WRM0102中文资料

合集下载

ISL12022MAIBZ;中文规格书,Datasheet资料

ISL12022MAIBZ;中文规格书,Datasheet资料

Low Power RTC with Battery Backed SRAM, Integrated ±5ppm Temperature Compensation and Auto Daylight SavingISL12022MAThe ISL12022MA device is a low power real time clock (RTC) with an embedded temperature sensor and crystal. Device functions include oscillator compensation, clock/calendar, power fail and low battery monitors, brownout indicator,one-time, periodic or polled alarms, intelligent battery backup switching, Battery Reseal™ function and 128 bytes ofbattery-backed user SRAM. Backup battery current draw is less than 1.6µA over the temperature range. The device is offered in a 20Ld SOIC module that contains the RTC and an embedded 32.768kHz quartz crystal. The calibrated oscillator provides less than ±5ppm drift over the full -40°C to +85°C temperature range.The RTC tracks time with separate registers for hours, minutes, and seconds. The calendar registers track date, month, year and day of the week and are accurate through 2099, with automatic leap year correction.Daylight Savings time adjustment is done automatically, using parameters entered by the user. Power fail and battery monitors offer user-selectable trip levels. The time stamp function records the time and date of switchover from V DD to V BAT power, and also from V BAT to V DD power.The ISL12022MA features enhanced immunity to ESD per the IEC61000-4-2 standard, and also provides improved resistance to system leakage related to environmental moisture.Related Literature•See TB484 “ISL12022MA Enhanced RTC Module”•See AN1549 “Addressing Power Issues in Real Time Clock Applications”Features•Embedded 32.768kHz Quartz Crystal in the Package •20 Ld SOIC Package (for DFN version, refer to the ISL12020M)•Calendar•On-chip Oscillator Temperature Compensation •10-bit Digital Temperature Sensor Output •15 Selectable Frequency Outputs•Interrupt for Alarm or 15 Selectable Frequency Outputs •Automatic Backup to Battery or Supercapacitor •V DD and Battery Status Monitors•Battery Reseal™ Function to Extend Battery Shelf Life •Power Status Brownout Monitor •Time Stamp for Battery Switchover •128 Bytes Battery-Backed User SRAM •1.6µA Max Battery Current •I 2C Bus™•RoHS CompliantApplications•Utility Meters •POS Equipment •Printers and Copiers •Digital CamerasFIGURE 1.TYPICAL APPLICATION CIRCUITGND GND GND NC GND GND GND NC NC NC NC NC V BAT V DD GNDIRQ/F OUTNCNCSCL SDA ISL12022MA1234567891020191817161514131211SCHOTTKY DIODEBAT54BATTERY 3.0V3.3V C20.1µFC10.1µFR110k R210k R310kVDO SCLSDA GNDMCUINTERFACE IRQ/F OUTBlock DiagramPin ConfigurationISL12022MA (20 LD SOIC)TOP VIEWI 2CINTERFACECONTROL LOGIC ALARMFREQUENCYOUTRTC DIVIDERSDA BUFFER CRYSTAL OSCILLATORPORSWITCH SCL BUFFERSDA SCLV DDV BAT INTERNAL SUPPLYV TRIPSECONDSMINUTES HOURS DAY OF WEEKDATE MONTHYEARUSER SRAMCONTROL REGISTERS GNDREGISTERSTEMPERATURESENSORFREQUENCY CONTROLIRQ/F OUT+-GND NC NC GND NC NC1 234567891020 19 18 17 16 15 14 13 12 11GND NC NC V DD GND GND NC V BAT GND GND NC IRQ/F OUT SCL SDAPin DescriptionsPIN NUMBER SYMBOL DESCRIPTION4, 5, 6, 9, 10, 15, 16, 17NC No Connection . Do not connect to a signal or supply voltage.7V BATBackup Supply . This input provides a backup supply voltage to the device. VBAT supplies power to the device in the event that the VDD supply fails. This pin can be connected to a battery, a supercapacitor or tied to ground if not used. See the Battery Monitor parameter in the “” table on page 6. This pin should be tied to ground if not used.11SDASerial Data . SDA is a bi-directional pin used to transfer data into and out of the device. It has an open drain output and may be OR’ed with other open drain or open collector outputs. The input buffer is always active (not gated) in normal mode.An open drain output requires the use of a pull-up resistor. The output circuitry controls the fall time of the output signal with the use of a slope controlled pull-down. The circuit is designed for 400kHz I 2C interface speeds. It is disabled when the backup power supply on the VBAT pin is activated.12SCLSerial Clock . The SCL input is used to clock all serial data into and out of the device. The input buffer on this pin is always active (not gated). It is disabled when the backup power supply on the VBAT pin is activated to minimize power consumption.13IRQ/F OUT Interrupt Output/Frequency Output (Default 32.768kHz frequency output).This dual function pin can be used as an interrupt or frequency output pin. The IRQ/F OUT mode is selected via the frequency out control bits of the control/statusregister. Interrupt Mode. The pin provides an interrupt signal output. This signal notifies a host processor that an alarmhas occurred and requests action. It is an open drain active low output. Frequency Output Mode. The pin outputs a clocksignal, which is related to the crystal frequency. The frequency output is user selectable and enabled via the I2C bus. Itis an open drain output. The output is open drain and requires a pull-up resistor.14V DD Power Supply. Chip power supply and ground pins. The device will operate with a power supply from V DD = 2.7V to5.5VDC. A 0.1µF capacitor is recommended on the VDD pin to ground.1, 2, 3, 8, 18, 19, 20GND Ground Pin.Pin Descriptions (Continued)PIN NUMBER SYMBOL DESCRIPTION Ordering InformationPART NUMBER (Notes 2, 3)PARTMARKINGV DD RANGE(V)TEMP RANGE(°C)PACKAGE(RoHS Compliant)PKG.DWG. #ISL12022MAIBZ ISL12022MAIBZ 2.7 to 5.5-40 to +8520 Ld SOIC M20.3ISL12022MAIBZ-T (Note 1)ISL12022MAIBZ 2.7 to 5.5-40 to +8520 Ld SOIC (Tape and Reel)M20.31.Please refer to TB347 for details on reel specifications.2.These Intersil plastic packaged products employ special material sets, molding compounds and 100% matte tin plate plus anneal (e3) terminationfinish. These products do contain Pb but they are RoHS compliant by exemption 7 (Pb in high melting temperature type solders, electronic ceramic parts (e.g. piezoelectronic devices)) and exemption 5 (Pb in glass of electronic components). These Intersil RoHS compliant products are compatible with both SnPb and Pb free soldering operations. These Intersil RoHS compliant products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.3.For Moisture Sensitivity Level (MSL), please see device information page for ISL12022MA. For more information on MSL please see Tech BriefTB363.Table of ContentsBlock Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6DC Operating Characteristics RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Power-Down Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7I2C Interface Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7SDA vs SCL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Symbol Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power Control Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Normal Mode (V DD) to BatteryBackup Mode (V BAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Battery Backup Mode (V BAT) toNormal Mode (V DD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Brownout Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Battery Level Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Real Time Clock Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Single Event and Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Frequency Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 General Purpose User SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Oscillator Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Real Time Clock Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Addresses [00h to 06h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Control and Status Registers (CSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Addresses [07h to 0Fh]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power Supply Control Register (PWR_VDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Battery Voltage Trip Voltage Register(PWR_VBAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Initial AT and DT Setting Register (ITRO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ALPHA Register (ALPHA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 BETA Register (BETA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Final Analog Trimming Register (FATR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Final Digital Trimming Register (FDTR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ALARM Registers (10h to 15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Time Stamp VDD to Battery Registers (TSV2B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Time Stamp Battery to VDD Registers (TSB2V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DST Control Registers (DSTCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 TEMP Registers (TEMP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 NPPM Registers (NPPM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 XT0 Registers (XT0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24ALPHA Hot Register (ALPHAH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 User Registers (Accessed by Using Slave Address 1010111x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Addresses [00h to 7Fh]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Protocol Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Device Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Application Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power Supply Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Battery Backup Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Measuring Oscillator Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Temperature Compensation Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Daylight Savings Time (DST) Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Device Handling Precautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Absolute Maximum Ratings Thermal InformationVoltage on V DD, V BAT and IRQ/F OUT pins(Respect to Ground). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V Voltage on SCL and SDA pins(Respect to Ground). . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to V DD+0.3V ESD RatingHuman Body Model (Per JESD22-A114F) . . . . . . . . . . . . . . . . . . . . . . >3kV Machine Model (Per JESD22-A115B) . . . . . . . . . . . . . . . . . . . . . . . .>300V Charge Device Model (Per JESD22-C101D) . . . . . . . . . . . . . . . . . . . .2.2kV Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA Shock Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . .5000g, 0.3ms, 1/2 sine Vibration (Ultrasound cleaning not advised). . . . . . . . . . .20g/10-2000Hz,Thermal Resistance (Typical)θJA (°C/W)θJC (°C/W) 20 Lead SOIC (Notes 4, 5). . . . . . . . . . . . . . 7035 Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C Pb-Free Reflow Profile (Note 6). . . . . . . . . . . . . . . . . . . . . . . . see link below /pbfree/Pb-FreeReflow.aspCAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.NOTES:4.θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.5.For θJC, the “case temp” location is on top of the package and measured in the center of the package between pins 6 and 15.6.The ISL12022MA Oscillator Initial Accuracy can change after solder reflow attachment. The amount of change will depend on the reflow temperatureand length of exposure. A general rule is to use only one reflow cycle and keep the temperature and time as short as possible. Changes on the order of ±1ppm to ±3ppm can be expected with typical reflow profiles.DC Operating Characteristics RTC Test Conditions: VDD = +2.7 to +5.5V, TA = -40°C to +85°C, unless otherwise stated. Boldface limits apply over the operating temperature range, -40°C to +85°C.SYMBOL PARAMETER CONDITIONSMIN(Note 7)TYP(Note 8)MAX(Note 7)UNITS NOTESV DD Main Power Supply(Note 15) 2.7 5.5VV BAT Battery Supply Voltage(Note 15) 1.8 5.5V9I DD1Supply Current. (I2C Not Active,Temperature Conversion Not Active, F OUTNot Active)V DD = 5V 4.115µA10, 11 V DD = 3V 3.514µA10, 11I DD2Supply Current. (I2C Active, TemperatureConversion Not Active, F out Not Active)V DD = 5V200500µA10, 11I DD3Supply Current. (I2C Not Active,Temperature Conversion Active, F OUT NotActive)V DD = 5V120400µA10, 11I BAT Battery Supply Current V DD = 0V, V BAT = 3V, T A=+25°C 1.0 1.6µA10V DD = 0V, V BAT = 3V 1.0 5.0µA10 I BATLKG Battery Input Leakage V DD = 5.5V, V BAT = 1.8V100nAI LI Input Leakage Current on SCL V IL = 0V, V IH = V DD-1.0±0.1 1.0µAI LO I/O Leakage Current on SDA V IL = 0V, V IH = V DD-1.0±0.1 1.0µAV BATM Battery Level Monitor Threshold-100+100mVV PBM Brownout Level Monitor Threshold-100+100mVV TRIP V BAT Mode Threshold(Note 15) 2.0 2.2 2.4VV TRIPHYS V TRIP Hysteresis30mV13 V BATHYS V BAT Hysteresis50mV13OSCILLATOR ACCURACYΔFout I Oscillator Initial AccuracyV DD = 3.3V -2+8ppm 6, 17ΔFout R Oscillator Accuracy after Reflow Cycle V DD = 3.3V ±5ppm 6, 17ΔFout T Oscillator Stability vs Temperature V DD = 3.3V ±2ppm 6, 18ΔFout V Oscillator Stability vs Voltage 2.7V ≤ V DD ≤ 5.5V -3+3ppm 19TempTemperature Sensor AccuracyV DD = V BAT = 3.3V±2°C13IRQ/F OUT (OPEN DRAIN OUTPUT)V OLOutput Low VoltageV DD = 5V, I OL = 3mA 0.4V V DD = 2.7V, I OL = 1mA0.4VDC Operating Characteristics RTCTest Conditions: VDD = +2.7 to +5.5V, TA = -40°C to +85°C, unless otherwise stated. Boldfacelimits apply over the operating temperature range, -40°C to +85°C. (Continued)SYMBOLPARAMETERCONDITIONSMIN (Note 7)TYP (Note 8)MAX (Note 7)UNITSNOTESPower-Down TimingTest Conditions: VDD = +2.7 to +5.5V, Temperature = -40°C to +85°C, unless otherwise stated. Boldface limits applyover the operating temperature range, -40°C to +85°C.SYMBOL PARAMETERCONDITIONSMIN (Note 7)TYP (Note 8)MAX (Note 7)UNITS NOTES V DDSR-V DD Negative Slew Rate10V/ms 12V DDSR+V DD Positive Slew Rate, minimum0.05V/ms16I 2C Interface SpecificationsTest Conditions: V DD = +2.7 to +5.5V, Temperature = -40°C to +85°C, unless otherwise specified. Boldfacelimits apply over the operating temperature range, -40°C to +85°C.SYMBOL PARAMETERTEST CONDITIONSMIN (Note 7)TYP (Note 8)MAX (Note 7)UNITS NOTESV IL SDA and SCL Input Buffer LOW Voltage-0.30.3 x V DD V V IH SDA and SCL Input Buffer HIGH Voltage0.7 x V DDV DD + 0.3V Hysteresis SDA and SCL Input Buffer Hysteresis0.05 x V DD V 13, 14V OL SDA Output Buffer LOW Voltage, Sinking 3mA V DD = 5V, I OL = 3mA 00.020.4V C PINSDA and SCL Pin Capacitance T A = +25°C, f = 1MHz, V DD = 5V, V IN =0V, V OUT = 0V10pF13, 14f SCL SCL Frequency400kHz t INPulse Width Suppression Time at SDA and SCL InputsAny pulse narrower than the max spec is suppressed.50nst AASCL Falling Edge to SDA Output Data ValidSCL falling edge crossing 30% of V DD , until SDA exits the 30% to 70% of V DD window.900nst BUFTime the Bus Must be Free Before the Start of a New Transmission SDA crossing 70% of V DD during a STOP condition, to SDA crossing 70% of V DD during the following START condition.1300nst LOW Clock LOW Time Measured at the 30% of V DD crossing.1300ns t HIGHClock HIGH TimeMeasured at the 70% of V DD crossing.600nst SU:STA START Condition Setup TimeSCL rising edge to SDA falling edge. Both crossing 70% of V DD .600ns t HD:STASTART Condition Hold TimeFrom SDA falling edge crossing 30% of V DD to SCL falling edge crossing 70% of V DD .600nst SU:DATInput Data Setup TimeFrom SDA exiting the 30% to 70% of V DD window, to SCL rising edge crossing 30% of V DD.100nst HD:DATInput Data Hold Time From SCL falling edge crossing 30% of V DD to SDA entering the 30% to 70% of V DD window.20900nst SU:STOSTOP Condition Setup TimeFrom SCL rising edge crossing 70% of V DD , to SDA rising edge crossing 30% of V DD .600nst HD:STO STOP Condition Hold Time From SDA rising edge to SCL falling edge.Both crossing 70% of V DD .600ns t DHOutput Data Hold TimeFrom SCL falling edge crossing 30% of V DD , until SDA enters the 30% to 70% of V DD window.nst R SDA and SCL Rise Time From 30% to 70% of V DD.20 +0.1 x Cb 300ns 13, 14t F SDA and SCL Fall TimeFrom 70% to 30% of V DD.20 +0.1 x Cb300ns 13, 14Cb Capacitive Loading of SDA or SCLTotal on-chip and off-chip 10400pF 13, 14R PUSDA and SCL Bus Pull-up Resistor Off-chipMaximum is determined by t R and t F .For Cb = 400pF, max is about 2k Ω~2.5k Ω.For Cb = 40pF, max is about 15k Ω~20k Ω1k Ω13, 14NOTES:7.Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.8.Specified at +25°C.9.Temperature Conversion is inactive below V BAT = 2.7V. Device operation is not guaranteed at V BAT <1.8V.10.IRQ/F OUT inactive.11.V DD > V BAT +V BATHYS12.In order to ensure proper timekeeping, the V DD SR- specification must be followed.13.Limits should be considered typical and are not production tested.14.These are I 2C specific parameters and are not tested, however, they are used to set conditions for testing devices to validate specification.15.Minimum V DD and/or V BAT of 1V to sustain the SRAM. The value is based on characterization and it is not tested.16.To avoid EEPROM recall issues, it is advised to use this minimum power up slew rate. Not tested, shown as typical only.17.Defined as the deviation from a target oscillator frequency of 32,768.0Hz at room temperature.18.Defined as the deviation from the room temperature measured 1Hz frequency, V DD = 3.3V, at T A = -40°C to +85°C.19.Defined as the deviation at room temperature from the measured 1Hz frequency (or equivalent) at V DD = 3.3, over the range of V DD = 2.7V toV DD =5.5V.I 2C Interface SpecificationsTest Conditions: V DD = +2.7 to +5.5V, Temperature = -40°C to +85°C, unless otherwise specified. Boldfacelimits apply over the operating temperature range, -40°C to +85°C. (Continued)SYMBOL PARAMETERTEST CONDITIONSMIN (Note 7)TYP (Note 8)MAX (Note 7)UNITS NOTES。

CodeWarrior 10.2简明手册(V1.1)

CodeWarrior 10.2简明手册(V1.1)

CodeWarrior 10.2简明手册CodeWarrior 10.2简明手册 (1)1 下载安装CW v10.2 (1)2 安装BDM驱动 (2)3 导入现有工程 (3)4 编译、下载源码工程 (4)5. 带有操作系统程序的编译、下载 (6)5.1 带有操作系统模板程序的打开 (6)5.2 带有操作系统模板程序的编译 (7)5.3 带有操作系统模板程序的下载 (7)6 CodeWarrior 10.2常用操作 (8)7 常见问题说明 (9)基于Eclipse的CodeWarrior Development Studio for Microcontroller v10.2(简称CW10.2)作为一个完整的集成开发环境,提供了高度可视化操作及自动创建复杂嵌入式系统应用的功能,为使用Freescale嵌入式产品开发提供了便利。

官方推荐使用CW v10.2进行Freecale Kinetis嵌入式产品的开发。

本文将对使用CW v10.2开发K60项目的操作进行简要说明。

本文安装的cw10.2 版本是特别版的,支持128KB的代码大小。

用户若需要更大的代码空间和更多的功能的话,则需要向飞思卡尔申请license,这些license都是要收费的。

1 下载安装CW v10.2飞思卡尔半导体为注册用户在其官方网站的网址链接处下载后,双击可执行安装文件,如图1所示,根据提示即可完成安装。

由于有的CW10.2版本安装完成后默认是中文版的,有的默认是英文版的。

集成开发环境的原版是英文版的,所以英文版的运行速度比中文版的快很多。

这里建议用英文版的CW10.2,不建议用户使用中文版集成开发环境,所以本章介绍的使用说明都是基于英文版的。

想将飞思卡尔的CW10.2集成开发环境变成英文版,首先需要关闭当前的CW10.2,然后右击CW10.2桌面图标选择“属性”,在“目标”栏下“…”后面加上“–nl en”再单击“应用”后便改成英文版;加上“–nl zh”可以改2 安装BDM驱动CW_v10.2中已包含了BDM写入器(Open Source BDM,OSBDM)的驱动文件,将BDM接到PC机器时,Windows会提示发现新硬件:提示连接到“Windows Update”更新,选择“否,暂时不”,点击“下一步”。

【国家自然科学基金】_湿周_基金支持热词逐年推荐_【万方软件创新助手】_20140802

【国家自然科学基金】_湿周_基金支持热词逐年推荐_【万方软件创新助手】_20140802

科研热词 环境演变 湿周法 数值模拟 微波干燥 天然橡胶 黑褐色土 黑河流域 黏结性能 风尘堆积 雪灾 降水量 降水 长江 钢结构 遥感技术 趋势分析 观测特征 螽斯 蒸散发 蒸发量 荷载和干湿交替环境 茎 自由基 脑死亡 胃黏膜细胞凋亡 胃缺血-再灌注 肺移植 肺 耐水性 缺血预处理 缺血后处理 结构 等熵位涡 空调系统 稀土元素 碳酸钙晶须 硅烷偶联剂kh560 研究 砂沟滴灌 电化学阻抗谱 生态需水量 甘肃贝母 环境水力学 环压强度 热风 热氧降解 热工性能 澧阳平原 漆酶/木聚糖酶体系(lxs) 湿吸 湖泊沉积 测试
沉积物 江陵地区 水 氮素分布 气虚 棉花生长季 核因子-κ b 有限元方法 新近纪 数值模拟 摇蚊亚化石 接触角 抗菌性能 性能 微生物凝固 微波干燥 应用 干燥特性 干湿周浸 干湿变化 山东半岛 层状云 小气候 小叶章湿地 小冰期 对流有效位能 寒证 孔隙水 失重法 天然气储存 大豆分离蛋白 大孔吸附树脂 墨西哥小帽小波 地貌顶级群落 地形作用 吸附机制 吸附性能 吸附垫 吸附剂 台风"圣帕" 古气候 叠层石 单肺通气 分解 分泌液 分子量 凝固体系 减排 冠毒素 内部相对湿度 共混膜 共混纤维 全新世 作物气候生产力
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

WB202资料

WB202资料

PARAMETER (TEST CONDITIONS)
Series Number Maximum DC Blocking Voltage Maximum RMS Voltage Maximum Peak Recurrent Reverse Voltage Average Forward Rectified Current @ TA = 25 oC Peak Forward Surge Current (8.3mS single half sine wave superimposed on rated load) Maximum Forward Voltage (Per Diode) at 1 Amp DC Maximum Average DC Reverse Current At Rated DC Blocking Voltage Operating and Storage Temperature Range @ TA = 25 C o @ TA = 100 C
B B1 B1 + AC _
MILLIMETERS SYM
Terminals: Round silver plated pins
Soldering: Per MIL-STD 202 Method 208 guaranteed
+
INCHES MIN 0.340 0.030 0.180 0.200 1.20 1.0 MAX 0.350 0.032 0.220 0.220 n/a n/a
MECHANICAL SPECIFICATION
ACTUAL SIZE OF WB PACKAGE
SERIES WB200 - WB210
Surge overload rating to 60 Amps peak

L9942中文大数据手册簿

L9942中文大数据手册簿

实用文档特点■两路全桥,最大输出电流. 1.3 A(R DSON = 500 mΩ)■带查表功能的可编程驱动电流曲线表格: 9 级5位精度■内置PWM电流调整器和电流传感器■可编程的步进模式:全步、半步、细步、微步■可编程摆率控制:改善EMC性能降低功耗■可编程的高速-, 低速-,混合- 和自动衰减模式■ 3位精度的全范围可编程电流■可编程堵转检测■降低对微处理器要求的步进时钟输入■待机模式下功耗很低IS < 3 μA, typ. Tj ≤85 °C■所有输出均带:短路保护,负载开路,过载,温度预警和热关断功能■内部PWM控制器的PWM信号可以当做数据输出使用。

.■在下列工作范围内所有指标都会保证3 V < Vcc <5.3 V and for 7 V < Vs < 20 V用途双极步进电机驱动器在汽车上的应用:如灯光的水平控制,灯光方向调整,节气门控制。

描述L9942是一款集成的双极步进电机驱动器,具有细分模式和可编程电流配置表,能灵活适应步进电机的特性和预期的工作情况。

可以根据目标情况选用不同的电流配置表:噪音,振动,转速或者转矩。

衰减模式用在PWM-电流控制电路中,可以编程设置成低速-,高速-,混合-和自动衰减模式。

在自动衰减模式下,如果下一步电流是增加的,器件会采用低速模式,如果下一步电流是衰减的,则会采用高速或者混合模式。

可编程堵转检测在前灯水平调整和弯道调整应用中非常有用,可以防止堵转时电机为了转到位置而长时间的运行。

如果检测到堵转,对准过程被关闭,并且噪声被最小化。

表1 器件概要2009年5月文档编号11778 Rev6目录1 框图与引脚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 器件描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 诊断功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 过压与欠压检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 温度报警与热关断 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6 感性负载 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 交叉电流保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.8 PWM 电流调整 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.9 衰减模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 过流检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.11 负载开路检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.12 步进模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.13 衰减模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 电气参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 绝对最大额定值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 ESD 静电保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 热参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 电气特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 电源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.2 过压和欠压检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.3 参考电流输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.4 电荷泵输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.5 输出: Qxn (x = A; B n = 1; 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.4.6 PWM 控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 SPI的逻辑功能描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 电机步进时钟输入 (STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 PWM 输出 (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 串行外设接口 (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.4 芯片反相片选 (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5 串行数据输入 (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6 串行数据输出 (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7 串行时钟 (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.8 数据寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 SPI –控制和状态寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.3 寄存器 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 寄存器 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5 寄存器 4 和 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.6 寄存器 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7 寄存器 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.8 辅助逻辑模块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.1 故障条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.2 SPI 通讯监视 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.8.3 用于堵转检测的PWM 监视 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SPI 逻辑的电气特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 输入: CSN, CLK, STEP, EN 和 DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 DI 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 输出: DO, PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.4 输出: DO 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.5 CSN 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296.6 STEP 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 附录 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337.1 堵转检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337.2 步进时钟输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337.3 负载电流控制和过流检测(输出短路) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 包装信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 历史版本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39表格列表表 1. 器件概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 表 2. 引脚描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 表 3. 真值表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 表 4. 绝对最大额定值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 表 5. ESD 静电保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 表 6. 工作时的结温 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15表 9. 过压和欠压检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 表 10. 参考电流输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 表 11. 电荷泵输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 表 12. 输出: Qxn (x = A; B n =1; 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 表 13. PWM 控制 (见图 4 和图 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 表 14. 寄存器 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 表 15. 寄存器 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 表 16. 寄存器 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 表 17. 寄存器 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 表 18. 寄存器 4 和 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 表 19. 寄存器 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 表 20. 寄存器 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 表 21. 输入: CSN, CLK, STEP, EN and DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 表 22. DI 的时序 (见图 11 和图 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 表 23. 输出: DO, PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表 24. 输出: DO 的时序(见图 12 和图 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表 25. CSN 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 表 26. STEP 的时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 表 27. 文档历史版本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39插图列表图 1. 方框图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6图 2. 引脚图 (顶视) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6图 3. 步进模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12图 4. 衰减模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13图 5. 封装的热数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15图 6. VS 监视 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17图 7. 设置负载电流限制的逻辑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19图 8. 最小切换时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20图 11. 输入时序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 图 12. SPI - DO 有效的数据延迟时间和有效时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 图 13. DO 使能和禁止时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 图 14. 状态位 0 的时序 (故障条件) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 图 15. 堵转检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 图 16. PWM 控制的参考产生 (接通) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 图 17. PWM控制的参考产生 (衰减) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 图 18. PowerSSO24 机械尺寸和包装规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 框图与引脚图图 1. 框图图 2. 引脚图 (顶视)2 芯片描述2.1 双电源供电: VS 和 VCC电源引脚VS脚给半桥供电。

WT-2000系列中文手册

WT-2000系列中文手册
地址:北京市朝阳区东三环北路甲19号SOHO嘉盛中心1808室
电话: +86-10-65863598
传真: +86-10-65863018
瑟米莱伯公司无锡售后服务中心
电话: +86-13812056089
警告:WT-2000PV系列激光探头安全等级为1M级,操作时必须佩戴防护眼镜。切勿直视,以及通过镜面和放大镜等光学设备观测激光探头!
在下一个输入框中输入SHR的真实值。
点击OK,取出片子,放入另一片子,接着重复上面的步骤,校正数据被保存。
最后点击functions\save ,取文件名,保存较正文件。
2.4 Fe
在晶体生长,加工或运输过程中,Fe是一种很容易引起材料沾污的金属,-PCD能够对Fe的沾污量进行定性测试。在p型硅片中,Fe主要以FeB形式存在,若对硅片进行或强光照射,FeB对会分解成Fei,利用FeB和Fei在硅中具有不同的复合强度,通过测试复合前后硅片的少子寿命来计算硅中的Fe沾污浓度。在硅中FeB的少子寿命随注入强度基本不变,而Fei的少子寿命随着注入强度的增大而升高,如图2-4所示。
为测量电池的电流,样品的背面用金属台面连接,正面有个金属探针与主电极接触。LBIC测试原理如图2-2所示:
图2-2 LBIC测试原理示意图
光诱导电流指的是是电池片吸收激光所形成的电流。电池片反射率则是电池片对激光的反射(包括直反射和漫反射)程度,反射率可以通过积分球收集反射信号计算出。
在测得电池片光诱导电流和反射率之后,就能通过计算得出电池片内量子效率(IQE,Internal Quantum Efficiency),其关系如下式所示:
Eddy Current/涡流法体电阻率扫描
Iron concentration/无接触铁含量扫描

NYC0102BLT1G;中文规格书,Datasheet资料

NYC0102BLT1G;中文规格书,Datasheet资料

IGT


200
mA
Gate Trigger Voltage (VD = 12 V, RL = 100 W, TC = 25°C)
VGT


0.8
V
Holding Current (IT = 50 mA, RGK = 1 kW, TC = 25°C)
IH


6.0
mA
Gate Non−Trigger Voltage (VD = VDRM, RL = 3.3 kW, TC = 125°C)
TJ
−40 to
°C
+125
Storage Temperature Range
Tstg
−40 to
°C
+150
THERMAL CHARACTERISTICS
Characteristic
Symbol Max
Unit
Total Device Dissipation FR− 5 Board TA = 25°C
PD
225
mW
Thermal Resistance, Junction−to−Ambient RqJA
380
°C/W
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

MSMC-0102中文资料

MSMC-0102中文资料

Model Number Output VoltageOutput Amps Output WattsSINGLE OUTPUT - PCB MountMSMA-0100 3.3 VDC 2.5 8W MSMA-0101 5 VDC 2 10W MSMA-0104 9 VDC 1.1 10W MSMA-0102 12 VDC 0.85 10W MSMA-0103 15 VDC 0.67 10W MSMA-0105 24 VDC 0.42 10W SINGLE OUTPUT - Chassis Mount MSMC-0100 3.3 VDC 2.5 8W MSMC-0101 5 VDC 2 10W MSMC-0104 9 VDC 1.1 10W MSMC-0102 12 VDC 0.85 10W MSMC-0103 15 VDC 0.67 10W MSMC-0105 24 VDC 0.42 10W SINGLE OUTPUT - DIN Rail Mount MSMC-0100/DRL 3.3 VDC 2.5 8W MSMC-0101/DRL 5 VDC 2 10W MSMC-0104/DRL 9 VDC 1.1 10W MSMC-0102/DRL 12 VDC 0.85 10W MSMC-0103/DRL 15 VDC 0.67 10W MSMC-0105/DRL 24 VDC0.4210WSingle / Dual / Triple Outputs Universal 85VAC to 265VAC Input 3.3VDC to 24VDC Outputs 4,000VAC Input to Output Isolation PCB and Chassis Mount Packages Full Safety ApprovalsPCB 2.56”L x 1.77”W x 0.83”HChassis 3.77”L x 2.16”W x 1.0”HFully ApprovedUL/CSA22.2 2601 File# E167432EN60601-1 File# B021*********Model Number Output Voltage Output Amps Output WattsDUAL OUTPUT - PCB Mount MDMA-0106 +/-12 VDC +/-0.42 10W MDMA-0107 +/-15 VDC +/-0.34 10W MDMA-0108 +5/12 VDC 1/0.42 10W DUAL OUTPUT - Chassis Mount MDMC-0106 +/-12 VDC +/-0.42 10W MDMC-0107 +/-15 VDC +/-0.34 10W MDMC-0108 +5/12 VDC 1/0.42 10W DUAL OUTPUT - DIN Rail Mount MDMC-0106/DRL +/-12 VDC +/-0.42 10W MDMC-0107/DRL +/-15 VDC +/-0.34 10W MDMC-0108/DRL +5/12 VDC 1/0.42 10W TRIPLE OUTPUT - PCB Mount MTMA-0109 +5,+/-12 VDC 1.5,0.1/0.1 10W MTMA-0111 +5,+/-15 VDC 1.4,0.1/0.1 10W TRIPLE OUTPUT - Chassis Mount MTMC-0109 +5,+/-12 VDC 1.5,0.1/0.1 10W MTMC-0111 +5,+/-15 VDC 1.4,0.1/0.1 10W TRIPLE OUTPUT - DIN Rail Mount MTMC-0109/DRL +5,+/-12 VDC 1.5,0.1/0.1 10W MTMC-0111/DRL +5,+/-15 VDC1.4,0.1/0.110WSingle / Dual / Triple Outputs Universal 85VAC to 265VAC Input 3.3VDC to 24VDC Outputs 4,000VAC Input to Output Isolation PCB and Chassis Mount Packages Full Safety ApprovalsPCB 2.56”L x 1.77”W x 0.83”HChassis 3.77”L x 2.16”W x 1.0”HFully ApprovedUL/CSA22.2 2601 File# E167432EN60601-1 File# B021********** These are stress ratings. Exposure of the devices to any of these conditionsmay adversely affect long term reliability. Proper operation under conditions other than the standard operating conditions is neither warranteed nor implied.All specifications are typical at nominal input, full load, and 25DegC unless otherwise notedAstrodyne products are not authorized or warranteed for use as critical components in life support systems, equipment used in hazardous environments, nuclear controls systems, or other mission-critical applications.INPUT SPECIFICATIONSInput Voltage, Nominal 85-265VACNominal: 100-240VAC Input Frequency 47-440 Hz, 50-60Hz Nom. Inrush Current 20A @ 100VAC, typ40A @ 200VAC, typOUTPUT SPECIFICATIONSOutput Voltage/Current See Specific Model Initial Accuracy +/-1%, adjustable Voltage Adjust +/-6%, typ Load Regulation +/-0.3%, typ Line Regulation+/-0.3%, typ Temperature Coefficient +/-0.03%/°CRipple/Noise(20Mhz BW) 150mV Pk-Pk, typ Overvoltage Protection Clamp, 130-150% * Hold Up Time30mS, typShort Circuit Protection Continuous, self-recovering * Current Limit130% typ,Self-Reset FoldbackGENERAL SPECIFICATIONSOn/Off Control Open Collector Logic “1”/Open=ONLogic “0”/GND=OFF Input-Out Isolation4000VAC Output-Ground Isolation 1000VAC Input-Ground Isolation 2500VAC Operating Frequency 140 Khz, fixed Efficiency (@ Full Load)75 - 80%, typENVIRONMENTAL SPECIFICATIONSOper. Temperature 0 to +50°C FL See Derate *(Free-air Convection) Relative Humidity 0-95%, Non-Condensing Storage Temperature -25 to +71°C *MTBF, Single/Multi Output 180,000 Hrs/110,000 HrsMil Std 217, 25°CPHYSICAL SPECIFICATIONSCase Material Rynite, 94V-0 RatedConstruction Encapsulated, Soft Pot Weight PCB / CHA4.6 oz (128g) / 8.5 oz (238g)MECHANICAL DIMENSIONS - PCB MOUNTModel Dual Dual Type / Pin# Single Matched 5/12V Triple 1 AC HI AC HI AC HI AC HI 2 AC LO AC LO AC LO AC LO 3 GND GND GND GND 4 No Pin No Pin No Pin +Vout 5No Pin No Pin No Pin +/-Com 6 +Vout +Vout 12Vout No Pin 7 No Pin No Pin No Pin -Vout 8No Pin Out Com +5Vout +5Vout 9 -Vout -Vout Out Com 5V Ret10CtrlCtrlCtrlCtrlPERFORMANCE CURVES100907050403020108060010203040506070-10O u t p u t C u r r e n t , %Ambient Temp., DegC90605080704025507510010T y p i c a l E f f i c i e n cy , %% of Full LoadMECHANICAL DIMENSIONS - CHASSIS MOUNT.(2 PLACES)0.100 [2.54]Model Match Unmatch TripleType / Pin#Single DualDual1 AC LO AC LO AC LO AC LO2 GND GND GND GND3 AC HI AC HI AC HI AC HI4 Ctrl Ctrl Ctrl Ctrl5 -Vout -Vout Com +5 Ret6 -Vout Com Com +5Vout7 +Vout Com +5Vout -Vout8 +Vout +Vout +12Vout +/- Com 9N/CN/CN/C+VoutDIN Rail mounting kit available for Chassis-mount modules, specify part # M-DRL-01. Kit includes mounting plate, DIN Rail cliip and assembly hardware.MECHANICAL DIMENSIONS - DIN RAIL。

NCP1422MNR2G,NCP1422MNR2G,NCP1422MNR2,NCP1422MNR2,NCP1422EVB,NCP1422LEDGEVB, 规格书,Datasheet 资料

NCP1422MNR2G,NCP1422MNR2G,NCP1422MNR2,NCP1422MNR2,NCP1422EVB,NCP1422LEDGEVB, 规格书,Datasheet 资料

NCP1422800 mA Sync−Rect PFMStep−Up DC−DC Converter with True−Cutoff andRing−KillerNCP1422 is a monolithic micropower high−frequency step−up switching converter IC specially designed for battery−operated hand−held electronic products up to 800 mA loading. It integrates Sync−Rect to improve efficiency and to eliminate the external Schottky Diode. High switching frequency (up to 1.2 MHz) allows for a low profile, small−sized inductor and output capacitor to be used. When the device is disabled, the internal conduction path from LX or BA T to OUT is fully blocked and the OUT pin is isolated from the battery. This True−Cutoff function reduces the shutdown currentto typically only 50 nA. Ring−Killer is also integrated to eliminate the high−frequency ringing in discontinuous conduction mode. In addition to the above, Low−Battery Detector, Logic−Controlled Shutdown, Cycle−by−Cycle Current Limit and Thermal Shutdown provide value−added features for various battery−operated applications. With all these functions on, the quiescent supply current is typically only 8.5 m A. This device is available in the compact and low profile DFN−10 package.Features•Pb−Free Package is Available*•High Efficiency:94% for 3.3 V Output at 200 mA from 2.5 V Input88% for 3.3 V Output at 500 mA from 2.5 V Input •High Switching Frequency, up to 1.2 MHz (not hitting current limit)•Output Current up to 800 mA at V IN = 2.5 V and V OUT = 3.3 V •True−Cutoff Function Reduces Device Shutdown Current to typically 50 nA•Anti−Ringing Ring−Killer for Discontinuous Conduction Mode •High Accuracy Reference Output, 1.20 V $1.5% @ 25°C, can Supply 2.5 mA Loading Current when V OUT > 3.3 V•Low Quiescent Current of 8.5 m A•Integrated Low−Battery Detector•Open Drain Low−Battery Detector Output•1.0 V Startup at No Load Guaranteed•Output V oltage from 1.5 V to 5.0 V Adjustable•1.5 A Cycle−by−Cycle Current Limit•Multi−Function Logic−Controlled Shutdown Pin•On Chip Thermal Shutdown with HysteresisTypical Applications•Personal Digital Assistants (PDA)•Handheld Digital Audio Products•Camcorders and Digital Still Cameras•Hand−held Instruments•Conversion from one to two Alkaline, NiMH, NiCd Battery Cells to 3.0−5.0 V or one Lithium−ion cells to 5.0 V•White LED Flash for Digital CamerasDevice Package Shipping†ORDERING INFORMATIONNCP1422MNR2DFN−103000 T ape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.*For additional information on our Pb−Free strategy and soldering details, please download theON Semiconductor Soldering and MountingT echniques Reference Manual, SOLDERRM/D. NCP1422MNR2G DFN−10(Pb−Free)3000 T ape & ReelFigure 1. Detailed Block DiagramPIN FUNCTION DESCRIPTIONSPin Symbol Description1FB Output Voltage Feedback Input.2LBI/EN Low−Battery Detector Input and IC Enable. With this pin pulled down below 0.5 V, the device is disabled and enters the shutdown mode.3LBO Open−Drain Low−Battery Detector Output. Output is LOW when V LBI is < 1.20 V. LBO is high impedance in shutdown mode.4NC No Connect Pin5REF 1.20 V Reference Voltage Output, bypass with 300 nF capacitor. If this pin is loaded, bypass with 1.0 m F capacitor; this pin can be loaded up to 2.5 mA @ V OUT = 3.3 V.6BAT Battery input connection for internal ring−killer.7GND Ground.8LX N−Channel and P−Channel Power MOSFET drain connection.9NC No Connect Pin10OUT Power Output. OUT also provides bootstrap power to the device.MAXIMUM RATINGS (T A = 25°C unless otherwise noted.)Rating Symbol Value Unit Power Supply (Pin 10)V OUT−0.3, 5.5V Input/Output Pins (Pin 1−3, Pin 5−8)V IO−0.3, 5.5V Thermal CharacteristicsDFN−10 Plastic PackageThermal Resistance Junction−to−Air (Note 5)P DR JA182468.5mW_C/WOperating Junction T emperature Range T J−40 to +150_C Operating Ambient T emperature Range T A−40 to +85_C Storage T emperature Range T stg−55 to +150_C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.1.This device contains ESD protection and exceeds the following tests:Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22−A114. *Except OUT pin, which is 1k V.Machine Model (MM) ±200 V per JEDEC standard: JESD22−A115. *Except OUT pin, which is 100 V.2.The maximum package power dissipation limit must not be exceeded.P D+T J(max)*T AR q JAtchup Current Maximum Rating: ±150 mA per JEDEC standard: JESD78.4.Moisture Sensitivity Level: MSL 1 per IPC/JEDEC standard: J−STD−020A.5.Measured on approximately 1x1 inch sq. of 1 oz. Copper.ELECTRICAL CHARACTERISTICS (V OUT = 3.3 V, T A = 25°C for typical value, −40°C v T A v 85°C for min/max values unless otherwise noted.)Characteristic Symbol Min Typ Max Unit Operating Voltage V IN 1.0− 5.0V Output Voltage Range V OUT 1.5− 5.0VV REF_NL 1.183 1.200 1.217V Reference Voltage(V OUT= 3.3 V, I LOAD = 0m A, C REF= 200 nF, T A = 25°C)V REF_NL 1.174− 1.220V Reference Voltage(V OUT= 3.3 V, I LOAD = 0m A, C REF= 200 nF, T A = −40°C to 85°C)Reference Voltage T emperature Coefficient TC VREF−0.03−mV/°C Reference Voltage Load CurrentI REF− 2.5−mA(V OUT= 3.3 V, V REF = V REF_NL"1.5% C REF= 1.0 m F) (Note 6)V REF_LOAD−0.05 1.0mV Reference Voltage Load Regulation(V OUT= 3.3 V, I LOAD= 0 to 100 m A, C REF= 1.0 m F)Reference Voltage Line RegulationV REF_LINE−0.05 1.0mV/V (V OUT from 1.5 V to 5.0 V, C REF= 1.0 m F)FB Input Threshold (I LOAD= 0 mA, T A = 25°C)V FB 1.192 1.200 1.208V FB Input Threshold (I LOAD= 0 mA, T A = −40°C to 85°C)V FB 1.184− 1.210V LBI Input Threshold (I LOAD= 0 mA, T A = 25_C)V LBI 1.182 1.200 1.218V LBI Input Threshold (I LOAD= 0 mA, T A= −40_C to 85_C)V LBI 1.162 1.230V Internal N−FET ON−Resistance R DS(ON)_N−0.3−Internal P−FET ON−Resistance R DS(ON)_P−0.3−LX Switch Current Limit (N−FET) (Note 8)I LIM− 1.5−AI QBAT− 1.3 3.0m A Operating Current into BAT(V BAT= 1.8 V, V FB= 1.8 V, V LX= 1.8 V, V OUT= 3.3 V)Operating Current into OUT (V FB= 1.4 V, V OUT= 3.3 V)I Q−8.514m A LX Switch MAX. ON−Time (V FB = 1.0 V, V OUT= 3.3 V, T A = 25_C)t ON0.460.72 1.15m s LX Switch MIN. OFF−Time (V FB = 1.0 V, V OUT= 3.3 V, T A = 25_C)t OFF−0.120.22m s FB Input Current I FB− 1.050nAI BAT_SD−50−nA True−Cutof f Current into BAT(LBI/EN = GND, V OUT= 0 V, V IN= 3.3 V, LX = 3.3 V)BAT−to−LX Resistance (V FB= 1.4 V, V OUT= 3.3 V) (Note 8)R BAT_LX−100−LBI/EN Input Current I LBI− 1.550nA LBO Low Output Voltage (V LBI= 0 V, I SINK = 1.0 mA)V LBO_L−−0.2V Soft−Start Time (V IN= 2.5 V, V OUT= 5.0 V, C REF= 200 nF) (Note 7)T SS− 1.520ms EN Pin Shutdown Threshold (T A = 25°C)V SHDN0.350.50.67V Thermal Shutdown T emperature (Note 8)T SHDN−−145°C Thermal Shutdown Hysteresis (Note 8)T SDHYS−30−°C6.Loading capability increases with V OUT.7.Design guarantee, value depends on voltage at V OUT.8.Values are design guaranteed.AMBIENT TEMPERATURE, T A /°CS W I T C H O N R E S I S T A N C E , R D S (O N )/W20406080100AMBIENT TEMPERATURE, T A /°CR E F E R E N C E V O L T A G E , V R E F /V0.50.60.70.80.91.0−40−20020406080100OUTPUT LOADING CURRENT , I LOAD /mAM I N I M U M S T A R T U P B A T T E R Y V O L T A G E , V B A T T /VFigure 3. Reference Voltage vs. Voltage at OUT PinFigure 4. Reference Voltage vs. TemperatureFigure 5. Switch ON Resistance vs. TemperatureFigure 6. L X Switch Max. ON Time vs. TemperatureFigure 7. Minimum Startup Battery Voltage vs.Loading CurrentAMBIENT TEMPERATURE, T A /°C L X S W I T C H M A X I M U M , O N T I M E , t O N /m SR E F E R E N C E V O L T A G E , V R E F /V1.1801.1901.2101.220VOLTAGE AT OUT PIN, V OUT /VR E F E R E N C E V O L T A G E , V R E F /V1.20010Figure 9. Output Voltage Change vs. Load CurrenFigure 11. Low Battery DetectFigure 12. No Load Operating Current vs. InputVoltage at OUT PinO U T P U T V O L T A G E C H A N G E /%−551011001000OUTPUT LOADING CURRENT , I LOAD /mAO U T P U T V O L T A G E C H A N G E /%R I P P L E V O L T A G E , V R I P P L E /m V p −pUpper Trace: Input Voltage Waveform, 1.0 V/Division Lower Trace: Output Voltage Waveform, 2.0 V/DivisionFigure 13. Startup Transient Response1.52.02.53.03.55.0INPUT VOLTAGE AT OUT PIN, V OUT /VN O L O A D O P E R A T I N G C U R R E N T , I B A T T /m A4.04.5Upper Trace: Voltage at LBI Pin, 1.0 V/Division Lower Trace: Voltage at LBO Pin, 1.0 V/DivisionV IN = 2.5 V V OUT = 5.0 V I LOAD = 10 mA10(V IN = 2.5 V, V OUT = 3.3 V, I LOAD = 50 mA; L = 5.6 m H)Upper Trace: Output Voltage Ripple, 20 mV/Division Lower Trace: Voltage at Lx pin, 1.0 V/Division Figure 14. Discontinuous Conduction ModeSwitching Waveform (V IN = 2.5 V, V OUT = 3.3 V, I LOAD = 500 mA; L = 5.6 m H)Upper Trace: Output Voltage Ripple, 20 mV/Division Lower Trace: Voltage at LX pin, 1.0 V/DivisionFigure 15. Continuous Conduction ModeSwitching WaveformFigure 16. Line Transient Response for V OUT = 3.3 V Figure 17. Line Transient Response For V OUT = 5.0 V(V IN = 1.5 V to 2.5 V; L = 5.6 m H, C OUT = 22m F, I LOAD = 100 mA)Upper Trace: Output Voltage Ripple, 100 mV/Division Lower Trace: Battery Voltage, V IN, 1.0 V/Division (V IN = 1.5 V to 2.5 V; L = 5.6 m H, C OUT = 22m F, I LOAD = 100 mA)Upper Trace: Output Voltage Ripple, 100 mV/Division Lower Trace: Battery Voltage, V IN, 1.0 V/DivisionFigure 18. Load Transient Response For V IN = 2.5 V Figure 19. Load Transient Response For V IN = 3.0 V(V OUT = 5.0 V, I LOAD = 100 mA to 800 mA; L = 5.6 m H, C OUT = 22 m F)Upper Trace: Output Voltage Ripple, 500 mV/Division Lower Trace: Load Current, I LOAD , 500 mA/Division(V OUT = 3.3 V, I LOAD = 100 mA to 800 mA; L = 5.6 m H, C OUT = 22 m F)Upper Trace: Output Voltage Ripple, 200 mV/Division Lower Trace: Load Current, I LOAD, 500 mA/DivisionOUTPUT LOADING CURRENT , I OUT /mAE F F I C I E N C Y /%OUTPUT LOADING CURRENT , I OUT /mAE F F I C I E N C Y /%Figure 20. Efficiency vs. Load CurrentFigure 21. Efficiency vs. Load CurrentFigure 22. Efficiency vs. Load CurrentOUTPUT LOADING CURRENT , I OUT /mA E F F I C I E N C Y /%DETAILED OPERATION DESCRIPTIONNCP1422 is a monolithic micropower high−frequency step−up voltage switching converter IC specially designed for battery operated hand−held electronic products up to 800 mA loading. It integrates a Synchronous Rectifier to improve efficiency as well as to eliminate the external Schottky diode. High switching frequency (up to 1.2 MHz)allows for a low profile inductor and output capacitor to be used. Low−Battery Detector, Logic−Controlled Shutdown,and Cycle−by−Cycle Current Limit provide value−added features for various battery−operated applications. With all these functions ON, the quiescent supply current is typically only 8.5 m A. This device is available in a compact DFN−10 package.PFM Regulation SchemeFrom the simplified functional diagram (Figure 1), the output voltage is divided down and fed back to pin 1 (FB).This voltage goes to the non−inverting input of the PFM comparator whereas the comparator’s inverting input is connected to the internal voltage reference, REF. A switching cycle is initiated by the falling edge of the comparator, at the moment the main switch (M1) is turned ON. After the maximum ON−time (typically 0.72 m S)elapses or the current limit is reached, M1 is turned OFF and the synchronous switch (M2) is turned ON. The M1OFF time is not less than the minimum OFF−time (typically 0.12 m S), which ensures complete energytransfer from the inductor to the output capacitor. If the regulator is operating in Continuous Conduction Mode (CCM), M2 is turned OFF just before M1 is supposed to be ON again. If the regulator is operating in Discontinuous Conduction Mode (DCM), which means the coil current will decrease to zero before the new cycle starts, M1 is turned OFF as the coil current is almost reaching zero. The comparator (ZLC) with fixed offset is dedicated to sense the voltage drop across M2 as it is conducting; when the voltage drop is below the offset, the ZLC comparator output goes HIGH and M2 is turned OFF. Negative feedback of closed−loop operation regulates voltage at pin1 (FB) equal to the internal reference voltage (1.20 V). Synchronous RectificationThe Synchronous Rectifier is used to replace the Schottky Diode to reduce the conduction loss contributed by the forward voltage of the Schottky Diode. The Synchronous Rectifier is normally realized by powerFET with gate control circuitry that incorporates relatively complicated timing concerns.As the main switch (M1) is being turned OFF and the synchronous switch M2 is just turned ON with M1 not being completely turned OFF, current is shunt from the output bulk capacitor through M2 and M1 to ground. This power loss lowers overall efficiency and possibly damages the switching FETs. As a general practice, a certain amount of dead time is introduced to make sure M1 is completely turned OFF before M2 is turned ON.The previously mentioned situation occurs when the regulator is operating in CCM, M2 is turned OFF, M1 is just turned ON, and M2 is not completely turned OFF. A dead time is also needed to make sure M2 is completely turned OFF before M1 is turned ON.As coil current is dropped to zero when the regulator is operating in DCM, M2 should be OFF. If this does not occur, the reverse current flows from the output bulk capacitor through M2 and the inductor to the battery input, causing damage to the battery. The ZLC comparator comes with fixed offset voltage to switch M2 OFF before any reverse current builds up. However, if M2 is switched OFF too early, large residue coil current flows through the body diode of M2 and increases conduction loss. Therefore, determination of the offset voltage is essential for optimum performance. With the implementation of the synchronous rectification scheme, efficiency can be as high as 94% with this device.Cycle−by−Cycle Current LimitIn Figure 1, a SENSEFET is used to sample the coil current as M1 is ON. With that sample current flowing through a sense resistor, a sense−voltage is developed. The threshold detector (I LIM) detects whether the sense−voltage is higher than the preset level. If the sense voltage is higher than the present level, the detector output notifies the Control Logic to switch OFF M1, and M1 can only be switched ON when the next cycle starts after the minimum OFF−time (typically 0.12 m S). With proper sizing of the SENSEFET and sense resistor, the peak coil current limit is typically set at 1.5 A.Voltage ReferenceThe voltage at REF is typically set at 1.20 V and can output up to 2.5 mA with load regulation ±2% at V OUT equal to 3.3 V. If V OUT is increased, the REF load capability can also be increased. A bypass capacitor of 200 nF is required for proper operation when REF is not loaded. If REF is loaded, a 1.0 m F capacitor at the REF pin is needed.True−CutoffThe NCP1422 has a True−Cutoff function controlled by the multi−function pin LBI/EN (pin 2). Internal circuitry can isolate the current through the body diode of switch M2 to load. Thus, it can eliminate leakage current from the battery to load in shutdown mode and significantly reduce battery current consumption during shutdown. The shutdown function is controlled by the voltage at pin 2 (LBI/EN). When pin 2 is pulled to lower than 0.3 V, the controller enters shutdown mode. In shutdown mode, when switches M1 and M2 are both switched OFF, the internal reference voltage of the controller is disabled and the controller typically consumes only 50 nA of current. If the pin 2 voltage is raised to higher than 0.5 V (for example, by a resistor connected to V IN), the IC is enabled again, and the internal circuit typically consumes 8.5 m A of current from the OUT pin during normal operation.Low−Battery DetectionA comparator with 30 mV hysteresis is applied to perform the low−battery detection function. When pin 2 (LBI/EN) is at a voltage (defined by a resistor divider from the battery voltage) lower than the internal reference voltage of 1.20 V, the comparator output turns on a 50 W low side switch. It pulls down the voltage at pin 3 (LBO) which has hundreds of k W of pull−high resistance. If the pin 2 voltage is higher than 1.20 V + 30 mV, the comparator output turns off the 50 W low side switch. When this occurs, pin 3 becomes high impedance and its voltage is pulled high again.APPLICATIONS INFORMATIONOutput Voltage SettingA typical application circuit is shown in Figure 23. The output voltage of the converter is determined by the external feedback network comprised of R1 and R2. The relationship is given by:V OUT+1.20Vǒ1)R1R2Ǔwhere R1and R2 are the upper and lower feedback resistors, respectively.Low Battery Detect Level SettingThe Low Battery Detect V oltage of the converter is determined by the external divider network that is comprised of R3 and R4. The relationship is given by:V LB+1.20Vǒ1)R3Ǔwhere R3and R4 are the upper and lower divider resistors respectively.Inductor SelectionThe NCP1422 is tested to produce optimum performance with a 5.6 m H inductor at V IN = 2.5 V and V OUT = 3.3 V, supplying an output current up to 800 mA. For other input/output requirements, inductance in the range 3 m H to 10m H can be used according to end application specifications. Selecting an inductor is a compromise between output current capability, inductor saturation limit, and tolerable output voltage ripple. Low inductance values can supply higher output current but also increase the ripple at output and reduce efficiency. On the other hand, high inductance values can improve output ripple and efficiency; however, it is also limited to the output current capability at the same time.Another parameter of the inductor is its DC resistance. This resistance can introduce unwanted power loss and reduce overall efficiency. The basic rule is to select an inductor with the lowest DC resistance within the board space limitation of the end application. In order to help with the inductor selection, reference charts are shown in Figures 24 and 25.Capacitors SelectionIn all switching mode boost converter applications, both the input and output terminals see impulsive voltage/current waveforms. The currents flowing into and out of the capacitors multiply with the Equivalent Series Resistance (ESR) of the capacitor to produce ripple voltage at the terminals. During the Syn−Rect switch−off cycle, the charges stored in the output capacitor are used to sustain the output load current. Load current at this period and the ESR combine and reflect as ripple at the output terminals. For all cases, the lower the capacitor ESR, the lower the ripple voltage at output. As a general guideline, low ESR capacitors should be used. Ceramic capacitors have the lowest ESR, but low ESR tantalum capacitors can also be used as an alternative.PCB Layout RecommendationsGood PCB layout plays an important role in switching mode power conversion. Careful PCB layout can help to minimize ground bounce, EMI noise, and unwanted feedback that can affect the performance of the converter. Hints suggested below can be used as a guideline in most situations.GroundingA star−ground connection should be used to connect the output power return ground, the input power return ground, and the device power ground together at one point. All high−current paths must be as short as possible and thick enough to allow current to flow through and produce insignificant voltage drop along the path. The feedback signal path must be separated from the main current path and sense directly at the anode of the output capacitor. Components PlacementPower components (i.e., input capacitor, inductor and output capacitor) must be placed as close together as possible. All connecting traces must be short, direct, and thick. High current flowing and switching paths must be kept away from the feedback (FB, pin 1) terminal to avoid unwanted injection of noise into the feedback path. Feedback NetworkFeedback of the output voltage must be a separate trace detached from the power path. The external feedback network must be placed very close to the feedback (FB, pin 1) pin and sense the output voltage directly at the anode of the output capacitor.TYPICAL APPLICATION CIRCUITShutdown Open DrainInput Low Battery Open DrainOutputV OUT = 3.3 V800 mA Figure 23. Typical Application Schematic for 2 Alkaline Cells Supply*OptionalGENERAL DESIGN PROCEDURESSwitching mode converter design is considered a complicated process. Selecting the right inductor and capacitor values can allow the converter to provide optimum performance. The following is a simple method based on the basic first−order equations to estimate the inductor and capacitor values for NCP1422 to operate in Continuous Conduction Mode (CCM). The set component values can be used as a starting point to fine tune the application circuit performance. Detailed bench testing is still necessary to get the best performance out of the circuit. Design Parameters:V IN = 1.8 V to 3.0 V, Typical 2.4 VV OUT = 3.3 VI OUT = 500 mAV LB = 2.0 VV OUT−RIPPLE= 40 mV p−p at I OUT = 500 mA Calculate the feedback network:Select R2 = 200 kR1+R2ǒV OUTV REF*1ǓR1+200kǒ3.3V1.20V*1Ǔ+350kCalculate the Low Battery Detect divider:V LB = 2.0 VSelect R4 = 330 kR3+R4ǒV LBV REF*1ǓR3+300kǒ2.0V1.20V *1Ǔ+220kDetermine the Steady State Duty Ratio, D, for typicalV IN. The operation is optimized around this point:V OUTV IN+11*DD+1*V INV OUT+1*2.4V3.3V+0.273Determine the average inductor current, I LA VG, atmaximum I OUT:I LAVG+I OUT1*D+500mA1*0.273+688mADetermine the peak inductor ripple current, I RIPPLE−P,and calculate the inductor value:Assume I RIPPLE−P is 20% of I LA VG. The inductance of thepower inductor can be calculated as follows:L+V IN t ON2I RIPPLE*P+2.4V0.75m S2(137.6mA)+6.5m HA standard value of 6.5 m H is selected for initial trial.Determine the output voltage ripple, V OUT−RIPPLE,andcalculate the output capacitor value:V OUT−RIPPLE= 40 mV P−P at I OUT = 500 mAC OUT uI OUT t ONV OUT*RIPPLE*I OUT ESR COUTwhere t ON = 0.75 m S and ESR COUT = 0.05 ,C OUT u500mA0.75m S45mV*500mA0.05W+18.75m FFrom the previous calculations, you need at least 18.75m F in order to achieve the specified ripple level at the conditions stated. Practically, a capacitor that is one level larger is used to accommodate factors not taken into account in the calculations. Therefore, a capacitor value of 22 m F is selected. The NCP1422 is internally compensated for most applications, but in case additional compensationis required, the capacitor C4 can be used as external compensation adjustment to improve system dynamics.In order to provide an easy way for customers to select external parts for NCP1422 in different input voltage and output current conditions, values of inductance and capacitance are suggested in Figures 24, 25 and 26.024681012Figure 24. Suggested Inductance of VOUT = 3.3 V Figure 25. Suggested Inductance of V OUT = 5.0 VFigure 26. Suggested Capacitance for Output CapacitorINPUT VOLTAGE (V)I N D U C T O R V A L U E (m H )INPUT VOLTAGE (V)OUTPUT CURRENT (mA)C A P A C I T O R V A L U E (m F )4035302520151050100200300400500600700800253350100CAPACITOR ESR (m W )Table 1. Suggestions for Passive ComponentsOutput CurrentInductorsCapacitors 800 mA Sumida CR43, CR54,CDRH6D28 seriesPanasonic ECJ series Kemet TL494 series 250 mASumida CR32 seriesPanasonic ECJ series Kemet TL494 seriesPACKAGE DIMENSIONSDFN10, 3 x 3mm, 0.5mm PitchCASE 485C−01ISSUE ADIMENSIONS: MILLIMETERS*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting T echniques Reference Manual, SOLDERRM/D.SENSEFET is a trademark of Semiconductor Components Industries, LLC.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION。

MUR20100中文资料

MUR20100中文资料

ADVANTAGES
* High reliability circuit operation * Low voltage peaks for reduced protection circuits * Low noise switching * Low losses * Operating at lower temperature or space saving by reduced cooling
APPLICATIONS
* Antiparallel diode for high frequency switching devices * Antisaturation diode * Snubber diode * Free wheeling diode in converters and motor control circuits * Rectifiers in switch mode power supplies (SMPS) * Inductive heating and melting * Uninterruptible power supplies (UPS) * Ultrasonic cleaners and welders
TVJ=125°C IF=30A 400 A/us 600
200 0
400 A/us 600
Fig. 4 Dynamic parameters versus junction temperature.
Fig. 5 Recovery time versus -diF/dt.
Fig. 6 Peak forward voltage versus diF/dt.
Fig. 7 Transient thermal impedance junction to case.

210R资料

210R资料

Bond Pads G = Go l d No Letter = Aluminum
Backing W = Go l d L = Lapped No Letter = Either
W
© 2002 California Micro Devices Corp. All rights reserved. 3/02
800Ω 2 400 Ω 8000Ω 80000Ω 16 0 0 0 0 Ω 2 40 0 0 0 Ω 20 60 200 2000 40 0 0 6000
Formats Die Size: 30±3 mils square Bonding Pads: 4x4 mils typical
MECHANICAL SPECIFICATIONS
元器件交易网
CALIFORNIA MICRO DEVICES
210R
THIN FILM RESISTOR SERIES
California Micro Devices 210R Series multi-terminal resistor chip offers the hybrid designer a component that provides a wide range of resistance values on a single chip. Bonding pads segment the total resistance into five single elements of resistance and seven 5X elements of resistance enabling the combination to cover the resistance range from 800 ohms to 240K ohms.

USVD2-A20M-010-02中文资料

USVD2-A20M-010-02中文资料
MG 650 Caddock's Micronox® resistance films are the source of Preconditioning for Power and Voltage Ratings MG 655 Now Extended Resistance Range to 10,000 Megohms and Additional Models the Type MG with Precision High Voltage Resistors' outstanding All power ratings and maximum operating voltage ratings are for continuous duty.Stability These and ratings are based on precombination of Coefficient performance features: MG 660 Temperature as tight as 80 ppm/°C, Combined with Excellent Long-Term Precision Tolerances. stress voltage levels applied during the manufacturing • Single-resistor values as high as 10,000 Megohms. MG 680 ® resistance films are the source of Caddock's Micronox Preconditioning for Power and resistor Voltage performance Ratings process to provide for stable even • Maximum

02110002-000;02110102-000;中文规格书,Datasheet资料

02110002-000;02110102-000;中文规格书,Datasheet资料

AccuStar ® Electronic Clinometer∙ +/-60ototal sensing range ∙ CE certified∙ Analog, digital and PWM outputs ∙ High accuracy / low cost ∙ Lightweight and compact ∙ Rugged plastic housingDESCRIPTIONThe AccuStar ®Electronic Clinometer is an extremely accurate angle measurement device that produces an output signal which corresponds directly to the magnitude and direction of angular displacement. Measuring just 2 inches in diameter, this compact and affordable sensor is ideal where high accuracy measurements are required in space restrictive applications.The heart of the system is a patented, capacitance-based sensor with no moving parts. When rotated about its sensitive axis, this unique sensor provides an exceedingly linear variation in capacitance, which is electronically converted into angular data. The sensor and low-power CMOS electronics are encased in a rugged plastic housing ready to install as a system component or as a stand-alone device.The AccuStar ®mounts easily onto any vertical surface using just two #6 or M3.5 screws. The slot at the base allows for fine adjustment of the zero angle positionafter installation. With a choice of analog, ratiometric, digital (PWM) or serial output models, the AccuStar ®is designed for easy installation and integration.Also see our other models, AccuStar ® IP-66 (voltage or 2-wire current output, IP-66 rating), AngleStar ®Protractor System (AccuStar ® with digital readout) and AngleStar ®DP-45 (handheld digital protractor).Measurement Specialties, Inc. (NASDAQ MEAS) offers many other types of sensors . Data sheets can be downloaded from our web site at: /datasheets.aspxMEAS acquired Schaevitz Sensors and the Schaevitz ®trademark in 2000.FEATURESAPPLICATIONS∙ ±60ototal sensing range∙ Wheel alignment∙ Unipolar or bipolar DC operation ∙ Construction equipment ∙ Rugged plastic housing ∙ Antenna position ∙18” flying lead termination∙ RoboticsPERFORMANCE SPECIFICATIONS (COMMON)Notes:All values are nominal unless otherwise noted!Dimensions are in inch [mm] unless otherwise notedDIMENSIONS (COMMON)Dimensions are in inches (mm)RATIOMETRIC OUTPUT MODELThe Ratiometric clinometer is a signal conditioned sensor that has been designed to operate like a potentiometer. This is a three wire device: power; power ground; and signal. The signal is referenced to power ground. A regulated power supply is required since the output is supply dependent. The midscale output, zero degrees, is 1/2 the supply voltage while the scale factor is also supply dependent. With its low power consumption, 0.5 mA, this device is ideal for battery supplied applications. The Ratiometric clinometer was designed with EMI and ESD suppression circuitry on every line.ANALOG OUTPUT MODELThe Analog clinometer is a signal conditioned sensor which has been designed for dc voltage, bipolar operation. The clinometer requires a bipolar supply of ±8 to ±15 VDC and delivers an output of ±3.6 VDC. This device is internally regulated for various applications. The output scale is fixed at a nominal 60mV per degree not dependent on the supply voltage. The Analog clinometer has full EMI and ESD suppression circuitry on every line.DIGITAL PULSE WIDTH OUTPUT MODELThe Digital Pulse Width clinometer is a signal conditioned sensor which resolves the angle of tilt to pulses, the length of which are directly proportional to the angle. When a trigger pulse is received on trigger 1 or trigger 2 a pulse is sent out on the corresponding PW1 or PW2 line. Comparing the length of the two pulses determines the angle of the sensor. Triggering both lines together allows the user to read Delta PW which is the difference of PW1 and PW2. The polarity line will tell the user if the sensor is tilted clockwise, or counterclockwise. The Digital Pulse Width clinometer was designed with EMI and ESD suppression circuitry on every line.SERIAL DATA OUTPUT MODELThe Serial clinometer is a signal conditioned Sensor which resolves the angle of tilt to 16 bits of information plus a polarity bit. This device was designed to transmit data to a microcontroller or to an I/O card of a PC through a three wire interface which will work at both TTL and CMOS logic levels. Complete handshaking is used to eliminate timing and transmission problems. The standard version operates on a +5 VDC regulated power supply while an internally regulated version is available. The Serial clinometer was designed with EMI and ESD suppression circuitry on every line.ORDERING INFORMATIONTECHNICAL CONTACT INFORMATIONThe information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer’s technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.分销商库存信息: MEASUREMENT-SPECIALTIES 02110002-00002110102-000。

PV10WW-R001中文资料

PV10WW-R001中文资料

RC D P W V 15 Industry’s widest range! 1m Ω-1M, to ±.05% 10ppm! Built-in standoffs minimize heat transfer to P .C.B. Available on exclusive SWIFT TMdelivery program!Significant space savings compared to axial-lead types!PV, PVH, and PWV resistors are designed for power applications where space is at a premium. The PV series offers lowest cost for medium power applications. PVH series are similar except in 4-terminal Kelvin design (to cancel lead wire effect). PWV bracketed resistors enable higher power levels and superior performance in applications involving shock and vibration. The ceramic construction is fireproof and resistant to moisture & solvents. The internal element is wirewound on lower values,power film on higher values (depending on options, e.g. op t. P parts are always WW). If a specific construction is preferred, specify opt.’WW’ for wirewound, opt.’M’ for power film (not available in all values).PV SERIES - 2 Terminal PVH SERIES - 4 Terminal PWV SERIES- Bracket MountRESISTORS CAPACITOR S C OILS DELAY LINESOPTIONSOption X - Non-InductiveOption WW or M (wirewound or film element) Option P - Increased pulse capabilityOption FF- Fuse within 10S @50x rated W (custom avail) Option E - Low thermal EMF designOption B - Increased power (refer to chart below) Numerous modifications avail: custom marking,TC’s to +6000ppm, various lead wire sizes, burn-in, etc.2W TO 25 WATT VERTICAL MOUNT RESISTORSRC D PV 7R CD P V H 1R C D P V 5S E I R E S V P e g a t t a W )B .t p O (d t S .x a M *e g a t l o V .x a M *t n e r r u C si s e R d t S e g n a R A ]0.1[40.±B ]0.1[40.±C]6.1[260.±D ]1[40.±E ]21.[500.±F )m o N (2V P )W 3(W 2V 08A 41500.ΩM 1o t ]4.11[054.]6.7[003.]3.02[008.]5[791.]7.[820.]9.[630.3V P )W 4(W 3V 051A 71500.ΩM 1o t ]1.21[574.]9.8[053.]9.42[089.]5[791.]8.[130.]1[040.5V P )W 6(W 5V 052A 22500.ΩM 1o t ]7.21[005.]2.9[063.]4.52[00.1]5[791.]8.[130.]1[040.7V P )W 01(W 7V 053A 62500.ΩM 1o t ]7.21[005.]01[004.]6.83[25.1]5[791.]8.[130.]1[040.01V P )W 21(W 01V 005A 23500.ΩM 1o t ]7.21[005.]01[004.]3.15[20.2]5[791.]8.[130.]1[040.S 01V P )W 21(W 01V 004A 23500.ΩM 1o t ]9.51[526.]7.21[005.]0.53[83.1]4.7[092.]9.[630.]2.1[840.A 01V P )W 21(W 01V 004A 23500.ΩM 1o t ]9.51[526.]7.21[005.]0.53[83.1]5[791.]9.[630.]2.1[840.S E I R E S H V P e g a t t a W )B .t p O (d t S .x a M *e g a t l o V *t n e r r u C x a M )B .t p O (d t S s i s e R d t S e g n a R A ]0.1[40.±B ]0.1[40.±C ]6.1[260.±D ]1[40.±E]6.[420.±"300.±F )B .t p O (d t S 2H V P )W 3(W 2V 08)A 71(A 41100.ΩK 01o t ]4.11[054.]6.7[003.]3.02[008.]5[791.]19.1[570.)040.(230.3H V P )W 5(W 3V 051)A 22(A 71100.ΩK 52o t ]1.21[574.]9.8[053.]9.42[089.]5[791.]45.2[001.)040.(230.5H V P )W 7(W 5V 052)A 62(A 22100.ΩK 03o t ]7.21[005.]01[004.]4.52[00.1]5[791.]45.2[001.)040.(230.7H V P )W 01(W 7V 053)A 23(A 62100.ΩK 05o t ]7.21[005.]01[004.]6.83[25.1]5[791.]45.2[001.)040.(230.01H V P )W 21(W 01V 005)A 04(A 23100.ΩK 052o t ]7.21[005.]01[004.]3.15[20.2]5[791.]45.2[001.)040.(230.S 01H V P )W 21(W 01V 004)A 04(A 23100.ΩK 052o t ]9.51[526.]7.21[005.]0.53[83.1]4.7[092.]81.3[521.)040.(230.A01H V P )W 21(W 01V 004)A 04(A 23100.ΩK 052o t ]9.51[526.]7.21[005.]0.53[83.1]5[791.]81.3[521.)040.(230.S E I R E S V W P eg a t t a W .x a M *e g a t l o V x a M *t n e r r u C si s e R d t S e g n a R Ax a M B ]0.1[40.±C ]0.1[40.±D ]5.0[20.±E ]5.1[60.±F ]5.1[60.±5V W P 5V 002A 2210.ΩM 1o t ]6.53[04.1]01[004.]01[004.]5.1[060.]5[002.]5[002.7V W P 7V 053A 6210.ΩM 1o t ]3.74[68.1]01[004.]01[004.]5.1[060.]5[002.]5[002.01V W P 01V 005A 2310.ΩM 1o t ]5.26[64.2]01[004.]01[004.]5.1[060.]5[002.]5[002.51V W P 51V 045A 2310.ΩK 051o t ]5.26[64.2]7.21[005.]5.31[035.]5.2[001.]7.6[562.]7.6[562.02V W P 02V 006A 2310.ΩK 051o t ]7.67[20.3]7.21[005.]7.41[085.]5.2[001.]0.7[572.]5.7[592.52V W P 52V 006A 2310.ΩK 051o t ]7.67[20.3]7.21[005.]7.41[085.]5.2[001.]0.7[572.]5.7[592.* Units not to exceed wattage, voltage, or current rating, whichever is less. Voltage determined by E= , E not to exceed maxvoltage rating. Multiply voltage rating by 0.7 for Opt. X. Increased voltage & current ratings available (up to 1KV, 100A).√PR TYPICAL PERFORMANCE CHARACTERISTICS.p m e T f e o C .C°/M P P )C °/001~52(e g n a R .s e R V P &PWV )t s e B (d t S )t s e B (d t S H V P 9400.-100.ΩA /N )m p p 05(m p p 00219900.-500.Ω)m p p 05(m p p 008)m p p 52(m p p 006420.-10.Ω)m p p 05(mp p 006)m pp 52(m p p 002940.-520.Ω)m p p 03(m p p 005)m p p 52(m p p 051990.-50.Ω)m p p 02(m p p 004)m p p 01(m p p 0999.-1.Ω)m p p 02(m p p 053)m p p 01(m p p 051Ωev o b a &)m p p 01(m p p 002)m p p 5(m p p 02.p m e T g n i t a r e p O )l i a v a C °572(C °022+o t °55-ht g n e r t S c i r t c e l e i D V0001(d a o l r e v o .c e S 5≤)V x a m x 5.1)X 5=W W .t p O (e g a t t a w d e t a r X 3e c n a t s i s e R e r u t s i o M %0.3e r u s o p x E .p m e T h g i H %0.1)s r u o h 0001(e f i L d a o L %0.3de c u d e r (e c n a t c u d n I X t p O )H n 76o t .l i a v a s l e v e l e c n a t c u d n i X .t p O ≤:W 5≤05Ω,x a m H u 2.=>05Ωx a m H u 73.=X .t p O ≥:W 7≤05Ω,x a m H u 3.=>05Ωxa m H u 6.=e s i R e r u t a r e p m e T 1r e w o p d e t a r l l u f t a p y t C °022o t 52)A ,V ,W (g n i t a r e D C°52e v o b a C °/%315.y b e t a r e D FA053D Sale of this product is in accordance with GF-061. Specifications subject to change without notice.RCD Components Inc, 520 E.Industrial Park Dr, Manchester, NH, USA 03109 Tel: 603-669-0054 Fax: 603-669-5455 Email:sales@48±.005lead is terminated to metal bracketEB.022”.125” min .D (3)AMounting LayoutOptions RCD TypeTolerance R010=.01R01=0.01Ωin which case RCD will select based on lowest price and quickest delivery)Term.W is RoHScompliant &260°C compatible元器件交易网。

WRM资料

WRM资料

* TC 10ppm & 5ppm is specified over the temperature range -10°C to +85°C.
Performance Data
Test Description 0.25 75 Ω – <100 kΩ Short time overload* Bending test* Resistance to soldering heat Temperature rapid change Endurance* Load life Climatic sequence* Damp heat steady state* Current noise Solderability Voltage coefficient Voltage proof 200V 1000h 8000 h ≤ 0.25% + 0.05 Ω ≤ 0.5% + 0.05 Ω ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω < 0.05 µV/V ≤ 0.25% + 0.05 Ω ≤ 0.5% + 0.05 Ω ≤ 0.5% + 0.05 Ω ≤ 0.5% + 0.05 Ω < 0.25 µV/V Dipped area shall be covered with a smooth and bright solder coating of at least 96% < 0.5 . 106/V 300V 500V ≤ 0.5% + 0.05 Ω ≤ 1.0% + 0.05 Ω ≤ 1.0% + 0.05 Ω ≤ 1.0% + 0.05 Ω < 3 µV/V ≤ 0.05% + 0.01 Ω ≤ 0.05% + 0.01 Ω ≤ 0.05% + 0.01 Ω ≤ 0.05% + 0.01 Ω Results 0.5 10 Ω – <75 Ω >100 kΩ – 332 kΩ ≤ 0.1% + 0.01 Ω ≤ 0.1% + 0.01 Ω ≤ 0.1% + 0.01 Ω ≤ 0.1% + 0.01 Ω R/R ± 1.0 0.22 Ω – <10 Ω >332 kΩ – 10 MΩ ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω Stability class

MW2X-R010资料

MW2X-R010资料

applications. Advantages include superior surge capability, improved temperature stability, moisture resistance, noise, and a significant space and cost savings over molded models. MW3 & MW5 feature compliant gullwing terminals, which act as standoffs to reduce PCB temperature and help minimize TCE stress (utilize compliant terminals in applications with wide temp. gradients).Inherent wirewound stability and overload capability Resistance range: 0.005Ω to 50K ΩExcellent T.C. stability (available to ±5ppm/°C)Standard tolerance: ±1% or ±5% (available to 0.01%) Available on exclusive SWIFT TM delivery program!OPTIONSOption X : Non-inductiveOption T : PTC Temp. Sensitive (+80 to +6000ppm/°C) Option P : Increased Pulse Capability Option F : Flameproof (UL94V-0) Option ER : 100 Hour Burn-InNumerous options avail.: special marking, matched sets,Hi-Rel screening, low thermal EMF, etc. Consult factorySURFACE MOUNT WIREWOUND RESISTORS MELF AND GULLWING DESIGNS, 1/2 TO 5 WATTTYPICAL PERFORMANCE CHARACTERISTICSMW SERIES* specify Opt.75 for induc levels 50% that of Opt.X, or Opt.76 for 33% that of Opt.XB.010”[.25]MaxD C R ep y T e g a k c a P el y t S e g a t t a W C°52@g n i t a r e D e g a t t a W C °52e v o b a m u m i x a M e g a t l o V 1c i r t c e l e i D h t g n e r t S 2e c n a t s i s e R e g n a R 2]m m [h c n I S N O I S N E M I D ABC2/1W M F L E M W 5.0C °/W m 58.3V 03V 0025.0Ω005-Ω20.±081.]5.±75.4[800.±060.]2.±25.1[.n i M ]5.[020.1W M F L E M W 1C °/W m 7.7V 04V 05250.0ΩK 1-20.±052.]5.±53.6[800.±580.]2.±61.2[.n i M ]5.[020.2W M F L E M W 2C °/W m 4.51V 06V 05250.0ΩK 2-20.±053.]5.±98.8[800.±521.]2.±81.3[.n i M ]6.[420.52W M F L E M W 5.2C °/W m 2.91V 001V 00350.0ΩK 5-20.±514.]5.±45.01[800.±441.]2.±66.3[.n i M ]8.[230.53W M F L E M W 3C °/W m 1.32V 002V 00450.0ΩK 01-420.±005.]6.±7.21[010.±961.]52.±3.4[.n i M ]1[040.3W M G N I W L L U G W 3C °/W m 1.32V 002V 005500.0ΩK 52-40.±584.]1±3.21[030.±561.]67.±91.4[40.±056.]1±5.61[5W M GN I W L L U G W5C°/W m 73V052V005500.0ΩK05-60.±035.]5.1±5.31[530.±081.98.±75.4[40.±517.]1±2.81[e g n a R e c n a t s i s e R el b a l i a v A s e c n a r e l o T )C °/m p p (.f e o C .p m e T d r a d n a t S l a n o i t p O 9900R -500R %01o t %1009003,006940R -010R %01o t %5.0006002,003990R -050R %01o t %1.000305,001,002099R -001R %01o t %50.000102,03,0509R 9-00R 1%01o t %20.00501,02,03ev o b a d n a 0R 01%01o t %10.0035,01,02 FA002D Sale of this product is in accordance with GF-061. Specifications subject to change without notice.Term.W is RoHS compliant & 260°C compatibleRCD Type(R010=0.01(R01=0.01Packaging Options in which case RCD will select based on lowest price and quickest deliverySPECIFICATIONS1Voltage determined by E = , E not to exceed maximum voltage rating. Increased ratings available. Multiply by 0.7 for Opt. X. 2Increased range available √PRRCD Components Inc, 520 E.Industrial Park Dr, Manchester, NH, USA 03109 Tel: 603-669-0054 Fax: 603-669-5455 Email:sales@22元器件交易网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

* TC 10ppm & 5ppm is specified over the temperature range -10°C to +85°C.
Performance Data
Test Description 0.25 75 Ω – <100 kΩ Short time overload* Bending test* Resistance to soldering heat Temperature rapid change Endurance* Load life Climatic sequence* Damp heat steady state* Current noise Solderability Voltage coefficient Voltage proof 200V 1000h 8000 h ≤ 0.25% + 0.05 Ω ≤ 0.5% + 0.05 Ω ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω < 0.05 µV/V ≤ 0.25% + 0.05 Ω ≤ 0.5% + 0.05 Ω ≤ 0.5% + 0.05 Ω ≤ 0.5% + 0.05 Ω < 0.25 µV/V Dipped area shall be covered with a smooth and bright solder coating of at least 96% < 0.5 . 106/V 300V 500V ≤ 0.5% + 0.05 Ω ≤ 1.0% + 0.05 Ω ≤ 1.0% + 0.05 Ω ≤ 1.0% + 0.05 Ω < 3 µV/V ≤ 0.05% + 0.01 Ω ≤ 0.05% + 0.01 Ω ≤ 0.05% + 0.01 Ω ≤ 0.05% + 0.01 Ω Results 0.5 10 Ω – <75 Ω >100 kΩ – 332 kΩ ≤ 0.1% + 0.01 Ω ≤ 0.1% + 0.01 Ω ≤ 0.1% + 0.01 Ω ≤ 0.1% + 0.01 Ω R/R ± 1.0 0.22 Ω – <10 Ω >332 kΩ – 10 MΩ ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω ≤ 0.25% + 0.05 Ω Stability class
© Welwyn Components Limited · Bedlington, Northumberland NE22 7AA, UK
Telephone: +44 (0) 1670 822181 · Facsimile: +44 (0) 1670 829465 · Email: info@ · Website:
Pulse Duration ti
Packaging
The WRM 0102 and 0204 resistors are supplied reeled on 8mm blister tape. WRM 0207 resistors are supplied on 12mm blister tape. Packaging complies with the requirements of IEC 286-3.
Mini Melf Resistors
WRM Series
Single Pulse
Maximum Pulse Load
WRM 0102 WRM 0204 WRM 0207
Welwyn Components
100
Pulse Load Pmax
W
10
1
0,1 10 µs 100 µs 1 ms 10 ms 100 ms 1s 10 s
Terminations
Material Plated steel cap. Solderability The pure tin finish produces ageing free contacts on which low melting solders can be used. Dipped area shall be covered with a smooth and bright solder coating after 3 seconds immersion at 215°C.
Mini Melf Resistors
WRM Series
Welwyn Components
TCR and Tolerance Range
Type Reference 5% WRM0102 WRM0102 WRM0102 WRM0102 WRM0102 WRM0204 WRM0204 WRM0204 WRM0204 WRM0204 WRM0207 WRM0207 WRM0207 WRM0207 WRM0207 ±50ppm ±25ppm ±15ppm ±10ppm ±05ppm ±50ppm ±25ppm ±15ppm ±10ppm ±05ppm ±50ppm ±25ppm ±15ppm ±10ppm ±05ppm R22 – R91 – – – – R22 – R91 – – – – R22 – R91 – – – – 2% IRO – 9R1 – – – – – – – – – – – – – – 1.0% 10R – 2.21M 10R – 221K – – – 1R – 10M 10R – 475K – – – 1R – 8.2M – – – – 0.5% 47RS – 221K 47R5 – 221K 100R – 100K – – 10R – 475K 10R – 475K 10R – 221K – – 10R – 1M 10R – 1M – – – 0.25% 100R – 221K 100R – 221K 100R – 100K – – 22R – 332K 22R – 332K 22R – 221K 22R – 221K 100R – 100K – – – – – 0.1% – 100R – 100K 100R – 100K – – 43R – 332K 43R – 332K 43R – 221K 43R – 221K 100R – 100K – – – – – TCR Tolerance
Pulse Duration ti
Continuous Pulses
Maximum Pulse Load
Continuous Pulse Load Pmax WRM 0102 WRM 0204 WRM 0207
100 W 10
1
0,1 10 µs 100 µs 1 ms 10 ms 100 ms 1s 10 s
Mini Melf Resistors
WRM Series
Welwyn Components
• High reliability • Predictable pulse handling capability • Tolerances down to 0.1% • TCR down to 5 ppm/°C
Marking
Resistance values are colour coded with 4 or 5 bands depending on type.
Solvent Resistance
The body protection and marking are resistant to all normal industrial cleaning solvents suitable for printed circuit boards.
Physical Data
Dimensions (mm) and weight (g) Type WRM 0102 WRM 0204 WRM 0207 L max 2.2 3.6 6.0 D max 1.1 1.4 2.2 D1 max 1.1 1.4 2.2 K min 0.35 0.5 1.1 Weight 0.01 0.02 0.08
WRM
0204
C -1K0F NhomakorabeaI
Packing
* High precision parts may be supplied on 1000 piece reels – please enquire
Value (use IEC62 code) Tolerance (use IEC62 code)
B 0.1% D 0.5% 1% G 2% J 5%
Ordering Procedure
Example: WRM0204 at 1 kilohm, 1% tolerance and 50ppm/ºC TCR on a reel of 3000 pieces Type Size TCR
C 50ppm/ºC D 25ppm/ºC Y 15ppm/ºC T V 10ppm/ºC 5ppm/ºC I Tape 0102 0204 0207 3000 / reel (7”) 3000 / reel (7”)* 1500 / reel (7”) Standard
General Note
Welwyn Components reserves the right to make changes in product specification without notice or liability. All information is subject to Welwyn’s own data and is considered accurate at time of going to print. A subsidiary of TT electronics plc Issue D · 09.06
L D1 L1 K D
相关文档
最新文档