。
磁流变阻尼器的自供能原理是指在磁场作用下,磁流变材料内部会产生阻尼力,这个阻尼力可以用来控制机械系统的运动。
当机械系统受到外力作用时,会产生振动,磁流变阻尼器会根据自身的阻尼特性产生相应的阻尼力,从而抑制机械系统的振动。
由于磁流变阻尼器不需要外部电源,因此可以在恶劣的环境下使用,具有很高的可靠性和稳定性。
磁流变阻尼器的关键技术包括磁流变材料的制备和性能优化、磁路设计、控制电路设计等。
磁流变材料的制备需要控制材料的成分、微观结构和物理性能,以满足不同的应用需求。
磁路设计需要考虑磁场分布、磁场强度和磁场稳定性等因素,以确保磁流变阻尼器的阻尼特性稳定可靠。
控制电路设计需要考虑磁流变阻尼器的自供能和自传感特性,以实现精确的阻尼控制。
总之,磁流变阻尼器的自传感和自供能特性使其在工业生产和机械控制领域得到广泛应用。
磁流变阻尼器的关键技术包括磁流变材料的制备和性能优化、磁路设计、控制电路设计等,这些技术的不断发展和创新将进一步推动磁流变阻尼器的应用和发展。
IoT传感器网络的能量收集与自供电技术研究
IoT传感器网络的能量收集与自供电技术研究物联网(IoT)传感器网络是一种连接多个物理设备和传感器的网络系统,它能够实现设备之间的通信和数据传输。
然而,传感器网络的长期运行面临着能量供应的问题。
为了解决这个问题,研究人员一直在努力开发各种能量收集和自供电技术。
本文将探讨IoT传感器网络的能量收集和自供电技术的研究进展和应用。
一、能量收集技术1.光能收集技术光能收集技术是一种常用的能量收集方法,通过太阳能电池板将光能转化为电能。
太阳能电池板可以直接吸收太阳光并将其转化为电能,从而供给传感器网络运行所需的能量。
这种方法具有使用方便、成本低廉等优点,在室外环境下特别有效。
然而,室内环境下的光能收集较为困难,因此需要结合其他能量收集技术来保证能量供应的连续性。
2.振动能收集技术振动能收集技术是一种利用振动源产生的动能来收集能量的方法。
通过将振动能收集装置与物体相连,当物体发生振动时,装置会将振动能转化为电能。
这种方法适用于环境中存在振动源的情况,比如交通运输工具、机械设备等。
振动能收集技术的优点在于可以实现能量的自动收集,但其能量密度相对较低,只适用于传感器网络中能量需求较低的应用。
3.温差能收集技术温差能收集技术是一种利用温差产生的热能来收集能量的方法。
通过将温差能收集装置放置在温差较大的环境中,热能可以被转化为电能供给传感器网络。
这种方法适用于环境中存在温差巨大的情况,比如火电厂、太阳能发电站等。
温差能收集技术的优点在于能量密度较高,但需要注意收集装置的热量损失问题,以保证能量收集的有效性。
二、自供电技术1.能量管理技术能量管理技术是一种通过优化能量使用和调整传感器网络的工作模式来实现自供电的技术。
通过采用智能能量管理算法,可以根据传感器节点的能量需求情况合理分配能量资源,并在不同时间段对传感器网络进行节能调整,延长其运行时间。
这种技术需要对传感器网络的能量消耗模型进行建模和优化,以实现最佳的能量利用效果。
自供能无线传感器—整体结构
自供能无线传感器整体结构案例一:A Batteryless 19 卩W MICS/ISMmd Energy Harvesting Body Sensor Node SoC for ExG Applications本文提出了一种超低功耗的无电池自获能身体传感器节点(BSN,如图1所示。
该节点采用了130 nm CMOS工艺进行制造,拥有采集、处理和无线传输ECG(心电图)、EMG (肌电图)、EEG(脑电图)信号的能力。
此节点可在仅依靠自身从外部获取的能量的情况下,进行心电图心率提取以及心房颤动检测,而且仅耗能19 WCMOS3 2mm图1节点实图1. 节点整体结构图2给出了本文设计的BSN的系统框图,从图中可知,该节点包含四个子系统。
第一,能量获取及电源稳压模块将TEG输出的30mV电压通过升压转换器提升至稳定的1.35V。
此外,它通过稳压器向节点上的其他部分提供了五种不同的稳定电压。
第二,四通道的模拟前端进行生物信号采集,它首先通过可编程增益放大器将几卩V的生物信号进行放大,随后输入8位逐次逼近型ADC H行模数转换。
第三,模数转换后的数据输入数字信号处理子系统。
这部分包含一个传统的数字电源管理芯片(DPM、一个通用微处理器、可编程FIR滤波器、1.5KB 指令SRAM/ROM4KB数据存储器及用于心电图心率提取、心房颤动检测和脑电图频谱能量计算的硬件电路。
最后,工作在400/433MHZ MICS/ISM频带的mW以下功耗的倍频发射机以BFSK调制方式进行数据传输。
2. 能量获取及电源稳压模块由于TEG的输出电压仅有30mV所以需要一个升压转换器将30mV的输入电压升高至可用的电源电压。
此外,由于此升压斩波器需要600mV的电压用于启动内部晶振及逻辑控制电路,因此本文设计了无线射频获能电路为升压转换器提供启动电压。
图3为节点启动过程中储能电容上电压的变化情况。
进行升压 后的电压随后通过四个线性稳压器产生不同的稳定电压,供其余电路使用,如 图4所示。
基于传感器的自适应控制技术研究
基于传感器的自适应控制技术研究一、前言伴随着物联网的迅猛发展,传感器技术成为了物联网中最重要的技术之一。
通过传感器可以收集各种实时数据,而这些数据可以为我们提供更精准的反馈,为控制和决策提供基础。
在这种情况下,基于传感器的自适应控制技术应运而生。
本文将对其进行深入探讨。
二、传感器技术应用介绍1. 传感器技术在智能家居中的应用智能家居是将传感器、自适应控制技术、网络和移动终端等技术融合应用于家庭环境,实现智能化、便捷化、舒适化的家庭生活方式。
在智能家居中,传感器通过无线网络将采集到的温度、湿度、光照等信息传输到控制中心,实现自动化控制。
例如,传感器可以检测到室内温度降低,然后发送指令给空调控制中心,启动空调制热或制冷功能,以保持一个舒适的室内温度。
2. 传感器技术在智能交通中的应用智能交通是指通过物联网、云计算和大数据等技术手段,利用传感器和通信设备来实现交通信息的实时分析、调度和管理,进而达到提高交通效率、优化交通结构、降低交通事故等目标。
在智能交通中,传感器可以通过实时监测车辆的位置、速度和状态等信息,帮助交通管理部门实现车流量的监管和道路拥堵的缓解。
例如,传感器可以集齐一定的车辆人流数据,预测出道路流量情况,从而为交通管理部门提供精准的决策支持。
三、基于传感器的自适应控制技术基于传感器的自适应控制技术,简称传感器自适应控制技术。
它是指通过实时监测和分析传感器数据,运用自适应算法对控制系统进行优化,帮助系统实现自主调节、自我学习和自我适应的能力。
传感器自适应控制技术可以广泛应用于工业控制、交通控制、环境控制、机器人技术等领域。
1. 传感器自适应控制技术的基本原理传感器自适应控制技术的基本原理是将传感器所收集到的数据,通过算法模型进行分析,得出对控制系统优化的控制策略。
在传感器自适应控制技术中,传感器负责收集实时数据,算法模型基于这些数据对控制系统进行动态建模和参数调整。
2. 传感器自适应控制技术的应用案例(1)工业领域在工业自动化生产过程中,常常需要对传感器数据进行实时监测和控制,以提高生产效率和质量。
基于ZigBee无线传感器网络的智能家居系统
基于ZigBee无线传感器网络的智能家居系统苏李果;朱燕【摘要】随着电子、计算机和通信技术的发展以及人们生活水平的提高,人们对每日息息相关的家居功能有了更高的期望。
为了改进现有大多数现场总线式系统布线和维护难的局面,提出了一种基于 ZigBee 无线传感器网络的智能家居系统实现方案。
该系统包括ZigBee无线传感器网络、智能家居网关和移动手机终端三个部分,可以通过智能家居网关直观地掌握所有节点上各种传感器的工作状态,集中对各种电器进行控制,并可通过移动手机终端实现远程控制。
经测试该系统运行良好,达到了预期的设计目标。
%With the rapid development of electronic, computer and communication technology and the improvement ofpeople's living standard, people have higher expectations for the home furnishing function. To improve the difficult situation of wiring and maintenance in the most fieldbus system, this paper provides a smart home system solution based on ZigBee Wireless Sensor network. This System includes ZigBee Wireless Sensor network, smart home system gateway and mobile phone end device. Users can master the working state of all the sensors in the nodes intuitively, and they can centralize control the Electrical appliances. And the remote control mode can be realized through a mobile terminal, too. After the test, this system works well and reaches the desired design goal.【期刊名称】《计算机系统应用》【年(卷),期】2015(000)006【总页数】5页(P66-70)【关键词】ZigBee;无线传感器网络;智能家居;协调器节点;终端节点【作者】苏李果;朱燕【作者单位】闽西职业技术学院电气工程系,龙岩 364021;娄底职业技术学院电子信息工程系,娄底 417000【正文语种】中文21世纪是信息化的时代, 随着电子、计算机和通信技术的发展以及人们生活水平的提高, 人们对每日息息相关的家居功能有了更高的期望. 不仅要求住宅能满足一般的居住需求, 还越来越多地注重家庭生活中每个成员的安全、舒适与便利程度. 这样的需求促进了智能家居产品诞生, 它的基础平台是住宅, 集合了建筑布线、互联通信、家居安防、系统自控及音视频技术, 创建了一个高效的日常生活事务的管理系统, 有效地提升了家庭生活的安全、方便和舒适性, 并满足人们对于环保的需求. 自20世纪末智能家居的理念引入到国内, 经过了十多年的发展, 我国的智能家居的发展进入了融合演变期, 呈现快速增长的势头. 但目前大多数系统还是采用现场总线式的连接方式, 给布线安装和维护方面带来了不便[1]. 基于上述原因, 本文提出了一种基于ZigBee无线传感器网络的智能家居系统实现方案.1 系统架构与工作原理本系统主要由三部分构成: ZigBee无线传感器网络、智能家居网关和移动手机终端.ZigBee无线传感器网络由多个终端节点和一个协调器组成, 每个终端节点根据实际的监测需求连接多种传感器或受控设备——如温度、湿度、有毒气体、光敏、窗帘电机、红外遥控转发器等. 它将采集到的传感器数据汇聚至协调器, 并接收协调器发来的命令. 协调器通过UART串口连接智能家居网关, 负责与上位机控制软件进行交互.智能家居网关是整个系统的控制核心, 它是内部ZigBee无线传感器网络与外部互联网连接的中转站. 它具备可视化的界面, 在其上可对各终端节点的实时状态进行监控. 对内可通过ZigBee协调器转发各种查询和控制命令, 对外可提供TCP/IP Socket连接Server服务, 供移动手机终端连接, 实现无线远程监控[2].图1 系统构成2 系统硬件设计本系统中智能家居网关采用PC机作为运行环境, 因此主要对ZigBee无线传感器网络的硬件进行了设计. 系统选用了美国TI公司的CC2530作为无线通信的主控芯片, CC2530内部包含一个8051内核MCU, 拥有ADC、UART等丰富的外设资源, 同时还集成了高性能的射频收发器, 是一个典型的SOC片上系统. 它功耗极低, 数据传输响应时间短, 可满足本系统的设计需求.2.1 终端节点硬件设计终端节点需要完成传感器数据的采集, 定时发送至协调器, 并接受协调器发来的控制命令. 因此终端节点的硬件设计主要包括数据采集与控制模块、数据处理与无线通信模块和电源模块的设计.(1) 数据采集与控制模块该模块根据终端节点的需求选择各种不同的传感器或控制装置, 由于CC2530内部带A/D转换的外设功能, 因此对于输出为模拟量的传感器可以直连该芯片. 对于窗帘控制节点, 其上需连接光照强度检测传感器和控制电机的继电器. 前者选择光敏电阻, 采用分压电路的接法, 利用光照强度不同时其阻值改变导致两端电压值改变的特性, 可实现光照等级的采集, 用于窗帘自动开闭的控制. 继电器的选择应考虑其驱动电压, 由于CC2530的供电电源典型值为3.3V, 因此选择输入兼容3.3V的继电器.温湿度采集节点选择奥松电子的AM2301数字温湿度传感器, 它内部包含一个电容式感湿元件和一个NTC测温元件, 并与一个高性能8位单片机相连, 采用单总线接口, 硬件电路上直连CC2530的P0.7端口, 可直接读出温湿度数据.有毒气体检测节点选择MQ-2气体传感器, 它的电导率随着空气中可燃气体浓度的增加而增大, 其输出的模拟电压值也随之变化. 本系统中将它的输出连接LM393电压比较器, 通过电位器改变比较参考电压值可进行气体报警灵敏度的调节.(2) 数据处理与无线通信模块本系统数据处理和无线通信功能分别使用CC2530内部的8051内核和射频收发器, CC2530为SOC片上系统, 具有很高的集成度, 所以其周边只需连接晶振和少量负载电容即可. 该模块连接了XTAL1和XTAL2两个晶振, 分别为32MHz和32.768KHz. 无线通信方面主要设计了天线电路, CC2530的射频输出为差分信号, 为了与天线的单端输出相连, 两者之间利用电感和电容设计了巴伦电路[3]. 在天线的选择上, 经过综合对比各种天线的性能, 选用SMA连接端子的鞭状天线. 数据处理和无线通信模块的电路原理图如图2所示.图2 数据处理与无线通信模块电路原理图(3) 电源模块本系统主要应用于家庭内部, 各个终端节点均能得到较为稳定的供电, 因此在供电方面选择电源供电. 使用5V直流电压输入, 选用AMS1117-3.3 DC/DC稳压芯片完成5V转3.3V, 为系统各个模块供电.2.2 协调器节点硬件设计协调器节点与智能家居网关连接, 它把从各终端节点汇聚的传感器数据转发到网关, 同时向各终端节点分发网关下达的控制命令. 协调器节点上无需连接传感器, 它在数据处理与无线通信模块和电源模块的硬件电路设计上与终端节点相同. 由于协调器与智能家居网关之间的连接端口为UART串口, 而且两者串口数据的电平标准不同——协调器上为RS232 TTL电平标准, PC端为USB接口标准, 因此系统选用PL2303芯片设计了USB与RS232 TTL电平互相转换的电路. PL2303芯片内置USB功能控制器、USB收发器、振荡器和带有全部调制解调器控制信号的UART, 具有较高的集成度, 在其周边只需连接12MHz晶振与两只电容即可构建最小系统. 协调器节点的USB转RS232接口的电路原理图如图3所示.图3 协调器节点的USB转RS232电路原理图3 系统软件设计系统软件设计包括ZigBee无线传感器网络中各个节点的程序设计、智能家居网关的监控软件的设计和移动手机终端软件的设计.3.1 数据通信协议由于ZigBee网络通信涉及查询和控制命令, 需要传输多种不同的传感器数据, 因此需要先对数据通信的协议进行设计. 数据以字节为单位, 系统规定了协调器节点的查询和控制命令的数据帧格式, 并对终端节点的响应帧格式进行了定义, 如表1所示. 其中“地址”为2个字节的短地址, “功能码”在Modbus协议的基础上针对实际应用进行扩展, “数据段”根据命令功能的不同和传感器数据位数的需求进行调整, “校验码”为前述内容的异或值.表1 ZigBee通信数据帧格式格式组成开始符地址功能码数据段校验码结束符字节数1 Byte2 Byte1 Byte0-N Byte1 Byte1 Byte 缩写STADDRFCDAXORED“功能码”的详细定义如表2所示, 查询命令所对应的“数据段”长度为0, 控制命令所对应的“数据段”长度为1.表2 功能码描述功能码FC描述数据长度 01查询所有终端节点的传感器数据002查询单个终端节点的传感器数据0 0A控制终端节点灯的亮灭1 Byte 0B控制终端节点窗帘开合1 Byte 0C外出模式, 关闭所有设备1 Byte3.2 终端节点程序设计终端节点的程序设计开发环境为IAR, 基于TI公司的Z-Stack 2007pro协议栈进行开发.终端节点在启动后先搜索协调器建立的网络并加入, 在传感器数据采集与上报的机制方面, 设计了两种模式, 一是定时采集自动上报; 二是只有接收到协调器发来的查询命令, 才唤醒节点采集并上报. 为了降低功耗, 系统设计以上两种形式当终端节点没有采集传感器数据时, 进入休眠状态[4]. 具体的程序工作流程如图4所示.图4 终端节点程序流程图3.3 协调器节点程序设计协调器在上电初始化后建立ZigBee网络, 收到终端节点的加入请求后, 允许其加入, 然后监听OSAL中串口接收事件或无线接收数据事件是否发生. 若收到智能家居网关通过串口发来的查询或控制命令, 则将其广播出去或单播给目标终端, 等待终端发回响应数据并通过串口发给网关, 然后再次进入监听状态. 若收到终端节点定时发来的传感器数据, 则直接通过串口发给网关, 最终也是再次进入监听状态. 具体的程序工作流程如图5所示.图5 协调器节点程序流程图3.4 智能家居网关软件设计本系统中智能家居网关以PC机Windows操作系统作为运行环境, 使用C++语言, 在Visual Studio 2005和数据库开发环境下, 设计了监控管理软件. 智能家居网关和ZigBee协调器节点之间采用UART串口连接, 使用MSComm控件实现了两者之间的串口通信[5]. 软件使用可视化控件直观地展示了终端节点上各种传感器的工作状态, 记录了温湿度的变化曲线. 同时为了扩展系统的远程控制的功能, 使用VC++中的Socket编程实现了TCP服务器端, 提供给远程移动手机终端连接. 通过该监控管理软件, 用户可直观地掌握所有传感器节点的工作情况, 并可集中对各种电器进行控制. 该监控管理软件的界面如图6所示.图6 智能家居网关监控管理软件界面3.5 移动手机终端软件设计移动手机终端选择Android系统作为运行平台. 终端软件的设计主要包括3个方面的内容: 一是与智能家居网关之间基于TCP/IP协议的socket通信; 二是各种传感器实时信息的更新与控制命令的传送; 三是人机界面的设计.Socket通信模块的程序设计使用了Android系统的进程间通信的机制 , 并加入了Service、Broadcast Receiver和Activity组件实现相关功能, 该模块的程序架构如图7所示.图7 移动手机终端socket通信模块程序架构从上图中可以看到, 用户在UI界面中启动连接socket服务的请求, 然后连入智能家居网关的socket服务器. 连接建立以后, 启动一个新线程, 用于发送控制命令以及接收返回的传感器实时信息. 同时该进程将传感器实时信息以广播的形式发给UI 界面的Receiver进行刷新显示.人机界面的设计主要包括socket服务器连接界面和主功能界面的设计. 主功能界面实现ZigBee各终端节点的传感器信息的实时显示, 如: 温度、湿度、可燃气体泄漏和光照度等, 同时设计了针对家中电器控制的功能模块, 如: 照明灯、风扇等, 情景模式页面设计了离家模式和在家模式, 可根据需要统一对各种传感器和电器进行控制. 设计好的人机界面如图8所示.图8 移动手机终端人机界面4 系统的连接实现与测评系统设计完成后, 为了验证方案的可行性, 对其进行了连接实现与测评. 取五个节点,其中一个为协调器, 通过UART串口连接智能家居网关, 其余四个为终端, 分别连接温度、湿度、可燃气体检测等传感器和照明灯等家用电器.系统测试主要包括组网的速度与稳定性、传感器数据采集的准确性、数据传输的响应速度以及各个情境模式的工作情况. 经过测试, 所有节点上电后, 协调器组建ZigBee网络, 所有终端可正常入网, 整个过程在3秒完成并稳定长时间工作. 各终端节点的传感器数据采集准确, 温湿度传感器的误差控制在±0.5℃, 可燃气体检测传感器不存在误报现象. 当终端节点采集到的传感器数据发生变化时, 智能家居网关与移动手机终端上可以接近实时地刷新显示, 响应速度较高, 可以达到设计的要求. 在“离家模式”下, 断开所有电器的电源和关闭窗帘, 并保持光照、温湿度和可燃气体检测传感器的运行, 以提供报警功能; “在家模式”下, 关闭光照检测传感器, 由人工控制窗帘的开闭, 同时打开电器的电源便于控制.综上所述, 该系统中智能家居网关监控管理软件工作正常, 可以实时显示ZigBee网络中各节点的状态, 可集中对照明灯等设备进行控制, 并可提供移动手机终端连接实现远程控制, 达到了设计目标. 该系统发挥了ZigBee无线传感器网络组网简单、自组织性强、适合小数据远程传输的特点, 可适应智能家居系统的工作环境, 具有很强的实用性.参考文献1 黄文凤.智慧家庭中的智能家居产业发展现状及趋势.集成电路应用,2013(10):16–18.2 方志忠.基于ZigBee的智能家居系统的设计与实现.电子制作,2014(10):33–34.3 南忠良,孙国新.基于ZigBee技术的智能家居系统设计.电子设计工程,2010(7):117–119.4 王小强,欧阳骏,黄宁淋.ZigBee无线传感器网络设计与实现.北京:化学工业出版社,2012.5 李景峰,杨丽娜,潘恒.Visual C++串口通信技术详解.北京: 机械工业出版社,2010. Smart Home System Based on ZigBee Wireless Sensor NetworkSU Li-Guo1, ZHU Yan21(Electrical Engineering Department of Minxi Vocational and Technical College, Longyan 364021, China)2(Telecom Department, Loudi Vocational and Technical College, Loudi 417000, China)Abstract:With the rapid development of electronic, computer and communication technology and the improvement of people's living standard, people have higher expectations for the home furnishing function. To improve the difficult situation of wiring and maintenance in the most fieldbus system, this paper provides a smart home system solution based on ZigBee Wireless Sensor network. This System includes ZigBee Wireless Sensor network, smart home system gateway and mobile phone end device. Users can master the working state of all the sensors in the nodes intuitively, and they can centralize control the Electrical appliances. And the remote control mode can be realized through a mobile terminal, too. After the test, this system works well and reaches the desired design goal.Key words:ZigBee; wireless sensor network; smart home; coordinator node; end device node①基金项目:湖南省教育厅科学研究青年项目(12B106)收稿时间:2014-11-19;收到修改稿时间:2014-12-29本系统主要由三部分构成: ZigBee无线传感器网络、智能家居网关和移动手机终端.ZigBee无线传感器网络由多个终端节点和一个协调器组成, 每个终端节点根据实际的监测需求连接多种传感器或受控设备——如温度、湿度、有毒气体、光敏、窗帘电机、红外遥控转发器等. 它将采集到的传感器数据汇聚至协调器, 并接收协调器发来的命令. 协调器通过UART串口连接智能家居网关, 负责与上位机控制软件进行交互.智能家居网关是整个系统的控制核心, 它是内部ZigBee无线传感器网络与外部互联网连接的中转站. 它具备可视化的界面, 在其上可对各终端节点的实时状态进行监控. 对内可通过ZigBee协调器转发各种查询和控制命令, 对外可提供TCP/IP Socket连接Server服务, 供移动手机终端连接, 实现无线远程监控[2].本系统中智能家居网关采用PC机作为运行环境, 因此主要对ZigBee无线传感器网络的硬件进行了设计. 系统选用了美国TI公司的CC2530作为无线通信的主控芯片, CC2530内部包含一个8051内核MCU, 拥有ADC、UART等丰富的外设资源, 同时还集成了高性能的射频收发器, 是一个典型的SOC片上系统. 它功耗极低, 数据传输响应时间短, 可满足本系统的设计需求.2.1 终端节点硬件设计终端节点需要完成传感器数据的采集, 定时发送至协调器, 并接受协调器发来的控制命令. 因此终端节点的硬件设计主要包括数据采集与控制模块、数据处理与无线通信模块和电源模块的设计.(1) 数据采集与控制模块该模块根据终端节点的需求选择各种不同的传感器或控制装置, 由于CC2530内部带A/D转换的外设功能, 因此对于输出为模拟量的传感器可以直连该芯片. 对于窗帘控制节点, 其上需连接光照强度检测传感器和控制电机的继电器. 前者选择光敏电阻, 采用分压电路的接法, 利用光照强度不同时其阻值改变导致两端电压值改变的特性, 可实现光照等级的采集, 用于窗帘自动开闭的控制. 继电器的选择应考虑其驱动电压, 由于CC2530的供电电源典型值为3.3V, 因此选择输入兼容3.3V的继电器.温湿度采集节点选择奥松电子的AM2301数字温湿度传感器, 它内部包含一个电容式感湿元件和一个NTC测温元件, 并与一个高性能8位单片机相连, 采用单总线接口, 硬件电路上直连CC2530的P0.7端口, 可直接读出温湿度数据.有毒气体检测节点选择MQ-2气体传感器, 它的电导率随着空气中可燃气体浓度的增加而增大, 其输出的模拟电压值也随之变化. 本系统中将它的输出连接LM393电压比较器, 通过电位器改变比较参考电压值可进行气体报警灵敏度的调节.(2) 数据处理与无线通信模块本系统数据处理和无线通信功能分别使用CC2530内部的8051内核和射频收发器, CC2530为SOC片上系统, 具有很高的集成度, 所以其周边只需连接晶振和少量负载电容即可. 该模块连接了XTAL1和XTAL2两个晶振, 分别为32MHz和32.768KHz. 无线通信方面主要设计了天线电路, CC2530的射频输出为差分信号, 为了与天线的单端输出相连, 两者之间利用电感和电容设计了巴伦电路[3]. 在天线的选择上, 经过综合对比各种天线的性能, 选用SMA连接端子的鞭状天线. 数据处理和无线通信模块的电路原理图如图2所示.(3) 电源模块本系统主要应用于家庭内部, 各个终端节点均能得到较为稳定的供电, 因此在供电方面选择电源供电. 使用5V直流电压输入, 选用AMS1117-3.3 DC/DC稳压芯片完成5V转3.3V, 为系统各个模块供电.2.2 协调器节点硬件设计协调器节点与智能家居网关连接, 它把从各终端节点汇聚的传感器数据转发到网关, 同时向各终端节点分发网关下达的控制命令. 协调器节点上无需连接传感器, 它在数据处理与无线通信模块和电源模块的硬件电路设计上与终端节点相同. 由于协调器与智能家居网关之间的连接端口为UART串口, 而且两者串口数据的电平标准不同——协调器上为RS232 TTL电平标准, PC端为USB接口标准, 因此系统选用PL2303芯片设计了USB与RS232 TTL电平互相转换的电路. PL2303芯片内置USB功能控制器、USB收发器、振荡器和带有全部调制解调器控制信号的UART, 具有较高的集成度, 在其周边只需连接12MHz晶振与两只电容即可构建最小系统. 协调器节点的USB转RS232接口的电路原理图如图3所示.系统软件设计包括ZigBee无线传感器网络中各个节点的程序设计、智能家居网关的监控软件的设计和移动手机终端软件的设计.3.1 数据通信协议由于ZigBee网络通信涉及查询和控制命令, 需要传输多种不同的传感器数据, 因此需要先对数据通信的协议进行设计. 数据以字节为单位, 系统规定了协调器节点的查询和控制命令的数据帧格式, 并对终端节点的响应帧格式进行了定义, 如表1所示. 其中“地址”为2个字节的短地址, “功能码”在Modbus协议的基础上针对实际应用进行扩展, “数据段”根据命令功能的不同和传感器数据位数的需求进行调整, “校验码”为前述内容的异或值.“功能码”的详细定义如表2所示, 查询命令所对应的“数据段”长度为0, 控制命令所对应的“数据段”长度为1.3.2 终端节点程序设计终端节点的程序设计开发环境为IAR, 基于TI公司的Z-Stack 2007pro协议栈进行开发.终端节点在启动后先搜索协调器建立的网络并加入, 在传感器数据采集与上报的机制方面, 设计了两种模式, 一是定时采集自动上报; 二是只有接收到协调器发来的查询命令, 才唤醒节点采集并上报. 为了降低功耗, 系统设计以上两种形式当终端节点没有采集传感器数据时, 进入休眠状态[4]. 具体的程序工作流程如图4所示.3.3 协调器节点程序设计协调器在上电初始化后建立ZigBee网络, 收到终端节点的加入请求后, 允许其加入, 然后监听OSAL中串口接收事件或无线接收数据事件是否发生. 若收到智能家居网关通过串口发来的查询或控制命令, 则将其广播出去或单播给目标终端, 等待终端发回响应数据并通过串口发给网关, 然后再次进入监听状态. 若收到终端节点定时发来的传感器数据, 则直接通过串口发给网关, 最终也是再次进入监听状态. 具体的程序工作流程如图5所示.3.4 智能家居网关软件设计本系统中智能家居网关以PC机Windows操作系统作为运行环境, 使用C++语言, 在Visual Studio 2005和数据库开发环境下, 设计了监控管理软件. 智能家居网关和ZigBee协调器节点之间采用UART串口连接, 使用MSComm控件实现了两者之间的串口通信[5]. 软件使用可视化控件直观地展示了终端节点上各种传感器的工作状态, 记录了温湿度的变化曲线. 同时为了扩展系统的远程控制的功能, 使用VC++中的Socket编程实现了TCP服务器端, 提供给远程移动手机终端连接. 通过该监控管理软件, 用户可直观地掌握所有传感器节点的工作情况, 并可集中对各种电器进行控制. 该监控管理软件的界面如图6所示.3.5 移动手机终端软件设计移动手机终端选择Android系统作为运行平台. 终端软件的设计主要包括3个方面的内容: 一是与智能家居网关之间基于TCP/IP协议的socket通信; 二是各种传感器实时信息的更新与控制命令的传送; 三是人机界面的设计.Socket通信模块的程序设计使用了Android系统的进程间通信的机制 , 并加入了Service、Broadcast Receiver和Activity组件实现相关功能, 该模块的程序架构如图7所示.从上图中可以看到, 用户在UI界面中启动连接socket服务的请求, 然后连入智能家居网关的socket服务器. 连接建立以后, 启动一个新线程, 用于发送控制命令以及接收返回的传感器实时信息. 同时该进程将传感器实时信息以广播的形式发给UI 界面的Receiver进行刷新显示.人机界面的设计主要包括socket服务器连接界面和主功能界面的设计. 主功能界面实现ZigBee各终端节点的传感器信息的实时显示, 如: 温度、湿度、可燃气体泄漏和光照度等, 同时设计了针对家中电器控制的功能模块, 如: 照明灯、风扇等, 情景模式页面设计了离家模式和在家模式, 可根据需要统一对各种传感器和电器进行控制. 设计好的人机界面如图8所示.系统设计完成后, 为了验证方案的可行性, 对其进行了连接实现与测评. 取五个节点, 其中一个为协调器, 通过UART串口连接智能家居网关, 其余四个为终端, 分别连接温度、湿度、可燃气体检测等传感器和照明灯等家用电器.系统测试主要包括组网的速度与稳定性、传感器数据采集的准确性、数据传输的响应速度以及各个情境模式的工作情况. 经过测试, 所有节点上电后, 协调器组建ZigBee网络, 所有终端可正常入网, 整个过程在3秒完成并稳定长时间工作. 各终端节点的传感器数据采集准确, 温湿度传感器的误差控制在±0.5℃, 可燃气体检测传感器不存在误报现象. 当终端节点采集到的传感器数据发生变化时, 智能家居网关与移动手机终端上可以接近实时地刷新显示, 响应速度较高, 可以达到设计的要求. 在“离家模式”下, 断开所有电器的电源和关闭窗帘, 并保持光照、温湿度和可燃气体检测传感器的运行, 以提供报警功能; “在家模式”下, 关闭光照检测传感器, 由人工控制窗帘的开闭, 同时打开电器的电源便于控制.综上所述, 该系统中智能家居网关监控管理软件工作正常, 可以实时显示ZigBee网络中各节点的状态, 可集中对照明灯等设备进行控制, 并可提供移动手机终端连接实现远程控制, 达到了设计目标. 该系统发挥了ZigBee无线传感器网络组网简单、。
微型传感器能量自捕获电源系统研究
微型传感器能量自捕获电源系统研究作者:辛光泽张宁强侯宏录张泽茜张宇严博来源:《科技视界》 2013年第33期辛光泽张宁强侯宏录张泽茜张宇严博(西安工业大学光电工程学院,陕西西安 710021)【摘要】本文针对低功耗无线传感器网络中传感器节点采用电池供电而导致整个传感器网络生存周期短的问题,提出了一种高频信号能量自捕获电源的设计方案。
分析了环境中电磁能稳定存在的特点,研究了偶极子天线将电磁能转化为电能的响应特性,进行915MHz电磁段偶极子天线结构及制造工艺的研究与设计,并以偶极子天线为核心设计了高频信号能量自捕获电源。
实验结果表明能量自捕获电源在自然环境中有效的收集能量,在电磁环境下立即响应,使用1F电容完全蓄电可使传感器全负荷连续发送数据12次,满足无线传感器网络中传感器节点供电的要求。
【关键词】无线传感器节点;偶极子天线;射频能量自捕获Research on Power System Self-trapping Energy Micro SensorXIN Guang-ze ZHANG Ning-qiang HOU Hong-lu ZHANG Ze-qian ZHANG Yu YAN Bo(Xi’an Technological University,Xi’an Shaanxi 710021,China)【Abstract】A power source system is designed for capturing and storaging electromagnetic energy of 915MHz,which can provide the passive low-power sensor nodes continuous power while eliminating the hassle of replacing batteries.【Key words】Wireless-sensor-nodes;Dipole antenna;RF-energy-capture0 引言无线传感器网络由大量静止传感器构成,以自组织的方式协作地感知、采集、处理和传输网络覆盖区域被感知对象的信息。
一种磁电自供电无线传感器电源管理电路研究
p ct rn t r a io e wo k
EEACC: l 61 0 81 O; 5 P
一
种 磁 电 自供 电无 线 传 感 器 电源 管 理 电路 研 究 *
刘 盼刚, 玉梅 , 文 李 平 , 雷祥 ,贾朝 波 , 卞 李兴圣
( 重庆大学光 电工程学 院光 电技术 及系统教育部重点实验 室 , 重庆 4 0 4 ) 00 4
关 键词 : 供电; MM/ z 自 G P T复合单元 ; 电源管理电路; 无线传感器 ; 开关电容网络
中图分 类号 :P 1 ;M7 T 22 T 6
文献 标识 码 : A
文章 编 号 :0 419 (08 0 -4 70 10 —69 20 )81 2-5
近年来 , 无线传感器网络得到 了广泛应用 , 如对 温度 、 光强 、 湿度 等 环 境 参数 的 监控 、 材料 与结 构 的
LI UPa — a g,WEN u me ,L n ng n Y— i g,BI Pi AN ixi n Le— a g,JI C a -o,LIXi g s e g A h o b n —h n
基于电磁感应的无线能量传输技术研究
基于电磁感应的无线能量传输技术研究无线能量传输技术是近年来备受研究关注的领域之一。
基于电磁感应的无线能量传输技术尤为引人注目,它通过利用电磁感应现象将能量从一个设备传输到另一个设备,实现无线充电或无线能量供应。
本文将对基于电磁感应的无线能量传输技术进行深入研究,探讨其原理、应用及研究发展方向。
基于电磁感应的无线能量传输技术的原理可简单描述为,通过在一个设备中产生交变电流,从而在相邻设备之间产生交变磁场,然后通过磁场的耦合,将能量传输到另一个设备中。
该技术主要涉及两个重要部分:一个是能量发射器,另一个是能量接收器。
能量发射器通过传感线圈产生交变电流,并产生相应的交变磁场,而能量接收器则通过感应线圈接收磁场并将其转换成电能。
基于电磁感应的无线能量传输技术具有诸多优点,首先是实现了无线充电,消除了传统充电方式中的电线束缚,使充电更加便捷。
其次,该技术可以广泛应用于低功耗电子设备,如智能手机、智能手表和无线传感器等,给这些设备提供了持续的能量补充。
此外,基于电磁感应的无线能量传输技术还可以用于电动汽车、医疗设备、工业自动化和智能家居等领域,极大地推动了这些领域的发展。
然而,基于电磁感应的无线能量传输技术也存在一些挑战和限制。
首先是传输效率问题。
由于传输过程中存在一定的能量损耗,因此需要通过优化线圈设计、提高频率和改善电磁耦合等方式来提高传输效率。
其次,传输距离有限。
目前的基于电磁感应的无线能量传输技术主要适用于近距离短程传输,传输距离较远时会出现效率下降的问题。
此外,电磁辐射对人体和环境的影响也需要充分考虑和解决。
为了克服这些限制和挑战,基于电磁感应的无线能量传输技术的研究方向也在不断拓展。
一种重要的研究方向是提高传输效率。
从设计上优化传感线圈的结构和材料,选择合适的工作频率以减少能量损耗,改善线圈的电磁匹配等方法都可以有效提高传输效率。
另一方面,研究者还在探索实现更远距离的无线能量传输技术,比如通过增加中继设备或使用能量波束成型等方法来实现远距离传输。
基于传感器网络的智能能源管理系统
基于传感器网络的智能能源管理系统智能能源管理系统已经成为现代社会可持续发展的重要支撑之一。
传感器网络作为智能能源管理系统中的关键技术,为能源的监测、控制和优化提供了强大的支持。
本文将探讨基于传感器网络的智能能源管理系统的工作原理、应用场景以及未来发展趋势。
智能能源管理系统利用传感器网络对能源的使用、供应和分配进行实时监测和管理。
传感器网络是由大量分布式传感器节点组成的网络,这些节点可以感知环境并收集相关数据,并通过无线通信将数据传输到中央处理单元。
在能源管理系统中,传感器节点可以监测各种关键参数,例如能源消耗、电力负载、温度、湿度等,并实时传输到中央控制系统。
这种实时监测和反馈机制使得能源管理系统能够更准确地评估能源使用情况,并根据实时数据进行相应的控制和优化。
基于传感器网络的智能能源管理系统在多个领域有着广泛的应用。
首先,它被广泛应用于建筑物能源管理。
传感器节点可以监测建筑物的能耗情况,例如空调、照明和电器设备等的使用情况,并通过调整控制系统的参数来实现能耗的优化。
其次,智能能源管理系统还在工业领域得到了应用。
生产线上的传感器节点可以实时监测设备的能耗情况,提供及时的故障诊断和预测,从而提高生产效率和降低能源消耗。
此外,智能能源管理系统还可用于城市能源管理,例如智能照明系统可以根据人流量的变化自动调整照明亮度,实现能源的合理利用。
基于传感器网络的智能能源管理系统在未来还有巨大的发展潜力。
首先,随着物联网技术的不断发展,传感器节点和无线通信技术将更加便宜和普遍,使得智能能源管理系统的应用更加广泛。
其次,人工智能和大数据分析技术的发展也为智能能源管理系统提供了新的机遇。
通过对大量实时数据的分析和学习,智能能源管理系统可以做出更准确的预测和决策,实现能源的高效利用。
此外,可再生能源的推广和应用也将对智能能源管理系统的发展起到积极推动作用。
然而,基于传感器网络的智能能源管理系统仍面临一些挑战。
首先,数据安全和隐私保护问题是智能能源管理系统需要解决的重要问题。
基于传感器网络的智能能源管理系统设计
基于传感器网络的智能能源管理系统设计智能能源管理系统是指通过使用先进的传感器技术和网络通信技术,实现对能源的智能化监测、管理和控制,以提高能源利用效率、降低能源消耗和减少环境污染。
本文将详细介绍基于传感器网络的智能能源管理系统的设计。
1. 引言能源是社会经济发展的重要支撑,而能源消耗与环境问题已成为全球关注的焦点。
因此,设计一种高效的智能能源管理系统,对于实现可持续发展和低碳生活具有重要意义。
2. 传感器网络技术传感器网络是由大量的分布式传感器节点组成的,通过无线通信网络进行数据传输和信息交换。
传感器网络可以实时采集和传输各个节点的环境参数和能源使用情况,为能源管理提供数据支持。
3. 智能能源监测传感器节点可以通过采集环境温度、湿度、光照等数据,实时监测能源的使用情况。
通过数据分析和处理,可以对能源消耗进行精确监测和评估,为制定合理的能源管理策略提供依据。
4. 能源管理与优化基于传感器网络的智能能源管理系统可以对能源使用情况进行实时监测和分析,进而优化能源的使用。
系统可以自动根据不同的环境参数和能源需求,调节照明、空调等设备的运行状态,以降低能源消耗和提高能源利用效率。
5. 能源控制和反馈传感器网络可以与能源设备进行联动控制,实现对能源设备的远程控制和管理。
通过与智能电表等设备的连接,可以实现能源的计量和费用管理,并提供用户实时的能源使用情况反馈,以促使用户节能减排。
6. 能源数据分析和决策支持基于传感器网络的智能能源管理系统可以对大量的能源数据进行存储、分析和处理,通过数据挖掘和机器学习等技术,提取能源使用规律和趋势,为能源管理决策提供科学依据。
7. 安全与隐私保护在智能能源管理系统的设计中,安全与隐私保护是重要的考虑因素。
通过采用加密和身份认证等技术,可以确保系统的数据传输和存储安全,以防止未授权的访问和信息泄露。
8. 智能能源管理系统的应用前景基于传感器网络的智能能源管理系统已经在工业、商业和家庭领域得到了广泛应用。
一种基于磁通控制的电磁感应式磁场能量收集器功率提升方法
一种基于磁通控制的电磁感应式磁场能量收集器功率提升方法叶凯;刘柱;赵鹏博;杨爱军;袁欢;王小华;荣命哲
【期刊名称】《电工技术学报》
【年(卷),期】2023(38)1
【摘要】无线传感器网络作为电网的“神经末梢”,在智能电网建设中扮演着越来越重要的角色。
如何稳定可靠地为传感器网络供能引发了人们的关注,能量收集技术成为解决这一问题最有效的技术,其中磁场能量收集技术因其受环境影响小、能量收集功率高脱颖而出。
然而,电力线周围磁场强度的增大会导致磁心的磁通密度达到最大值,磁心深度饱和会造成功率损失并威胁收集器的安全。
针对这一问题,该文提出一种基于磁通控制的电磁感应式磁场能量收集器功率提升方法,在电路中增加了可控电容组件,通过控制电容组件的串并联来控制磁心电压,进而控制磁心磁通量,从而缓解了磁心饱和并显著提高了能量收集功率。
实验结果表明,所提方法可以在频率为50Hz、有效值为4A的一次电流下显著提升收集功率,在该文研究的不同恒压负载下提升幅度达36.8%~153.2%。
【总页数】10页(P37-46)
【作者】叶凯;刘柱;赵鹏博;杨爱军;袁欢;王小华;荣命哲
【作者单位】电力设备电气绝缘国家重点实验室(西安交通大学)
【正文语种】中文
【中图分类】TM75
【相关文献】
1.感应式磁声成像中的三维电磁场正逆问题研究
2.轴向磁场磁通切换永磁电机单位功率因数控制
3.基于磁通负反馈结构的高灵敏度感应式磁场传感器研制
4.小功率电磁感应式WPT设备的磁场辐射特性
5.关于初中音乐欣赏课教学实践的思考
因版权原因,仅展示原文概要,查看原文内容请购买。