LoRaWAN正式版说明书_全球各地区频段划分
sensecap lorawan 无线物联网传感器设备产品手册说明书
目录SenseCAP网关-LoRaWAN (3)SenseCAP无线空气温湿度传感器-LoRaWAN (5)SenseCAP无线光照传感器-LoRaWAN (7)SenseCAP无线二氧化碳传感器-LoRaWAN (9)SenseCAP无线气压传感器-LoRaWAN (11)SenseCAP无线风速传感器-LoRaWAN (13)SenseCAP无线风向传感器-LoRaWAN (15)SenseCAP无线雨量传感器-LoRaWAN (17)SenseCAP无线土壤温湿度传感器-LoRaWAN (19)SenseCAP无线土壤温湿度与电导率传感器-LoRaWAN (21)SenseCAP无线pH 传感器-LoRaWAN (23)SenseCAP无线有效光合作用辐射传感器-LoRaWAN (25)SenseCAP 云平台 (27)API 介绍 (28)室外型LoRa 网关属于SenseCAP 产品系列,基于低功耗广域网 LoRaWAN ®协议,面向智慧农业、智慧城市等远距离无线传感器数据监测场景,网关作为LoRa 网络的中心设备,用于收集各传感器节点的数据,并将数据通过4G 或有线网方式传送到云平台,网关采用高性能处理器,以及运营商级别LoRa 收发芯片,为大面积组网提供保证。
网关的设计指标满足为工业级要求,支持IP66防护等级,适合在户外恶劣环境中使用。
提供多种云服务和数据API 接口有线网口/ 4G 多种入网方式,满足不同场景需求支持- 40℃ 到70℃的环境温度支持LoRaWAN ®协议 ClassACortex A8处理器,搭载Linux 系统,稳定可靠工业级环境耐受,IP66防护外壳,适用于户外环境超远距离传输,视距范围内实现10km 的通信距离支持多个地区ISM 频段:CN470,EU868,US915工业级无线传感网络解决方案 支持LoRaWAN ®(*)ClassA 协议 高性能Cortex A8 1GHz 处理器支持多个地区ISM 频段: CN470, EU868, US915支持多种入网方式支持长达10km 超远距离传输支持8 RX / 1 TX 的数据收发工业级环境耐受,支持户外环境提供多种云服务,简单易用无技术背景用户也可快速部署关键特性产品简介功能特性应用场景智慧农业和气象智慧建筑和工业控制环境监测其他无线传感网络的应用设备尺寸© 2008-2019 Seeed Technology Co., Ltd. All rights reserved.* LoRaWAN ® 名字及其商标已经获得LoRa Alliance 授权。
感应智能LoRaWAN传感器产品参考手册说明书
SenseCAP ArchitectureSenseCAP Sensor + Other LoRaWAN Gateway ArchitectureSystem ArchitectureSenseCAP SensorSenseCAP LoRaWAN GatewayLoRaWAN Network ServerApplicationAgricultureCityIndustryLoRa RadioLoRa RadioEthernetLTEAPISenseCAP ServerTTN ServerChirp Stack Server (Built-in)SenseCAP is an industrial wireless sensor network that integrates easy-to-deploy hardware and data API services,enabling low-power, long-distance environmental data collection. SenseCAP includes several versions, such as LoRaWAN, SensorHub-2G, etc.SenseCAP LoRaWAN version products include LoRaWAN Gateways and Sensor Nodes. Based on LoRaWAN protocol, it can realize one-to-many, long-distance networking, and bilateral communication. The LoRaWAN gateway supports Ethernet and 4G. The sensor node is powered by a high-capacity battery that lasts up to 3 years (uploading data once per hour). It also supports hot-swap, making it easy for maintenance and upgrading.SenseCAP provides an easy-to-use portal. Users can scan the QR code with the App to bind the device with its respective account, manage the devices, and check sensor data on theportal. SenseCAP Portal provides API for users to develop based on the data on the portal further.About SenseCAPFeatures of SenseCAP LoRaWAN GatewayFeatures of SenseCAP LoRaWAN SensorsApplicationSmart Agriculture Smart Cities Smart Buildings Smart IndustryEnvironmental MonitoringOther Wireless Sensing ApplicationsSupport LoRaWAN protocol Class ACortex A8 processor, Linux system, stable and reliable Ultra-wide-distance transmission: 10km in line of sight scene, 2 km in the urban sceneSupport multiple ISM bands: CN470, EU868, US915Support remote modification of Node collection frequency 4G and Ethernet connectivity, suitable for multiple scenes.Provides a variety of cloud services and data API interfaces Industrial grade protection: IP66 enclosure, suitable for outdoor applicationsOperating temperature -40℃to +70℃Support LoRaWAN protocol Class A High reliability and stabilityUltra-wide-distance transmission: 10km in line of sight scene, 2 km in the urban scene Battery life ≥ 3 yearsSupport remote modification of Node collection frequency Support the local modification of EUI, AppKey, AppEui Rapid installation and deploymentIP66 enclosure, suitable for outdoor applicationsSenseCAP LoRaWAN Gateway can access SenseCAP Server, The Thing Network Server and The ChirpStack open-source LoRaWAN Network Server. However , it can only be used with SenseCAP Sensor.SenseCAP Sensor can be used not only with the SenseCAP LoRaWAN Gateway but also with other standard LoRaWAN gateways. The Sensor is designed with a fixed LoRa channel, which can not be modified by users. The supported channels are as follows. Please refer to the user manual for how to connect this devicewith a LoRaWAN gateway.CN470Uplink Channels:[80,81,82,83,84,85,86,87]Frequency(MHz): 486.3, 486.5, 486.7, 486.9, 487.1, 487.3, 487.5, 487.7 (SF7BW125 to SF12BW125)DownlinkFrequency(MHz): 506.7, 506.9, 507.1, 507.3, 507.5, 507.7, 507.9, 508.1 (SF7BW125 to SF12BW125)505.3 -SF12BW125 (RX2 downlink only)EU868Uplink Channels: [0,1,2,3,4,5,6,7]Frequency(MHz): 868.1, 868.3, 868.5, 867.1, 867.3, 867.5, 867.7, 867.9 (SF7BW125 to SF12BW125)DownlinkMultiplexing the frequency points of the 8 uplink channels.869.525MHz -SF9BW125 (RX2 downlink only)US915Uplink Channels:[8,9,10,11,12,13,14,15]Frequency(MHz): 903.9, 904.1, 904.3, 904.5, 904.7, 904.9, 905.1, 905.3 (SF7BW125 to SF10BW125)DownlinkFrequency(MHz): 923.3, 923.9, 924.5, 925.1, 925.7,926.3, 926.9, 927.5 (SF7BW500 to SF12BW500)SenseCAP LoRaWAN Gateway (*) is based on LoRaWAN ®(**) protocol, applicable for low-power, long-distance environmental data collection and monitoring in scenarios such as smartagriculture and smart city, etc. As the central device of the LoRa network, the gateway is used for collecting data from different Sensor Nodes and transmit the data to the SenseCAP Portal via 4G or Ethernet cable. Equipped with a high-performance processor and telecom-operator-level LoRa chip, this gateway ensures stable and high performance in a large-scale network. The gateway is designed with an IP66-protection-levelenclosure, making it suitable for industrial applications in severe outdoor environments.An Industrial Wireless Sensor Network Solution IntroductionSpecificationsModelRegion LoRa-G-470-E/4G Asia (China)LoRa-G-868-E/4G European, Africa, Asia (India etc.) LoRa-G-915-E/4G North America, South America,Oceania , Asia (Japan, Korea, Thailand, etc.)Product Model Protocol Based on LoRaWAN v1.0.2 protocol Channel Plan 470~510MHz 863~870MHz 902~928MHz Power Output 24dBm25dBm25dBmSensitivity-140dBm (SF12BW125)-139dBm (SF12BW125)-139dBm(SF12BW125)LoRa Parameters CPU TI AM3358 Cortex-A8 1GHz System Linux Debian RAM DDR3 512MB Memory 8GB eMMCEthernet100Mbps FE (RJ-45)4G BandLTE-FDD: B1/B2/B3/B4/B5/B7/B8/B12/B13/B18/B19/B20/B25/B26/B28LTE-TDD: B38/B39/B40/B41WCDMA: B1/B2/B4/B5/B6/B8/B19GSM: 850/900/1800/1900MHz 4G FeaturesSupport non-CA Cat 4 FDD and TDD LTE-FDD:Max 150Mbps (DL), Max 50Mbps (UL) LTE-TDD:Max 130Mbps (DL), Max 30Mbps (UL)General Parameters UMTS FeaturesSupport 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMADC-HSDPA: Max 42Mbps (DL) HSUPA: Max 5.76Mbps (UL) WCDMA: Max 384Kbps (DL), Max 384Kbps (UL) LoRa AntennaCN470: 0.5dBi gain / Vertical polarization / Omni-directional / SMA-J connector EU868: 2.5dBi gain / Vertical polarization / Omni-directional / SMA-J connector US915: 2.5dBi gain / Vertical polarization / Omni-directional / SMA-J connector 4G Antenna0-4 dBi gain / Linear polarization / Omni-directional / SMA-J connector LED Indicator Indicating network condition (online/offline)GroundingReserved 1 screw hole for GND Power Consumption 3.6W Power Supply DC 12V/2A IP Rating IP66UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature -40 ℃ to +70 ℃Operating Humidity 0 to 100 %RH (non-condensing)Installation Method Wall or pole mounting Device Weight777gGeneral ParametersDevice Dimensions** The LoRaWAN ® name and the associated logo are licensed by the LoRa Alliance.1. Ethernet Port2. Power Connector3. LED4. Reserved5. 4G Antenna Connector6. Reserved7. LoRa Antenna ConnectorCertificationRange -40 ℃ to +85 ℃Accuracy ±0.2 ℃Resolution 0.1 ℃Drift <0.03 ℃/yearAir Temperature Range 0 to 100 %RH (non-condensing)Accuracy ±1.5 %RH Resolution 1 %RHDrift<0.25 %RH/year Air Humidity SpecificationsProduct Model LoRa-S-470/868/915-TH-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66 (Sensor Node)IP65 (Sensor Probe)UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature -40 ℃ to +85 ℃Operating Humidity 0 to 100 %RH (non-condensing)General ParametersSpecificationsProduct Model LoRa-S-470/868/915-Light Intensity-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature -40 ℃ to +85 ℃Operating Humidity 0 to 100 %RH (non-condensing)Device Weight288gGeneral Parameters Range 0 to 188000 Lux Sensitivity 0.045 Lux/LSB Resolution0.045 LuxLight IntensityInstallationPlease refer to the user manual for more details.CertificationSpecificationsProduct Model LoRa-S-470/868/915-CO2-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66 (Sensor Node)Indoor (Sensor Probe) *UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature 0 ℃ to +50 ℃Operating Humidity 0 to 95 %RH Device Weight319gGeneral ParametersParameters Condition ValueRange -0 to 40000 ppm Accuracy 400 to 10000ppm ±(30 ppm + 3 %MV)Resolution - 1 ppm Temperature Stability T = 0 to 50 ℃400 to 10000 ppm±2.5 ppm / ℃CO2SpecificationsProduct Model LoRa-S-470/868/915-Baro-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66 (Sensor Node)IP65 (Sensor Probe)UV Resistanceanti-aging (from rain/sun exposure): UL746C F1 General Parameters Parameters Condition Value Range -300~1100 hPa Resolution - 1 Pa Relative Accuracy 700 to 900 hPa 25 to 40 ℃±0.12 hPa Absolute Accuracy 300 to 1100 hPa -20 to 0 ℃±1.7 hPa Absolute Accuracy 300 to 1100 hPa 0 to 65 ℃±1.0 hPa Temperature Coefficient Offset 900 hPa 25 to 40 °C 1.5 Pa/K Drift-±1.0 hPa/yearBarometric PressureCertificationSpecificationsProduct Model LoRa-S-470/868/915-Wind Speed-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66 (Sensor Node)IP45 (Sensor Probe)UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature -40 ℃ to +50 ℃Operating Humidity 0 to 100 %RH (non-condensing)Device Weight490g General Parameters Range 0 to 60 m/s Accuracy ±0.3 m/s Resolution0.1 m/sWind SpeedSpecificationsProduct Model LoRa-S-470/868/915-Wind Direction-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66 (Sensor Node)IP45 (Sensor Probe)UV Resistance anti-aging (from rain/sun exposure): UL746C F1Installation Point the slot on the casing to the south Enclosure Material PCOperating Temperature -40 ℃ to +50 ℃Operating Humidity 0 to 100 %RH (non-condensing)Device Weight518gGeneral Parameters Range 0° to 360° (clockwise)Accuracy ±3°Resolution1°Wind DirectionSpecificationsProduct Model LoRa-S-470/868/915-Rain-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature 0 ℃ to +50 ℃Operating Humidity 0 to 95 %RH Device Weight2.3kgGeneral Parameters Range 0~240 mm/hour Accuracy ≤ ±2%Resolution0.5 mm/hourRainfall VolumeSpecificationsProduct Model LoRa-S-470/868/915-Soil MT-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Measuring Area A cylinder area (with the probe as the center, diameter: 7cm, height: 7cm)Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66UV Resistance anti-aging (from rain/sun exposure):UL746C F1 Enclosure Material PCOperating Temperature -30 ℃ to +70 ℃Operating Humidity 0 to 100 %RH (non-condensing)Device Weight415gGeneral Parameters Range -30 ℃ to +70 ℃Accuracy ±0.2 ℃Resolution 0.01 ℃Soil Temperature Range From completely dry to fully saturated (from 0% to 100% of saturation)Accuracy ±2% ( 0 to 50 %(m 3/m 3) )Resolution0.01 %(m 3/m 3)Soil MoistureSpecificationsProduct Model LoRa-S-470/868/915-Soil Temp&VWC&EC-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP RatingIP66General Parameters Range -40 ℃ to +60 ℃Accuracy ±1 ℃Resolution 0.1 ℃Soil Temperature Range From completely dry to fully saturated (from 0% to 100% of saturation)Accuracy ±3 %(m 3/m 3) typicalResolution 0.08 %(m 3/m 3)Soil Volumetric Water ContentRange 0 to 23 dS/m (bulk)Accuracy ±10% (0~7dS/m), user calibration required from 7–23 dS/m Resolution0.01 dS/m (0~7dS/m)0.05 dS/m (7~23dS/m)Soil Electrical ConductivityCertificationSpecificationsProduct Model LoRa-S-470/868/915-pH-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature -20 ℃ to +50 ℃Operating Humidity 0 to 100 %RH (non-condensing)Device Weight594g General Parameters Range 0~14 pH Accuracy ±0.1 pH Resolution0.1 pHpHSpecificationsProduct Model LoRa-S-470/868/915-PAR-01Microcontroller Ultra-low-power MCUSupport Protocol Based on LoRaWAN v1.0.2 protocol LoRa Channel Plan CN470 / EU868 / US915 LoRa Power Output 16 dBm (EIRP)Sensitivity470MHz: -140dBm(SF12, BW125KHz)868MHz: -137.5dBm(SF12, BW125KHz)915MHz: -136.5dBm(SF12, BW125KHz)Current Consumption 5 μA (sleep mode)120 mA max(active mode)Communication Distance 2 to 10 km (depending on different antennas and environments) Battery Life ≥ 3 year (upload data once per hour) Battery Voltage 3.6VBattery Capacity 19Ah (Non-rechargeable)IP Rating IP66UV Resistance anti-aging (from rain/sun exposure): UL746C F1 Enclosure Material PCOperating Temperature -40 ℃ to +70 ℃Operating Humidity 0 to 100 %RH (non-condensing)Device Weight326gGeneral Parameters Range 0 to 2000 μmol m -2 s -1 (410 to 655 nm)Sensitivity 0.2 mV/μmol m -2 s -1 Resolution 1 μmol m -2 s -1 Non-stability(Long-term Drift)<2% / year Measurement Repeatability < 1 % Field of View 180°Photosynthetically Active RadiationSenseCAP Portal is a web-based platform which enables • Device management • Data management• API Access Key managementVisit SenseCAP Portal: https://For more info, please visit: https:///product/sensecapDashboardIncluding Device Overview, Data Upload Interval,Announcement, Scene Data, and Data Chart, etc.Device ManagementManage SenseCAP devicesData ManagementManage data, including Data Table and Graph section,providing methods to search for data.Access Key ManagementManage Access Key (to access API service), including:Key Create, Key Update, and Key Check.SenseCAP App is used to bind devices to your account and check device information. Download Application:For iOS, please search for “SenseCAP” in the App Store and download.For Android, please download SenseCAP Application from:AndroidiOSSenseCAP also provides API to support further development. Please visit this link for more info: https://SenseCAP provides a config tool to modify Sensor parameters like Device EUI, AppKey, data upload interval etc. For more details, please visit https:///Seeed-Solution/SenseCAP-Node-Configuration-Tool/releasesSales:************ Support:*****************+86 755 3653 4305。
Lorawan协议合同说明书
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa 或者FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3kbps 到50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF 输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:• 终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
• 终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
• 终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的Class A 功能。
另外也可以实现本文档中描述的Class B 和Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容Class A。
1.2 文档约定MAC命令的格式写作LinkCheckReq (粗斜体),位和位域的格式写作FRMPayload (粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作N。
LoRa频段在世界不同地区使用不同LoRa信道频率
ETSI为LoRa应用定义了433至434 MHz频段。
它使用433.175 MHz,433.375 MHz和433.575 MHz频道。
B类终端设备在EU频段使用869.525 MHz频道。
LoRa协议栈图2描绘了由应用层,MAC层,PHY层和RF层组成的LoRa协议栈。
•来自应用层的数据和在终端设备和网关之间建立连接所需的MAC命令作为MAC有效载荷传输。
•MAC层使用MAC有效载荷构造MAC帧。
•PHY层使用MAC帧作为PHY有效载荷,并在插入前导码,PHY头,PHY头CRC和整帧CRC 之后构建PHY帧。
•RF层根据法规要求调制所需ISM RF载波上的PHY帧,并传输到空中。
LoRa帧由上行链路消息和下行链路消息组成。
LoRa系统支持三种类型。
基于这些类,LoRa 框架结构各不相同。
使用一个或多个网关将上行链路消息从终端设备发送到服务器。
下行链路消息从服务器传输到仅一个LoRa终端设备。
这是使用与网络服务器连接的单个网关完成的。
LoRa物理层以下是LoRa物理层(PHY)的功能:•物理层构造帧,以便通过RF链路从MAC层传输有效载荷。
•它为整个帧插入PHDR,PHDR_CRC,前同步码和CRC。
CRC字段仅在上行链路消息中可用。
•作为前导码,基于LORA,GFSK或FSK的调制技术使用特定的恒定同步字。
该前导码将有助于接收器处的同步,如接收器所知。
•PHY层根据全国范围的要求使用特定的RF频段。
LoRa MAC层以下MAC消息在LoRa中用于在终端设备和服务器之间建立通信。
•加入请求(从终端设备到服务器)•加入接受(从网络服务器到终端设备)•信标帧(从网关到终端设备),用于调度终端设备接收的时隙。
•确认的数据向上/向下(此消息由LoRa接收器确认)•未确认的数据向上/向下(此消息不需要任何确认)。
这里Up表示上行链路传输,Down表示下行链路传输。
请参阅>>内的LoRa MAC层。
Lorawan协议说明书
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa 或者FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3kbps 到50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:•终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
•终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
•终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的Class A 功能。
另外也可以实现本文档中描述的Class B 和Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容Class A。
1.2 文档约定MAC命令的格式写作LinkCheckReq (粗斜体),位和位域的格式写作FRMPayload (粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作N。
IDM-ET10 LORAWAN移动式一键报警器 说明书V1
产品说明书移动式一键报警器产品概述本产品是一款圆形移动式紧急按钮,内置无线发射信号的功能。
当遇到紧急情况时,只要按下产品的SOS按钮,该产品就会给控制中心发射信号,实现紧急报警。
体积小,无屏幕,操作简单;适用于养老服务机构、码头、旅游等场景下的人员管理,呼叫中心与呼叫人员建立紧密连接。
功能描述•采用无屏极简界面,体积小,重量轻。
•操作简单,方便老人使用。
•挂绳设计,防丢失,方便使用易携带。
技术参数射频参数:通信协议 LoRaWAN工作频段 470~510MHz接收灵敏度 -142dBm发射功率≤17dBm(可调整)工作电流120±10mA;接收8±1mA;待机 5±1uA工作电压 DC 3.7V物理参数:电池容量 200mAh尺寸Φ30*8mm工作温度 -20~70℃待机时间 30天产品安装移动式/双面胶粘贴产品示意图使用说明1.当需要报警时,按下产品的SOS按钮,LED灯会连续闪烁,并发射无线报警信号给主机,按下按钮为一次报警,只有松开按钮后再次按下时,才会再次发送无线报警信号。
2.如果产品电池电量过低,边缘的红色LED灯会不断闪烁以提示进行充电,充电过程中红色LED灯会常亮,当充电完成后,红色LED灯会熄灭。
品质保证本公司对其产品的直接购买者提供为期12个月的质量保证(自发货之日起计算),如在质保期内产品质量有缺陷,本公司提供免费的维修或更换。
用户需满足以下条件:1.直接购买者发现缺陷14天内书面通知本公司;2.直接购买者付费寄回本公司;3.该产品应在质保期内。
本公司只对符合该产品技术条件的场合或环境下产生缺陷的产品负责,对于特殊应用场合不做任何保证、担保或是书面陈述。
同时本公司对其产品应用到其它产品或是电路中的可靠性也不做任何承诺。
IMD-ET10。
【Selected】Lorawan协议说明书.doc
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa或者FSA来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3Abps到50Abps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:∙终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
∙终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
∙终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1LoRaWANClasses所有的LoRaWAN设备都必须至少实现本文档描述的ClassA功能。
另外也可以实现本文档中描述的ClassB和ClassC及后续将定义的可选功能。
不管怎么样,设备都必须兼容ClassA。
1.2文档约定MAC命令的格式写作LinAChecAReq(粗斜体),位和位域的格式写作FRMPaRload(粗体),常量的格式写作RECEIVE_DELAR1,变量的格式写作N。
F8L10GWLoRaWAN基站使用说明书【模板】
F8L10GW LoRaWAN基站使用说明书此说明书适用于下列型号产品:客户热线:400-8838 -199电话:+86-********传真:+86-********网址:【网址】地址:厦门集美软件园三期A06栋11层文档修订记录著作权声明本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司拥有,但注明引用其他方的内容除外。
未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。
商标声明Four-Faith、四信、、、均系厦门四信通信科技有限公司注册商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。
抱杆示意图壁挂示意图注:不同型号配件和接口可能存在差异,具体以实物为准。
目录第一章产品简介 (6)1.1 产品概述 (6)1.2 产品特点 (6)1.3 产品性能参数 (7)第二章安装 (9)2.1 概述 (9)2.2 装箱清单 (9)2.2.1.壁挂式装箱清单 (9)2.2.2.抱杆式装箱清单 (9)2.3 设备场景安装 (10)2.3.1 SIM/UIM卡安装 (10)2.3.2 壁挂式安装 (11)2.3.3 抱杆式安装 (14)2.3.4天线安装 (15)2.4 指示灯说明 (16)第三章参数配置 (17)3.1 配置连接图 (17)3.2 登录到配置页面 (17)3.2.1 PC机IP地址设置 (17)3.2.2登入到配置页面 (18)3.3 管理和配置 (20)3.3.1 设置连接方式 (20)3.3.2 无线wifi (23)3.3.2.1基本配置 (23)3.3.3 LoRaWAN应用 (25)3.3.4 管理 (26)3.3.4.1 管理 (26)3.3.4.2 出厂默认 (28)3.3.4.3 固件升级 (28)3.3.4.4 备份 (29)3.3.5 状态 (30)3.3.5.1 F8L10GW (30)附录 (32)第一章产品简介1.1 产品概述F8L10GW系列设备是一种基于LoRaWAN协议的无线通信基站,接入各类应用节点的LoRaWAN终端,把终端信息通过3G/4G或有线以太网方式传送到云端。
中国lorawan部署频段分析
中国部署LoRaWAN最佳频段——引用论坛分析结果LoRaWAN以其明显的优势:大容量、全球统一的标准、免费频段、低成本和灵活性,和WiFi一样,成为“私有物联网”的首要选择(NB-IoT,和GPRS一样,是“公有物联网”的方案)。
现在,国内很多企业和高校,掀起建设LoRaWAN的高潮。
如何选择“最佳频段”,就是面临的第一个技术因素。
为此,我们一起探讨。
1 CN490频段分配按《LoRaWANRegional Parameters V1.0》标准,中国地区有2个ISM (免费)频段:CN779-787:最大发射功率仅10dBm(10mW),没多大“实用”价值;CN470-510:最大发射功率可达17dBm(50mW),发射时长小于5000ms 即可。
毫无疑问,CN470-510,是部署LoRaWAN的最佳频段范围。
然而,故事没有如此简单。
中国无线电委员会,分配CN470-510是用于居民抄表应用。
在“上行通信”的96个通道中(下标从0开始):6到38,45到77,由“国家电网”保留使用。
换一句话说,这2个频段不能被“自由使用”(某些地区,就算“国家电网”没有使用这2个频段,也不能保证将来不被使用,到时还得“让道”)。
2 最佳做法上图,可以更直观地查看这96个通道的使用。
0-5 和39-44,这2个频段是空闲的;可惜的是,它们都只有6通道,如果使用它们,那意味着将浪费SX1301(8通道)的25%带宽。
78-79,这个频段,未能对齐8;如果使用,将会给实现带来麻烦(LoRaWAN协议栈,很多算法是基于8通道)。
幸好,80-87和88-95,这2个“宝贵”的频段,受上帝的青睐,即能对齐8,又是连续的。
题外话:因为现代计算机基于二进制,因此,在IT世界里,如果一个数字是2的整幂次,它就天生“基因”良好!这对于制定协议和设计程序,都是一条“黄金法则”。
以上例,因为6 / 45/ 77这3个数字,都不是2的整幂次,导致浪费了宝贵的频谱。
Lorawan协议详情说明书
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的 LoRa 或者 FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从 0.3kbps 到 50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:∙终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
∙终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
∙终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的 Class A 功能。
另外也可以实现本文档中描述的 Class B 和 Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容 Class A。
1.2 文档约定MAC命令的格式写作LinkCheckReq(粗斜体),位和位域的格式写作FRMPayload(粗体),常量的格式写作 RECEIVE_DELAY1,变量的格式写作 N。
Lorawan协议说明书
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa 或者FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3kbps 到50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:•终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
•终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
•终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的Class A 功能。
另外也可以实现本文档中描述的Class B 和Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容Class A。
1.2 文档约定MAC命令的格式写作 LinkCheckReq (粗斜体),位和位域的格式写作 FRMPayload (粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作N。
Lorawan地区参数
翻译开始LoRaWAN地区参数1介绍这份文档描述了全球不同地区的LoRaWAN具体参数。
这份文档是对LoRaWAN协议文档(从版本V1.0.2开始)的配套补充文档。
为了避免新区域的加入而导致文档的变动,因此将地区参数章节从协议规范中剥离出来。
2LoRaWAN地区参数2.1欧洲863-870MHz免授权频段待补充,计划3月份补足。
2.2美国902-928MHz免授权频段待补充,计划3月份补足。
2.3中国779-787MHz免授权频段待补充,计划3月份补足。
2.4欧洲433MHz免授权频段待补充2.5澳洲915-928MHz免授权频段待补充2.6中国470-510MHz频段2.6.1中国470-510MHz前导码格式要用如下的同步字:调制方式同步字前导码长度LoRa0x34 8symbols2.6.2中国470-510MHz信道频率在中国,无线电管理局SRRC规定了这个频段用于民用表计应用。
470频段需要按照如下信道规划进行部署:∙上行–从0到95共96个信道,带宽为125KHz,速率从DR0到DR5,使用编码率4/5,从470.3MHz按200KHz递增到489.3KHz。
6到38和45到77的这几十个信道,主要用于中国电力。
在中国电力使用了这些信道的区域,则LoRaWAN不能使用这些信道。
∙下行–从0到47共48个信道,带宽为125KHz,速率从DR0到DR5,使用编码率4/5,从500.3MHz按200KHz递增到509.7KHz。
∙LoRaWAN在满足如下条件下可以使用中国470-510MHz频段:∙射频发射功率(EIRP(EffectiveIsotropicRadiatedPower)有效全向辐射功率)要小于50mW(或者17dBm)。
∙发射持续时间不能超过5000ms中国470-510MHz频段的终端需要使用如下默认设置:∙默认的射频发射功率为:14dBm中国470-510MHz的终端设备应当可以在这个频段内进行操作,必须有足够的信道数据结构体来存储96个上行信道。
Lorawan协议说明书
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa 或者FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率X围可以从0.3kbps 到50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:•终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
•终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
•终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规X。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的Class A 功能。
另外也可以实现本文档中描述的Class B 和Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容Class A。
1.2 文档约定MAC命令的格式写作LinkCheckReq(粗斜体),位和位域的格式写作FRMPayload(粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作N。
Lorawan协议合同说明书
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa 或者FSK来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3kbps 到50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的Class A 功能。
另外也可以实现本文档中描述的Class B 和Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容Class A。
1.2 文档约定MAC命令的格式写作LinkCheckReq(粗斜体),位和位域的格式写作FRMPayload(粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作N。
Lorawan地区参数
翻译开始LoRaWAN地区参数1介绍这份文档描述了全球不同地区的LoRaWAN具体参数。
这份文档是对LoRaWAN协议文档(从版本V1.0.2开始)的配套补充文档。
为了避免新区域的加入而导致文档的变动,因此将地区参数章节从协议规范中剥离出来。
2LoRaWAN地区参数2.1欧洲863-870MHz免授权频段待补充,计划3月份补足。
2.2美国902-928MHz免授权频段待补充,计划3月份补足。
2.3中国779-787MHz免授权频段待补充,计划3月份补足。
2.4欧洲433MHz免授权频段待补充2.5澳洲915-928MHz免授权频段待补充2.6中国470-510MHz频段2.6.1中国470-510MHz前导码格式要用如下的同步字:调制方式同步字前导码长度LoRa0x34 8symbols2.6.2中国470-510MHz信道频率在中国,无线电管理局SRRC规定了这个频段用于民用表计应用。
470频段需要按照如下信道规划进行部署:∙上行–从0到95共96个信道,带宽为125KHz,速率从DR0到DR5,使用编码率4/5,从470.3MHz按200KHz递增到489.3KHz。
6到38和45到77的这几十个信道,主要用于中国电力。
在中国电力使用了这些信道的区域,则LoRaWAN不能使用这些信道。
∙下行–从0到47共48个信道,带宽为125KHz,速率从DR0到DR5,使用编码率4/5,从500.3MHz按200KHz递增到509.7KHz。
∙LoRaWAN在满足如下条件下可以使用中国470-510MHz频段:∙射频发射功率(EIRP(EffectiveIsotropicRadiatedPower)有效全向辐射功率)要小于50mW(或者17dBm)。
∙发射持续时间不能超过5000ms中国470-510MHz频段的终端需要使用如下默认设置:∙默认的射频发射功率为:14dBm中国470-510MHz的终端设备应当可以在这个频段内进行操作,必须有足够的信道数据结构体来存储96个上行信道。
LoRa频段在世界不同地区使用不同LoRa信道频率
ETSI为LoRa应用定义了433至434 MHz频段。
它使用433.175 MHz,433.375 MHz和433.575 MHz频道。
B类终端设备在EU频段使用869.525 MHz频道。
LoRa协议栈图2描绘了由应用层,MAC层,PHY层和RF层组成的LoRa协议栈。
•来自应用层的数据和在终端设备和网关之间建立连接所需的MAC命令作为MAC有效载荷传输。
•MAC层使用MAC有效载荷构造MAC帧。
•PHY层使用MAC帧作为PHY有效载荷,并在插入前导码,PHY头,PHY头CRC和整帧CRC 之后构建PHY帧。
•RF层根据法规要求调制所需ISM RF载波上的PHY帧,并传输到空中。
LoRa帧由上行链路消息和下行链路消息组成。
LoRa系统支持三种类型。
基于这些类,LoRa 框架结构各不相同。
使用一个或多个网关将上行链路消息从终端设备发送到服务器。
下行链路消息从服务器传输到仅一个LoRa终端设备。
这是使用与网络服务器连接的单个网关完成的。
LoRa物理层以下是LoRa物理层(PHY)的功能:•物理层构造帧,以便通过RF链路从MAC层传输有效载荷。
•它为整个帧插入PHDR,PHDR_CRC,前同步码和CRC。
CRC字段仅在上行链路消息中可用。
•作为前导码,基于LORA,GFSK或FSK的调制技术使用特定的恒定同步字。
该前导码将有助于接收器处的同步,如接收器所知。
•PHY层根据全国范围的要求使用特定的RF频段。
LoRa MAC层以下MAC消息在LoRa中用于在终端设备和服务器之间建立通信。
•加入请求(从终端设备到服务器)•加入接受(从网络服务器到终端设备)•信标帧(从网关到终端设备),用于调度终端设备接收的时隙。
•确认的数据向上/向下(此消息由LoRa接收器确认)•未确认的数据向上/向下(此消息不需要任何确认)。
这里Up表示上行链路传输,Down表示下行链路传输。
请参阅>>内的LoRa MAC层。
Lorawan协议说明书
第1章介绍之宇文皓月创作本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采取星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过尺度IP连接来接入网络服务器,而终端则通过单跳的 LoRa 或者 FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到分歧的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用分歧数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3kbps 到 50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:•终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
•终端要遵守相应频段和当地区的无线电规定中的发射占空比要求。
•终端要遵守相应频段和当地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
依照无线电规定,每个设备不克不及疯狂发射吞并信道,总得给他人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操纵参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的 Class A 功能。
另外也可以实现本文档中描述的 Class B 和 Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容 Class A。
1.2 文档约定MAC命令的格式写作LinkCheckReq (粗斜体),位和位域的格式写作FRMPayload (粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作 N。
Lorawan协议合同说明书(1)
第1章介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。
LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。
网关通过标准IP连接来接入网络服务器,而终端则通过单跳的LoRa 或者FSK 来和一个或多个网关通讯。
虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。
终端和网关间的通讯被分散到不同的信道频点和数据速率上。
数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。
LoRa的数据速率范围可以从0.3kbps 到50kbps。
为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。
虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:? 终端的每次传输都使用伪随机方式来改变信道。
频率的多变使得系统具有更强的抗干扰能力。
? 终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。
? 终端要遵守相应频段和本地区的无线电规定中的发射时长要求。
twowinter注:发射占空比,意思是发射时长占总时长的比例。
按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。
这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。
将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。
1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的Class A 功能。
另外也可以实现本文档中描述的Class B 和Class C 及后续将定义的可选功能。
不管怎么样,设备都必须兼容Class A。
1.2 文档约定MAC命令的格式写作?LinkCheckReq?(粗斜体),位和位域的格式写作?FRMPayload?(粗体),常量的格式写作RECEIVE_DELAY1,变量的格式写作N。
Lorawan协议说明书
第1章介绍之马矢奏春创作本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不论移动还是固定位置)进行优化的一套网络协议.LoRaWAN网络通常采纳星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息.网关通过标准IP连接来接入网络服务器,而终端则通过单跳的 LoRa 或者 FSK 来和一个或多个网关通讯.虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的.终端和网关间的通讯被分散到分歧的信道频点和数据速率上.数据速率的选择需要权衡距离和消息时长两个因素,使用分歧数据速率的设备互不影响.LoRa的数据速率范围可以从 0.3kbps 到50kbps.为了最年夜水平地延长终真个电池寿命和扩年夜网络容量,LoRa网络使用速率自适应(ADR)机制来自力管理每个终真个速率和RF输出.虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:•终真个每次传输都使用伪随机方式来改变信道.频率的多变使得系统具有更强的抗干扰能力.•终端要遵守相应频段和本地域的无线电规定中的发射占空比要求.•终端要遵守相应频段和本地域的无线电规定中的发射时长要求.twowinter注:发射占空比,意思是发射时长占总时长的比例.依照无线电规定,每个设备不能疯狂发射吞并信道,总得给他人一点机会.这份文档主要讲述协议细节,一些基于各地域规定的把持参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地域参数]中做具体描述.将这份文档分开,是为了加入新地域参数时不影响基础的协议规范.1.1 LoRaWAN Classes所有的LoRaWAN设备都必需至少实现本文档描述的 Class A 功能.另外也可以实现本文档中描述的 Class B 和 Class C 及后续将界说的可选功能.不论怎么样,设备都必需兼容 Class A.1.2 文档约定MAC命令的格式写作LinkCheckReq (粗斜体),位和位域的格式写作FRMPayload (粗体),常量的格式写作 RECEIVE_DELAY1,变量的格式写作 N.在本文档中,•所有多字节字段的字节序均采纳小端模式•EUI 是8字节字段,采纳小端模式传输•默认所有RFU保管位都设为0第2章 LoRaWAN Classes 类型介绍LoRa 是由Semtech面向长距离、低功耗、低速率应用而开发的无线调制技术.本文档中,将 Class A 基础上实现了更多功能的设备称为“更高 class 终端”.2.1 LoRaWAN ClassesLoRa网络包括基础LoRaWAN(称之为Class A)和可选功能(Class B,Class C):图1.LoRaWAN Classes•双向传输终端(Class A):Class A 的终端在每次上行后城市紧跟两个长久的下行接收窗口,以此实现双向传输.传输时隙是由终端在有传输需要时安插,附加一定的随机延时(即ALOHA协议).这种Class A 把持是最省电的,要求应用在终端上行传输后的很短时间内进行服务器的下行传输.服务器在其他任何时间进行的下行传输都得等终真个下一次上行.•划定接收时隙的双向传输终端(Class B):Class B 的终端会有更多的接收时隙.除Class A 的随机接收窗口,ClassB 设备还会在指按时间翻开另外接收窗口.为了让终端可以在指按时间翻开接收窗口,终端需要从网关接收时间同步的信标 Beacon.这使得服务器可以知道终规矩在监听.•最年夜化接收时隙的双向传输终端(Class C):Class C 的终端基本是一直翻开着接收窗口,只在发送时长久关闭.Class C 的终端会比 Class A 和 Class B更加耗电,但同时从服务器下发给终真个时延也是最短的. 2.2 文档范围这份LoRaWAN协议还描述了与 Class A 分歧的其他 Class 的额外功能.更高 Class 的终端必需满足 Class A 界说的所有功能.注意:物理层帧格式,MAC帧格式,以及协议中更高 class 和Class A 相同的内容都写在了 Class A 部份,防止内容重复.第3章 PHY 帧格式LoRa 有上行消息和下行消息.3.1 上行消息上行消息是由终端发出,经过一个或多个网关转发给网络服务器.上行消息使用 LoRa 射频帧的严格模式,消息中含有 PHDR 和PHDR_CRC .载荷有CRC校验来保证完整性.PHDR,PHDR_CRC 及载荷 CRC 域都通过射频收发器加入.上行 PHY:3.2 下行消息下行消息是由网络服务器发出,经过单个网关转发给单个终端.下行消息使用射频帧的严格模式,消息中包括 PHDR 和 PHDR_CRC.下行 PHY:3.3 接收窗口每个上行传输后终端都要开两个短的接收窗口.接收窗口开始时间的规定,是以传输结束时间为参考.3.3.1 第一接收窗口的信道,数据速率和启动.第一接收窗口 RX1 使用的频率和上行频率有关,使用的速率和上行速率有关.RX1 是在上行调制结束后的 RECEIVE_DELAY1 秒翻开.上行和 RX1 时隙下行速率的关系是按区域规定,详细描述在[LoRaWAN地域参数]文件中.默认第一窗口的速率是和最后一次上行的速率相同.3.3.2 第二接收窗口的信道,数据速率和启动.第二接收窗口 RX2 使用一个固定可配置的频率和数据速率,在上行调制结束后的 RECEIVE_DELAY2 秒翻开.频率和数据速率可以通过 MAC 命令(见第5章).默认的频率和速率是按区域规定,详细描述在[LoRaWAN地域参数]文件中.3.3.3 接收窗口的继续时间接收窗口的长度至少要让终端射频收发器有足够的时间来检测到下行的前导码.3.3.4 接收方在接收窗口期间的处置如果在任何一个接收窗口中检测到前导码,射频收发器需要继续激活,直到整个下行帧都解调完毕.如果在第一接收窗口检测到数据帧,且这个数据帧的地址和MIC校验通过确认是给这个终端,那终端就不用开启第二个接收窗口.3.3.5 网络发送消息给终端如果网络想要发一个下行消息给终端,它会精确地在两个接收窗口的起始点发起传输.3.3.6 接收窗口的重要事项终端在第一或第二接收窗口收到下行消息后,或者在第二接收窗口阶段,不能再发起另一个上行消息.3.3.7 其他协议的收发处置节点在LoRaWAN收发窗口阶段可以收发其他协议,只要终端能满足本地要求以及兼容LoRaWAN协议.2 梳理解析LoRaWAN第3章,主要是讲了接收窗口这回事,只要记住张图就行.目前RX1一般是在上行后1秒开始,RX2是在上行后2秒开始.3 源码分析3.1 源码流程在梳理这章节的对应代码时,自己手动做了张思维导图.有时是这样,代码再有条理感,也不及一个图.好,请收下.3.2 发送完成绩开始RX1和RX2延时static void OnRadioTxDone( void ){...// Setup timersif( IsRxWindowsEnabled == true ){TimerSetValue( &RxWindowTimer1, RxWindow1Delay ); TimerStart( &RxWindowTimer1 );if( LoRaMacDeviceClass != CLASS_C ){TimerSetValue( &RxWindowTimer2, RxWindow2Dela y );TimerStart( &RxWindowTimer2 );}if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAc kRequested == true ) ){TimerSetValue( &AckTimeoutTimer, RxWindow2Del ay + ACK_TIMEOUT +randr( ACK_T IMEOUT_RND, ACK_TIMEOUT_RND ) );TimerStart( &AckTimeoutTimer );}}...}3.3 接收窗口的射频处置从上面一步,我们已经清晰的知道,对应的处置肯定是在OnRxWindow1TimerEvent和OnRxWindow2TimerEvent中.这两个接收窗口的处置,会对速率和信道进行设置,依照LoRaWAN 协议中文版_配套文件地域参数(物理层) 中对各地域的要求分别进行处置.比如这个470的处置,对上行信道对48取余获得下行信道. RxWindowSetup( LORAMAC_FIRST_RX1_CHANNEL + ( Channel % 48 ) * LORAMAC_STEPWIDTH_第4章 MAC帧格式LoRa所有上下行链路消息城市携带PHY载荷,PHY载荷以1字节MAC头(MHDR)开始,紧接着MAC载荷(MACPayload),最后是4字节的MAC校验码(MIC).射频PHY层:图5.射频PHY结构(注意 CRC只有上行链路消息中存在)PHY载荷:或者或者MAC载荷:FHDR:图9.LoRa帧格式元素(即图5~8)4.1 MAC层(PHYPayload)MACPayload字段的最年夜长度M,在第6章有详细说明.4.2 MAC头(MHDR字段)MAC头中指定了消息类型(MType)和帧编码所遵循的LoRaWAN规范的主版本号(Major).4.2.1 消息类型(MType位字段)LoRaWAN界说了六个分歧的MAC消息类型:join request, join accept, unconfirmed data up/down, 以及 confirmed dataup/down .• 4.2.1.1 Joinrequest and joinaccept 消息• 4.2.1.2 Data messagesData messages 用来传输MAC命令和应用数据,这两种命令也可以放在单个消息中发送.Confirmeddata message 接收者需要应答.Unconfirmeddata message 接收者则不需要应答.Proprietary messages 用来处置非标准的消息格式,不能和标准消息互通,只能用来和具有相同拓展格式的消息进行通信.分歧消息类型用分歧的方法保证消息一致性,下面会介绍每种消息类型的具体情况.4.2.2 数据消息的主版本(Major位字段)注意:Major界说了激活过程中(join procedure)使用的消息格式(见章节6.2)和MAC Payload的前4字节(见第4章).终端要根据分歧的主版本号实现分歧最小版本的消息格式.终端使用的最小版本应当提前通知网络服务器.4.3 MAC载荷(MACPayload)MAC载荷,也就是所谓的“数据帧”,包括:帧头(FHDR)、端口(FPort)以及帧载荷(FRMPayload),其中端口和帧载荷是可选的.4.3.1 帧头(FHDR)FHDR是由终端短地址(DevAddr)、1字节帧控制字节(FCtrl)、2字节帧计数器(FCnt)和用来传输MAC命令的帧选项(FOpts,最多15个字节)组成.FCtrl在上下行消息中有所分歧,下行消息如下:上行消息如下:• 4.3.1.1 帧头中自适应数据速率的控制(ADR, ADRACKReq in FCtrl)LoRa网络允许终端采纳任何可能的数据速率.LoRaWAN协议利用该特性来优化固定终真个数据速率.这就是自适应数据速率(Adaptive Data Rate (ADR)).当这个使能时,网络会优化使得尽可能使用最快的数据速率.移动的终端由于射频环境的快速变动,数据速率管理就不再适用了,应当使用固定的数据速率.如果ADR的位字段有置位,网络就会通过相应的MAC命令来控制终端设备的数据速率.如果ADR位没设置,网络则无视终真个接收信号强度,不再控制终端设备的数据速率.ADR位可以根据需要通过终端及网络来设置或取消.不论怎样,ADR机制都应该尽可能使能,帮手终端延长电池寿命和扩年夜网络容量.注意:即使是移动的终端,可能在年夜部份时间也是处于非移动状态.因此根据它的移动状态,终端也可以请求网络使用ADR来帮手优化数据速率.如果终端被网络优化过的数据速率高于自己默认的数据速率,它需要按期检查下网络仍能收到上行的数据.每次上行帧计数城市累加(是针对每个新的上行包,重传包就不再增加计数),终端增加ADR_ACK_CNT 计数.如果直到ADR_ACK_LIMIT次上行(ADR_ACK_CNT >= ADR_ACK_LIMIT)都没有收到下行回复,它就得置高ADR应答请求位(ADRACKReq). 网络必需在规按时间内回复一个下行帧,这个时间是通过ADR_ACK_DELAY来设置,上行之后收就任何下行帧就要把ADR_ACK_CNT的计数重置.当终端在接收时隙中的任何回复下行帧的ACK位字段不需要设置,暗示网关仍在接收这个设备的上行帧.如果在下一个ADR_ACK_DELAY上行时间内都没收到回复(例如,在总时间ADR_ACK_LIMIT+ADR_ACK_DELAY之后),终端必需切换到下一个更低速率,使得能够获得更远传输距离来重连网络.终端如果在每次ADR_ACK_LIMIT到了之后依旧连接不上,就需要每次逐步降低数据速率.如果终端用它的默认数据速率,那就不需要置位ADRACKReq,因为无法帮手提高链路距离.注意:不要ADRACKReq立刻回复,这样给网络预留一些余量,让它做出最好的下行调度处置.注意:上行传输时,如果 ADR_ACK_CNT >= ADR_ACK_LIMIT 而且以后数据速率比设备的最小数据速率高,就要设置 ADRACKReq,其它情况下不需要.• 4.3.1.2 消息应答位及应答流程(ACK in FCtrl)收到confirmed类型的消息时,接收端要回复一条应答消息(应答位ACK要进行置位).如果发送者是终端,网络就利用终端发送把持后翻开的两个接收窗口之一进行回复.如果发送者是网关,终端就自行决定是否发送应答.应答消息只会在收到消息后回复发送,而且不重发.注意:为了让终端尽可能简单,尽可能减少状态,在收到confirmation类型需要确认的数据帧,需要立即发送一个严格的应答数据帧.或者,终端会延迟发送应答,在它下一个数据帧中再携带.• 4.3.1.3 重传流程当需要应答却没收到应答时就会进行重发,重发的个数由终端自己定,可能每个终端都纷歧样,这个参数也可以由网络服务器来设置调整.注意:一些应答机制的示例时序图在第18章中有提供.注意:如果终端设备重发次数达到了最年夜值,它可以降低数据速率来重连.至于后面是否再重发还是说抛弃不论,都取决于终端自己.注意:如果网络服务器重发次数达到了最年夜值,它就认为该终端失落线了,直到它再收到终真个消息.一旦和终端设备的连接呈现问题时,要不要重发都取决于网络服务器自己.注意:在重传期间的数据速率回退的建议战略在章节18.4中有描述.• 4.3.1.4 帧挂起位(FPending in FCtrl 只在下行有效)帧挂起位(FPending)只在下行交互中使用,暗示网关还有挂起数据等候下发,需要终端尽快发送上行消息来再翻开一个接收窗口. FPending的详细用法在章节18.3.• 4.3.1.5 帧计数器(FCnt)每个终端有两个计数器跟踪数据帧的个数,一个是上行链路计数器(FCntUp),由终端在每次上行数据给网络服务器时累加;另一个是下行链路计数器(FCntDown),由服务器在每次下行数据给终端时累计. 网络服务器为每个终端跟踪上行帧计数及发生下行帧计数. 终端入网胜利后,终端和服务真个上下行帧计数同时置0. 每次发送消息后,发送端与之对应的 FCntUp 或 FCntDown 就会加 1. 接收方会同步保管接收数据的帧计数,比较收到的计数值和以后保管的值,如果两者相差小于 MAX_FCNT_GAP (要考虑计数器滚动),接收方就按接收的帧计数更新对应值.如果两者相差年夜于MAX_FCNY_GAP 就说明中间丧失了很大都据,这条以及后面的数据就被丧失落.LoRaWAN的帧计数器可以用16位和32位两种,节点上具体执行哪种计数,需要在带外通知网络侧,告知计数器的位数.如果采纳16位帧计数,FCnt字段的值可以使用帧计数器的值,此时有需要的话通过在前面填充0(值为0)字节来补足;如果采纳32位帧计数, FCnt就对应计数器32位的16个低有效位(上行数据使用上行FCnt,下行数据使用下行FCnt).终端在相同应用和网络密钥下,不能重复用相同的FCntUp数值,除非是重传.• 4.3.1.6 帧可选项(FOptsLen in FCtrl, FOpts)FCtrl 字节中的FOptsLen位字段描述了整个帧可选项(FOpts)的字段长度.FOpts字段寄存MAC命令,最长15字节,详细的MAC命令见章节4.4.如果FOptsLen为0,则FOpts为空.在FOptsLen非0时,则反之.如果MAC命令在FOpts字段中体现,port0不能用(FPort要么不体现,要么非0).MAC命令不能同时呈现在FRMPayload和FOpts中,如果呈现了,设备丧失落该组数据.4.3.2 端口字段(FPort)如果帧载荷字段不为空,端口字段必需体现出来.端口字段有体现时,若FPort的值为0暗示FRMPayload只包括了MAC命令;具体见章节4.4中的MAC命令. FPort的数值从1到223(0x01..0xDF)都是由应用层使用. FPort的值从224到255(0xE0..0xFF)是保管用做未来的标准应用拓展.N是应用法式载荷的字节个数.N的有效范围具体在第7章有界说. N应该小于即是:N <= M 1 (FHDR长度)M是MAC载荷的最年夜长度.4.3.3 MAC帧载荷加密(FRMPayload)算法.默认的,加密和加密由LoRaWAN层来给所有的FPort来执行.如果加密/解密由应用层来做更方便的话,也可以在LoRaWAN层之上给特定FPorts来执行,除端口0.具体哪个节点的哪个FPort在LoRaWAN层之外要做加解密,必需要和服务器通过outofband信道来交互(见第19章).• 4.3.3.1 LoRaWAN的加密密钥K根据分歧的FPort来使用:表3: FPort列表具体加密是这样:pld = FRMPayload对每个数据帧,算法界说了一个块序列Ai,i从1到k,k =ceil(len(pld) / 16):方向字段(Dir)在上行帧时为0,在下行帧时为1.块Ai通过加密,获得一个由块Si组成的序列S.Si = aes128_encrypt(K, Ai) for i = 1..kS = S1 | S2 | .. | Sk通过异或计算对payload进行加解密:• 4.3.3.2 LoRaWAN层之上的加密如果LoRaWAN之上的层级在已选的端口上(但不能是端口0,这是给MAC命令保管的)提供了预加密的FRMPayload给LoRaWAN,LoRaWAN则不再对FRMPayload进行修改,直接将FRMPayload从MACPayload传到应用层,以及从应用层传到MACPayload.4.4 消息校验码(MIC)消息检验码要计算消息中所有字段.msg = MHDR | FHDR | FPort | FRMPayloadMIC是依照[RFC4493]来计算:cmac = aes128_cmac(NwkSKey, B0 | msg)MIC = cmac[0..3]块B0的界说如下:方向字段(Dir)在上行帧时为0,在下行帧时为1.LoRaWAN第4章,主要讲述了MAC帧格式,对所有涉及的字段都做了解释.千言万语汇成一句话,哦不,汇成一个表.好了,帧格式是年夜家随手都能看到的工具,本尊作为IoT小能手,如果不能提出一些稍有深度的信息增量,就对不起这个称号了.所以,有些协议设计层面的心得要分享下:1.特别酷的ADR(速率自适应)机制这个章节中最亮眼的莫过于速率自适应机制,简直是为LoRa 网络量身定做的:一旦使能了FCtrl中的ADR位,距离近信号好的节点用高速率,距离远信号弱的节点用低速率,不小心被调高了速率,则自动降下来.这样,尽可能地提高了传输速率,也有效提高了网络容量.我已经见过很多厂家,拿这个协议的公知特点当产物卖点了.2.可同时携带数据和命令的MAC帧一般来说,应用除数据,出于管理需要,肯定还会涉及命令.比如基站要查询节点状态,或者节点要请求变动信道等.所以LoRaWAN协议设计上利用FOpts把数据和命令揉在一个MAC帧里,这样可以提高交互效率,有效地降低功耗.这在寸土寸金,哦不,寸库仑(电量单元)寸金的物联网应用中,是一个很有需要的设计.3 源码解析这章的处置基本都在 \src\mac\LoRaMac.c 中,下面依照MAC帧格式的字段逐个解析下.3.1 MAC层MHDR在LoRaWAN的数据API中处置了MHDR,这个字段内容比力少,就按需选择了消息类型是confirm还是unconfirm.另外在管理API中的JoinReq的消息类型.具体可见 LoRaMacMcpsRequest() 和 LoRaMacMlmeRequest() 这两个函数.3.2 MACPayloadMACPayload 的组帧都在 PrepareFrame() 这个函数中处置,将macHdr和macPayload的fCtrl、FPort、FRMPayload都传递进去,完成整个MAC层的数据组帧.LoRaMacBuffer就寄存了MACPayload的数据,这个变量的组帧和协议字段界说是一一对应.MACPayload的组帧处置,在年夜流程上是对join和数据两种类型的帧分别处置,用两个case分开.为了方便阅览,我把函数代码框架提炼了出来.LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, Lo RaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, ui nt16_t fBufferSize ){switch( macHdr>Bits.MType ){case FRAME_TYPE_JOIN_REQ:...// 省略break;case FRAME_TYPE_DATA_CONFIRMED_UP:NodeAckRequested = true;//Intentional falltroughcase FRAME_TYPE_DATA_UNCONFIRMED_UP:...fCtrl>Bits.AdrAckReq = AdrNextDr( fCtrl>Bits. Adr, true, &LoRaMacParams.ChannelsDatarate );...if( SrvAckRequested == true ){SrvAckRequested = false;fCtrl>Bits.Ack = 1;}LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevA ddr ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevA ddr >> 8 ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevA ddr >> 16 ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevA ddr >> 24 ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = fCtrl>Value; LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCount er >> 8 ) & 0xFF;// Copy the MAC commands which must be resend into the MAC command buffermemcpy1( &MacCommandsBuffer[MacCommandsBuffer Index], MacCommandsBufferToRepeat, MacCommandsBufferToRep eatIndex );MacCommandsBufferIndex += MacCommandsBufferTo RepeatIndex;if( ( payload != NULL ) && ( payloadSize > 0 ) ){if( ( MacCommandsBufferIndex <= LORA_MAC_ COMMAND_MAX_LENGTH ) && ( MacCommandsInNextTx == true ) ) {fCtrl>Bits.FOptsLen += MacCommandsBuf ferIndex;// Update FCtrl field with new value of OptionsLengthLoRaMacBuffer[0x05] = fCtrl>Value;for( i = 0; i < MacCommandsBufferInde x; i++ ){LoRaMacBuffer[pktHeaderLen++] = M acCommandsBuffer[i];}}}else{if( ( MacCommandsBufferIndex > 0 ) && ( M acCommandsInNextTx ) ){payloadSize = MacCommandsBufferIndex; payload = MacCommandsBuffer;framePort = 0;}}MacCommandsInNextTx = false;// Store MAC commands which must be resend in case the device does not receive a downlink anymoreMacCommandsBufferToRepeatIndex = ParseMacComm andsToRepeat( MacCommandsBuffer, MacCommandsBufferIndex, MacCommandsBufferToRepeat );if( MacCommandsBufferToRepeatIndex > 0 ){MacCommandsInNextTx = true;}MacCommandsBufferIndex = 0;if( ( payload != NULL ) && ( payloadSize > 0 ) ){LoRaMacBuffer[pktHeaderLen++] = framePort; if( framePort == 0 ){LoRaMacPayloadEncrypt( (uint8_t* ) pa yload, payloadSize, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LI NK, UpLinkCounter, LoRaMacPayload );}else{LoRaMacPayloadEncrypt( (uint8_t* ) pa yload, payloadSize, LoRaMacAppSKey, LoRaMacDevAddr, UP_LI NK, UpLinkCounter, LoRaMacPayload );}memcpy1( LoRaMacBuffer + pktHeaderLen, Lo RaMacPayload, payloadSize );}LoRaMacBufferPktLen = pktHeaderLen + payloadS ize;LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBuff erPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLink Counter, &mic );LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mi c >> 8 ) & 0xFF;LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mi c >> 16 ) & 0xFF;LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mi c >> 24 ) & 0xFF;LoRaMacBufferPktLen += LORAMAC_MFR_LEN;break;case FRAME_TYPE_PROPRIETARY:...// 省略break;default:return LORAMAC_STATUS_SERVICE_UNKNOWN;}return LORAMAC_STATUS_OK;}Joinrequest的组帧处置对应协议第6章 6.2.4 Joinrequest message.数据帧的组帧处置则稍微复杂些,尤其是FHDR,下面逐个字段讲解下FHDR.3.2.1 MACPayload中的FHDR•LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >>8 ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >>16 ) & 0xFF;LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >>24 ) & 0xFF;•首先 ADR 位段是在传入 PrepareFrame() 之前,就做了处置. fCtrl.Bits.Adr = AdrCtrlOn;接着 AdrAckReq 位段,在长期失联情况下会发送AdrAckReq确认链路.fCtrl>Bits.AdrAckReq = AdrNextDr( fCtrl>Bits.Adr, true, &LoRaMacParams.ChannelsDatarate );最后 F0ptsLen 位段,会在下面计算完FOpts之后更新.•LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter &0xFF;LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >>8 ) & 0xFF;这个UpLinkCounter会在物理层发送完成后会依照协议进行累加.可以看到这是个32位计数器,依照协议规定,“如果采纳32位帧计数,FCnt就对应计数器32位的16个低有效位”.这是上行的,另外下行的也类似.•把MAC命令放入F0pts中,而且更新F0ptsLen.MAC命令,要么使用非零的FPort来和数据一起传输,要么使用FPort0来独自传输. // Copy the MAC commands which must be resend into the MA C command buffermemcpy1( &MacCommandsBuffer[MacCommandsBufferIndex], MacC ommandsBufferToRepeat, MacCommandsBufferToRepeatIndex ); MacCommandsBufferIndex += MacCommandsBufferToRepeatIndex; if( ( payload != NULL ) && ( payloadSize > 0 ) ){if( ( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_ LENGTH ) && ( MacCommandsInNextTx == true ) ){fCtrl>Bits.FOptsLen += MacCommandsBufferIndex;// Update FCtrl field with new value of OptionsLe ngthLoRaMacBuffer[0x05] = fCtrl>Value;for( i = 0; i < MacCommandsBufferIndex; i++ ){LoRaMacBuffer[pktHeaderLen++] = MacCommandsBu ffer[i];}}}else{if( ( MacCommandsBufferIndex > 0 ) && ( MacCommandsIn NextTx ) ){payloadSize = MacCommandsBufferIndex;payload = MacCommandsBuffer;framePort = 0;}}3.2.2 MACPayload中的FPort这个是在应用层一直传递进去的,协议栈默认是用了端口2.这个是后期年夜家在应用时要调整的,类似于IP端口,分歧的端口对应分歧的服务.3.3 MIC解析在函数 PrepareFrame()的最后是调用LoRaMacComputeMic() 计算出整个MAC层的校验码.应用层这边基本不用改这边就暂时不细究了.第5章 MAC命令对网络管理者而言,有一套专门的MAC命令用来在服务器和终端MAC层之间交互.这套MAC命令对应用法式(不论是服务器端还是终端设备的应用法式)是不偏见的.单个数据帧中可以携带MAC命令,要么在FOpts字段中捎带,要么在自力帧中将FPort设成0后放在FRMPayload里.如果采纳FOpts捎带的方式,MAC命令是不加密而且不长度超越15字节.如果采纳自力帧放在FRMPayload的方式,那就必需采纳加密方式,而且不超越FRMPayload的最年夜长度.注意:如果MAC命令不想被窃听,那就必需以自力帧形式放在FRMPayload中.每个MAC命令是由 1字节CID 跟着一段可能为空的字节序列组成的.表4:MAC命令表注意:MAC命令的长度虽然没有明确给出,可是MAC执行层必需要知道.因此未知的MAC命令无法被忽略,且前面未知的MAC命令会终止MAC命令的处置队列.所以建议依照LoRaWAN协议介绍的MAC 命令来处置MAC命令.这样所有基于LoRaWAN协议的MAC命令都可以被处置,即使是更高版本的命令.2 梳理解析从LoRaWAN第4章的帧格式可以获得如下信息:MAC命令,要么使用FPort0来独自传输,要么使用非零的FPort来和数据一起传输. LoRaWAN第5章,LoRaWAN出于网络管理需要,提出了9条MAC命令,这个章节是对9条命令进行具体的描述.说个题外话,CLAA(中国LoRa应用联盟)在9条命令以外还扩充了一些MAC命令.现阶段协议还不能公开,所以我就未几说了.中兴目前作为LoRa联盟董事会成员,也许以后会把这些拓展MAC命令引入到LoRaWAN协议也说禁绝,年夜家暂且当个课外知识了解下就好.3 代码位置MAC命令枚举/*!* LoRaMAC mote MAC commands** LoRaWAN Specification V1.0.1, chapter 5, table 4 */typedef enum eLoRaMacMoteCmd{/*!* LinkCheckReq*/MOTE_MAC_LINK_CHECK_REQ = 0x02,/*!* LinkADRAns*/MOTE_MAC_LINK_ADR_ANS = 0x03,/*!* DutyCycleAns*/MOTE_MAC_DUTY_CYCLE_ANS = 0x04, /*!* RXParamSetupAns*/MOTE_MAC_RX_PARAM_SETUP_ANS = 0x05, /*!* DevStatusAns*/MOTE_MAC_DEV_STATUS_ANS = 0x06, /*!* NewChannelAns*/MOTE_MAC_NEW_CHANNEL_ANS = 0x07, /*!* RXTimingSetupAns*/MOTE_MAC_RX_TIMING_SETUP_ANS = 0x08, }LoRaMacMoteCmd_t;/*!* LoRaMAC server MAC commands** LoRaWAN Specification V1.0.1 chapter 5, table 4 */typedef enum eLoRaMacSrvCmd{/*!* LinkCheckAns*/SRV_MAC_LINK_CHECK_ANS = 0x02,/*!* LinkADRReq*/SRV_MAC_LINK_ADR_REQ = 0x03,/*!* DutyCycleReq*/SRV_MAC_DUTY_CYCLE_REQ = 0x04, /*!* RXParamSetupReq*/SRV_MAC_RX_PARAM_SETUP_REQ = 0x05, /*!* DevStatusReq*/SRV_MAC_DEV_STATUS_REQ = 0x06, /*!* NewChannelReq*/SRV_MAC_NEW_CHANNEL_REQ = 0x07, /*!* RXTimingSetupReq*/SRV_MAC_RX_TIMING_SETUP_REQ = 0x08, }LoRaMacSrvCmd_t;MAC命令的接收处置OnRadioRxDone()携带着MAC帧进来,经过层层筛选,最终达到ProcessMacCommands()来处置MAC命令.这里代码中涉及的两种处置方式,可以跟协议对应起来:port = 0时,MAC命令放在FRMPayload中,需要先解密再处置;port非零时,MAC命令放在fopts中.if( port == 0 ){if( fCtrl.Bits.FOptsLen == 0 ){LoRaMacPayloadDecrypt( payload + appPayloadStartI ndex,frameLen,nwkSKey,address,DOWN_LINK,downLinkCounter,LoRaMacRxPayload );// Decode frame payload MAC commandsProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr );}} else {if( fCtrl.Bits.FOptsLen > 0 ){// Decode Options field MAC commands. Omit the fP ort.ProcessMacCommands( payload, 8, appPayloadStartIn dex 1, snr );}}MAC命令的发送及回复MAC命令的发送及回复处置都在这个函数中,AddMacCommand().协议栈对MAC命令发送的处置还是比力简单的,都是放在Fopts中来传输,都在这个15字节的MacCommandsBuffer中.LinkADR是LoRaWAN网络管理中相当重要的一个MAC命令,其解析占用了183行.索性专门写篇源码解析,记录下.阅读此文前,最好再把第五章的这个命令好好翻一翻,代码和协议才华对应上.我正在陆续对协议的各个章节进行翻译,具体其他章节的译文,以及译文之外的代码解析,可点此检查帖子LoRa学习笔记_汇总. 本文作者twowinter,转载请注明作者:LinkADRReq 的源码解析依照代码思路走一遍.1.解析 DataRate_TXPower 字段datarate = payload[macIndex++];txPower = datarate & 0x0F;datarate = ( datarate >> 4 ) & 0x0F;if( ( AdrCtrlOn == false ) &&( ( LoRaMacParams.ChannelsDatarate != datarate ) || ( LoRaMacParams.ChannelsTxPower != txPower ) ) ){ // ADR disabled don't handle ADR requests if server tri es to change datarate or txpower// Answer the server with fail status// Power ACK = 0// Data rate ACK = 0// Channel mask = 0AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 );macIndex += 3; // Skip over the remaining bytes of t he requestbreak;}如果终端ADR没开,那么就立即抛弃本命令处置.这里的macIndex += 3是对应LinkADRReq的剩余命令长度3而言的.2.解析 ChMask 字段chMask = ( uint16_t )payload[macIndex++];chMask |= ( uint16_t )payload[macIndex++] << 8;3.解析 Redundancy 字段nbRep = payload[macIndex++];chMaskCntl = ( nbRep >> 4 ) & 0x07;nbRep &= 0x0F;if( nbRep == 0 ){nbRep = 1;}把字段中的 chMaskCntl 和 nbRep 都给解析了出来.4.按地域规定处置 chMaskCntl ,及判断 ChMask 有效性#elif defined( USE_BAND_470 )if( chMaskCntl == 6 ){// Enable all 125 kHz channelsfor( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNE LS; i += 16, k++ ){for( uint8_t j = 0; j < 16; j++ ){if( Channels[i + j].Frequency != 0 ){channelsMask[k] |= 1 << j;}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 LoRaWAN Regional Parameters2 Copyright © 2016 LoRa Alliance, Inc. All rights reserved.34 N OTICE OF U SE AND D ISCLOSURE5 Copyright © LoRa Alliance, Inc. (2015). All Rights Reserved. 67 The information within this document is the property of the LoRa Alliance (“The Alliance”) and its use and 8 disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and 9 Membership Agreements. 1011 Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including12 without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa 13 Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing 14 to identify any or all such third party intellectual property rights. 1516 This document and the information contained herein are provided on an “AS IS” basis and THE ALLIANCE 17 DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY18 WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD 19 PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING 20 PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,TITLE OR NONINFRINGEMENT. 2223 IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS 24 OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR 25 EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR 26 IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF 27 ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. 28 2930 The above notice and this paragraph must be included on all copies of this document that are made. 3132 LoRa Alliance, Inc.33 2400 Camino Ramon, Suite 375 34 San Ramon, CA 9458335 Note: All Company, brand and product names may be trademarks that are the sole property of their respective 36 owners. 37 38 39 40 41 42 4344 4512LoRaWAN™ Regional Parameters 345This document is a companion document to the LoRaWAN1.0.2 Specification 67Authors:8LoRa Alliance Technical committee910Version: V1.011Date: 2016 July12Status: Final131415161718Contents11Introduction (6)232LoRaWAN Regional Parameters (7)2.1EU 863-870MHz ISM Band (7)452.1.1EU863-870 Preamble Format (7)62.1.2EU863-870 ISM Band channel frequencies (7)2.1.3EU863-870 Data Rate and End-device Output Power encoding (8)782.1.4EU863-870 JoinAccept CFList (8)92.1.5EU863-870 LinkAdrReq command (9)2.1.6EU863-870 Maximum payload size (9)10112.1.7EU863-870 Receive windows (10)122.1.8EU863-870 Default Settings (10)132.2US 902-928MHz ISM Band (12)142.2.1US902-928 Preamble Format (12)152.2.2US902-928 Channel Frequencies (12)2.2.3US902-928 Data Rate and End-device Output Power encoding (13)16172.2.4US902-928 JoinAccept CFList (13)182.2.5US902-928 LinkAdrReq command (13)192.2.6US902-928 Maximum payload size (14)202.2.7US902-928 Receive windows (15)212.2.8US902-928 Default Settings (15)222.3China 779-787MHz ISM Band (17)232.3.1CN779-787 Preamble Format (17)242.3.2CN779-787 ISM Band channel frequencies (17)252.3.3CN779-787 Data Rate and End-device Output Power encoding (18)262.3.4CN779-787 JoinAccept CFList (18)272.3.5CN779-787 LinkAdrReq command (19)282.3.6CN779-787 Maximum payload size (19)2.3.7CN779-787 Receive windows (20)29302.3.8CN779-787 Default Settings (20)312.4EU 433MHz ISM Band (21)322.4.1EU433 Preamble Format (21)332.4.2EU433 ISM Band channel frequencies (21)342.4.3EU433 Data Rate and End-device Output Power encoding (22)352.4.4EU433 JoinAccept CFList (22)362.4.5EU433 LinkAdrReq command (22)2.4.6EU433 Maximum payload size (23)37382.4.7EU433 Receive windows (23)2.4.8EU433 Default Settings (24)39402.5Australia 915-928MHz ISM Band (25)412.5.1AU915-928 Preamble Format (25)2.5.2AU915-928 Channel Frequencies (25)42432.5.3AU915-928 Data Rate and End-point Output Power encoding (26)442.5.4AU915-928 JoinAccept CFList (26)452.5.5AU915-928 LinkAdrReq command (26)462.5.6AU915-928 Maximum payload size (27)472.5.7AU915-928 Receive windows (28)482.5.8AU915-928 Default Settings (28)492.6CN 470-510MHz Band (30)502.6.1CN470-510 Preamble Format (30)12.6.2CN470-510 Channel Frequencies (30)22.6.3CN470-510 Data Rate and End-point Output Power encoding (31)32.6.4CN470-510 JoinResp CFList (31)2.6.5CN470-510 LinkAdrReq command (31)452.6.6CN470-510 Maximum payload size (32)62.6.7CN470-510 Receive windows (32)2.6.8CN470-510 Default Settings (32)782.7AS923MHz ISM Band (34)92.7.1AS923 Preamble Format (34)2.7.2AS923 ISM Band channel frequencies (34)10112.7.3AS923 Data Rate and End-point Output Power encoding (35)122.7.4AS923 JoinAccept CFList (36)132.7.5AS923 LinkAdrReq command (36)142.7.6AS923 Maximum payload size (36)152.7.7AS923 Receive windows (37)2.7.8AS923 Default Settings (38)16172.8South Korea 920-923MHz ISM Band (38)182.8.1KR920-923 Preamble Format (38)192.8.2KR920-923 ISM Band channel frequencies (38)202.8.3KR920-923 Data Rate and End-device Output Power encoding (39)212.8.4KR920-923 JoinAccept CFList (40)222.8.5KR920-923 LinkAdrReq command (41)232.8.6KR920-923 Maximum payload size (41)2.8.7KR920-923 Receive windows (41)24252.8.8KR920-923 Default Settings (42)3Revisions (43)26273.1Revision 1.0 (43)284Bibliography (44)294.1References (44)305NOTICE OF USE AND DISCLOSURE (45)31Tables3233Table 1: EU863-870 synch words (7)34Table 2: EU863-870 default channels (7)35Table 3: EU863-870 JoinReq Channel List (8)Table 4: TX Data rate table (8)3637Table 5: TX power table (8)38Table 6: ChMaskCntl value table (9)39Table 7: EU863-870 maximum payload size (10)40Table 8 : EU863-870 maximum payload size (not repeater compatible) (10)41Table 9: TX Data rate table (13)Table 10: TX power table (13)4243Table 11: ChMaskCntl value table (14)44Table 12: US902-928 maximum payload size (repeater compatible) (15)45Table 13 : US902-928 maximum payload size (not repeater compatible) (15)46Table 14: Data rate mapping (15)47Table 15: CN779-787 synch words (17)48Table 16: CN780 JoinReq Channel List (17)49Table 17: Data rate and TX power table (18)50Table 18: ChMaskCntl value table (19)1Table 19: CN780 maximum payload size (19)2Table 20 : CN780 maximum payload size (not repeater compatible) (20)3Table 21: EU433 synch words (21)4Table 22: EU433 JoinReq Channel List (21)5Table 23: Data rate and TX power table (22)Table 24: ChMaskCntl value table (23)67Table 25: EU433 maximum payload size (23)8Table 26 : EU433 maximum payload size (not repeater compatible) (23)Table 27 : EU43 RX1DROffset (24)910Table 28: AU915 Data rate table (26)Table 29 : AU915 TX power table (26)1112Table 30: ChMaskCntl value table (27)13Table 31: AU915-928 maximum payload size (27)Table 32: AU915-928 maximum payload size (not repeater compatible) (28)1415Table 33: AU RX1DROffset (28)16Table 34: CN470 Data rate and TX power table (31)17Table 35: CN470 ChMaskCntl value table (31)18Table 36: CN470-510 maximum payload size (32)19Table 37: CN470-510 Data rate offset (32)20Table 38: AS923 synch words (34)21Table 39: AS923 default channels (34)22Table 40: AS923 JoinReq Channel List (35)23Table 41: Data rate table (35)24Table 42: TxPower table (35)25Table 43: ChMaskCntl value table (36)26Table 44: AS923 maximum payload size (37)27Table 45: AS923 maximum payload size (not repeater compatible) (37)28Table 46 :KR920-923 synch words (38)29Table 47: Center frequency, bandwidth, maximum ERP output power table (39)30Table 48: KR920-923 default channels (39)31Table 49: KR920-923 JoinReq Channel List (39)32Table 50: TX Data rate table (40)33Table 51: TX power table (40)34Table 52: ChMaskCntl value table (41)35Table 53: KR920-923 maximum payload size (41)36Figures3738Figure 1: US902-928 channel frequencies (12)39Figure 2: AU915-928 channel frequencies (25)40Figure 3: CN470-510 channel frequencies (30)411 Introduction123This document describes the LoRaWAN™ regional parameters for different regulatoryregions worldwide. This document is a companion document to the protocol specification 45document, LoRaWAN Specification [LORAWAN], starting with version 1.0.2 of the6specification. Separating the regional parameters from the protocol specification allows the 7addition of new regions to the former without impacting the latter document.8910112 LoRaWAN Regional Parameters1 2.1 EU 863-870MHz ISM Band2 2.1.1 EU863-870 Preamble Format3 The following synchronization words should be used:456 2.1.2 EU863-870 ISM Band channel frequencies7 This section applies to any region where the ISM radio spectrum use is defined by the ETSI 8 [EN300.220] standard.9 The network channels can be freely attributed by the network operator. However the three 10 following default channels must be implemented in every EU868MHz end-device. Those 11 channels are the minimum set that all network gateways should always be listening on.121314 In order to access the physical medium the ETSI regulations impose some restrictions such 15 maximum time the transmitter can be on or the maximum time a transmitter can transmit per 16 hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a so-17 called Listen Before Talk Adaptive Frequency Agility (LBT AFA) transmissions 18 management. The current LoRaWAN specification exclusively uses duty-cycled limited 19 transmissions to comply with the ETSI regulations.20 EU868MHz ISM band end-devices should use the following default parameters21 Default ERP: 14 dBm22 EU868MHz end-devices should be capable of operating in the 863 to 870 MHz frequency 23 band and should feature a channel data structure to store the parameters of at least 16 24 channels. A channel data structure corresponds to a frequency and a set of data rates 25 usable on this frequency.26 The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and must 27 be implemented in every end-device. Those default channels cannot be modified through 28 the NewChannelReq command and guarantee a minimal common channel set between 29 end-devices and network gateways.30 The following table gives the list of frequencies that should be used by end-devices to 31 broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the 32rules described in chapter “Retransmissions back -off” of the LoRaWAN specification 1 document. 234 2.1.3 EU863-870 Data Rate and End-device Output Power encoding5 There is no dwell time limitation for the EU863-870 PHY layer. The TxParamSetupReq6 MAC command does not have to be implemented by EU863-870 devices.7 The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) 8 in the EU863-870 band: 91011121314 2.1.4 EU863-870 JoinAccept CFList1516 The EU 863-870 ISM band LoRaWAN implements an optional channel frequency list17 (CFlist) of 16 octets in the JoinAccept message.181In this case the CFList is a list of five channel frequencies for the channels four to eight 2whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these3channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.456The actual channel frequency in Hz is 100 x frequency whereby values representing7frequencies below 100 MHz are reserved for future use. This allows setting the frequency of8a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have9a frequency value of 0. The CFList is optional and its presence can be detected by the10length of the join-accept message. If present, the CFList replaces all the previous channels 11stored in the end-device apart from the three default channels as defined in Chapter Error!12Reference source not found.. The newly defined channels are immediately enabled and 13usable by the end-device for communication.2.1.5 EU863-870 LinkAdrReq command14The EU863-870 LoRaWAN only supports a maximum of 16 channels. When ChMaskCntl1516field is 0 the ChMask field individually enables/disables each of the 16 channels.171819If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject 20the command and unset the “Channel mask ACK” bit in its response.2.1.6 EU863-870 Maximum payload size2122The maximum MACPayload size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into2324account a possible repeater encapsulation layer. The maximum application payload length inthe absence of the optional FOpt control field (N) is also given for information only. The 2526value of N might be smaller if the FOpt field is not empty:2712If the end-device will never operate with a repeater then the maximum application payload 3length in the absence of the optional FOpt control field should be:452.1.7 EU863-870 Receive windows67The RX1 receive window uses the same channel than the preceding uplink. The data rate is 8a function of the uplink data rate and the RX1DROffset as given by the following table. Theallowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are 910reserved for future use.11121314The RX2 receive window uses a fixed frequency and data rate. The default parameters are 15869.525 MHz / DR0 (SF12, 125 kHz)2.1.8 EU863-870 Default Settings1617The following parameters are recommended values for the EU863-870MHz band.18RECEIVE_DELAY1 1 s19RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)20JOIN_ACCEPT_DELAY1 5 sJOIN_ACCEPT_DELAY2 6 s2122MAX_FCNT_GAP 163841ADR_ACK_LIMIT 642ADR_ACK_DELAY 323ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)4If the actual parameter values implemented in the end-device are different from those default 5values (for example the end-device uses a longer RECEIVE_DELAY1 and 6RECEIVE_DELAY2 latency), those parameters must be communicated to the network 7server using an out-of-band channel during the end-device commissioning process. The 8network server may not accept parameters different from those default values.92.2 US 902-928MHz ISM Band1 2.2.1 US902-928 Preamble Format2 The following synchronization words should be used:34LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.5 2.2.2 US902-928 Channel Frequencies6 The 915 MHz ISM Band shall be divided into the following channel plans.7 ∙ Upstream – 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from8 DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly 9 by 200 kHz to 914.9 MHz10 ∙ Upstream – 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR411 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz12 ∙ Downstream – 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to13 DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz141516 Figure 1: US902-928 channel frequencies17 915 MHz ISM band end-devices should use the following default parameters:18 ∙ Default radiated transmit output power: 20 dBm19 o Devices, when transmitting with 125 kHz BW may use a maximum of20 +30 dBm. The transmission shall never last more than 400 ms.21 o Devices, when transmitting with 500 kHz BW may use a maximum of22 +26 dBm 23 US902-928 end-devices should be capable of operating in the 902 to 928 MHz frequency 24 band and should feature a channel data structure to store the parameters of 72 channels. A 25 channel data structure corresponds to a frequency and a set of data rates usable on this 26 frequency.27 If using the over-the-air activation procedure, the end-device should broadcast the JoinReq 28 message alternatively on a random 125 kHz channel amongst the 64 channels defined using 29 DR0 and a random 500 kHz channel amongst the 8 channels defined using DR4. The end-30 device should change channel for every transmission.31 Personalized devices shall have all 72 channels enabled following a reset.32903.0902.3904.6914.2923.3923.9927.58x downlink channels64 + 8 uplink channels2.2.3 US902-928 Data Rate and End-device Output Power encoding12FCC regulation imposes a maximum dwell time of 400ms on uplinks. The 3TxParamSetupReq MAC command does not have to be implemented by US902-928 4devices.5The following encoding is used for Data Rate (DR) and End-device Output Power 67(TXPower) in the US902-928 band:891011121314152.2.4 US902-928 JoinAccept CFList1617The US902-928 LoRaWAN does not support the use of the optional CFlist appended to the 18JoinAccept message. If the CFlist is not empty it is ignored by the end-device.2.2.5 US902-928 LinkAdrReq command1920For the US902-928 version the ChMaskCntl field of the LinkADRReq command has the 21following meaning:222312If ChMaskCntl = 6 then 125 kHz channels are enabled, if ChMaskCntl = 7 then 125 kHz 3channels are disabled. Simultaneously the channels 64 to 71 are set according to the 4ChMask bit mask. The DataRate specified in the command need not be valid for channels 5specified in the ChMask, as it governs the global operational state of the end-device.678910111213141516172.2.6 US902-928 Maximum payload size1819The maximum MACPayload size length (M) is given by the following table. It is derived from 20the maximum allowed transmission time at the PHY layer taking into account a possible 21repeater encapsulation. The maximum application payload length in the absence of the 22optional FOpt MAC control field (N) is also given for information only. The value of N might 23be smaller if the FOpt field is not empty:241Table 12: US902-928 maximum payload size (repeater compatible)2The greyed lines correspond to the data rates that may be used by an end-device behind a 3repeater.If the end-device will never operate under a repeater then the maximum application payload 45length in the absence of the optional FOpt control field should be:672.2.7 US902-928 Receive windows89∙The RX1 receive channel is a function of the upstream channel used to initiate the10data exchange. The RX1 receive channel can be determined as follows.11o RX1 Channel Number = Transmit Channel Number modulo 812∙The RX1 window data rate depends on the transmit data rate (see Table 14 below).13∙The RX2 (second receive window) settings uses a fixed data rate and frequency.14Default parameters are 923.3MHz / DR8151617The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are 18reserved for future use.2.2.8 US902-928 Default Settings1920The following parameters are recommended values for the US902-928 band.RECEIVE_DELAY1 1 s2122RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)23JOIN_ACCEPT_DELAY1 5 s24JOIN_ACCEPT_DELAY2 6 s25MAX_FCNT_GAP 1638426ADR_ACK_LIMIT 641ADR_ACK_DELAY 322ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)If the actual parameter values implemented in the end-device are different from those default 34values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 5parameters must be communicated to the network server using an out-of-band channel 6during the end-device commissioning process. The network server may not accept 7parameters different from those default values.82.3 China 779-787MHz ISM Band1 2.3.1 CN779-787 Preamble Format2 The following synchronization words should be used :345 2.3.2 CN779-787 ISM Band channel frequencies67 The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device 8 ERP is less than 10mW (or 10dBm).9 The end-device transmit duty-cycle should be lower than 1%.10 The LoRaWAN channels center frequency can be in the following range:11 ∙ Minimum frequency : 779.5MHz 12 ∙ Maximum frequency : 786.5 MHz13 CN780MHz end-devices should be capable of operating in the 779 to 787 MHz frequency 14 band and should feature a channel data structure to store the parameters of at least 16 15 channels. A channel data structure corresponds to a frequency and a set of data rates 16 usable on this frequency.17 The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and 18 must be implemented in every end-device. Those default channels cannot be modified 19 through the NewChannelReq command and guarantee a minimal common channel set 20 between end-devices and gateways of all networks. Other channels can be freely distributed 21 across the allowed frequency range on a network per network basis.22 The following table gives the list of frequencies that should be used by end-devices to 23 broadcast the JoinReq message The JoinReq message transmit duty-cycle shall follow the 24 rules described in chapter “Retransmissions back -off” of the LoRaWAN specification 25 document. 2627282.3.3 CN779-787 Data Rate and End-device Output Power encoding1There is no dwell time limitation for the CN779-787 PHY layer. The TxParamSetupReq 23MAC command does not have to be implemented by CN779-787 devices.The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) 4562.3.4 CN779-787 JoinAccept CFList78The CN780 ISM band LoRaWAN implements an optional channel frequency list (CFlist) of 916 octets in the JoinAccept message.10In this case the CFList is a list of five channel frequencies for the channels four to eight 11whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these 12channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is 13followed by a single RFU octet for a total of 16 octets.1415The actual channel frequency in Hz is 100 x frequency whereby values representing 16frequencies below 100 MHz are reserved for future use. This allows setting the frequency of17a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels havea frequency value of 0. The CFList is optional and its presence can be detected by the1819length of the join-accept message. If present, the CFList replaces all the previous channels 20stored in the end-device apart from the three default channels as defined in Chapter 6.The newly defined channels are immediately enabled and usable by the end-device for2122communication.2.3.5 CN779-787 LinkAdrReq command12The CN780 LoRaWAN only supports a maximum of 16 channels. When ChMaskCntl field is 340 the ChMask field individually enables/disables each of the 16 channels.567If the ChMask field value is one of values meaning RFU, then end-device should reject the 8command and unset the “Channel mask ACK” bit in its response.2.3.6 CN779-787 Maximum payload size910The maximum MACPayload size length (M) is given by the following table. It is derived from 11limitation of the PHY layer depending on the effective modulation rate used taking into 12account a possible repeater encapsulation layer. The maximum application payload length in 13the absence of the optional FOpt control field (N) is also given for information only. The 14value of N might be smaller if the FOpt field is not empty:151617If the end-device will never operate with a repeater then the maximum application payload 18length in the absence of the optional FOpt control field should be:1912.3.7 CN779-787 Receive windows23The RX1 receive window uses the same channel than the preceding uplink. The data rate isa function of the uplink data rate and the RX1DROffset as given by the following table. The 45allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are 6reserved for future use78The RX2 receive window uses a fixed frequency and data rate. The default parameters are 910786 MHz / DR0.2.3.8 CN779-787 Default Settings1112The following parameters are recommended values for the CN779-787MHz band.13RECEIVE_DELAY1 1 sRECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)1415JOIN_ACCEPT_DELAY1 5 s16JOIN_ACCEPT_DELAY2 6 sMAX_FCNT_GAP 163841718ADR_ACK_LIMIT 6419ADR_ACK_DELAY 3220ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)21If the actual parameter values implemented in the end-device are different from those default 22values (for example the end-device uses a longer RECEIVE_DELAY1 and 23RECEIVE_DELAY2 latency), those parameters must be communicated to the network 24server using an out-of-band channel during the end-device commissioning process. The 25network server may not accept parameters different from those default values.2.4 EU 433MHz ISM Band1 2.4.1 EU433 Preamble Format2 The following synchronization words should be used :345 2.4.2 EU433 ISM Band channel frequencies6 The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio device ERP7 is less than 10 mW (or 10 dBm).8 The end-device transmit duty-cycle should be lower than 1%1.9 The LoRaWAN channels center frequency can be in the following range:10 ∙ Minimum frequency : 433.175 MHz 11 ∙ Maximum frequency : 434.665 MHz12 EU433 end-devices should be capable of operating in the 433.05 to 434.79 MHz frequency 13 band and should feature a channel data structure to store the parameters of at least 16 14 channels. A channel data structure corresponds to a frequency and a set of data rates 15 usable on this frequency.16 The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 17 and must be implemented in every end-device. Those default channels cannot be modified 18 through the NewChannelReq command and guarantee a minimal common channel set 19 between end-devices and gateways of all networks. Other channels can be freely distributed 20 across the allowed frequency range on a network per network basis.21 The following table gives the list of frequencies that should be used by end-devices to 22 broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the 23 rules described in chapter “Retransmissions back -off” of the LoRaWAN specificati on 24 document. 2526271The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.。