弹性模量E和泊松比实验
材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ
材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ材料的弹性常数是描述材料在受力作用下的变形性能的指标,常用的弹性常数有弹性模量E和泊松比μ。
弹性模量E是材料受力后单位应力引起的单位变形量,而泊松比μ是指材料沿一个方向的单位变形引起的另一个方向单位变形的比值。
在实际工程中,需要准确测定材料的弹性常数,以便设计和计算工程结构的变形和应力分布。
其中,弹性模量E的测定是相对简单和常用的,主要有拉伸试验、压缩试验和弯曲试验等方法。
而泊松比μ则需要通过更复杂的测试方法进行测定。
本文主要介绍电测法测定材料的弹性模量E和泊松比μ的原理和应用。
一、电测法测定弹性模量E电测法是通过测量材料受力后的电阻变化来间接计算材料的弹性模量。
根据导体的电阻与其长度、横截面积和电阻率之间的关系,当材料受到力作用后,其长度和横截面积都会发生变化,从而导致电阻发生变化。
由此可以利用电阻与长度和横截面积的关系,计算出材料的弹性模量。
电测法测定弹性模量E的步骤如下:1.制备测量样品:首先制备出符合测量要求的样品,通常为长条形状,并且长度和横截面积要容易测量。
2.安装测量装置:将样品安装在测量装置上,一般采用四点法或截面法进行测量。
在四点法中,两对电极分别用来传输电流和测量电压。
在截面法中,材料上有两组电极,用来传输电流和测量电压。
3.施加载荷:施加拉力或压力载荷到样品上,使其发生变形。
4.记录电阻变化:通过测量电阻的变化,可以得到材料受力后的长度变化。
5.计算弹性模量E:利用导线的电阻与线长、横截面积和电阻率的关系,结合样品的长度变化,可以计算出材料的弹性模量。
电测法测定弹性模量E的优点是测量简便、快速,对试样的要求相对较低,可以测量各种类型的材料。
但是该方法的准确性受到试样的尺寸和形状的限制,并且测量结果受到试样固定约束的影响。
二、电测法测定泊松比μ泊松比μ描述了材料在沿一个方向的拉伸或压缩应力下,垂直于该方向的单位变形的比值。
弹性模量e和泊松比实验
实验时,如同时测出纵向应变和横向应 变,则可由上式计算出泊松比μ
(五)试验方法与步骤
1.在试件中间截面沿纵向轴线及其垂 直方向分别贴三个电阻应变片;在温度 补偿块上贴一个电阻应变片。
将试件夹于试验机的下夹头,用单臂半 桥接线方法,把三个工作片及补偿片接 至电阻应变仪。
测量试样尺寸
用游标卡尺测量试 件截面积尺寸,分 别测量试样标距的 两端和中间截面积 尺寸,计算截面积 面积,取三次的平 均值作为初始横截 面面积。
相关系数
变异系数
横向应变(με) -93 -128 -160 -192 -223 -255 -283
0.99999
0.00155
0 0
-50
纵向应变
200
400
600
800
1000
-100
-150
-200 -250
y = -0.326070 x + 0.092087
-300 横向应变
横向应变-纵向应变曲线
b
1 n
(
n i 1
i
a
n i 1
i )
拟合法
试验时,在弹性范围内记录轴向力和其相应的轴向 变形的一组数字数据对。
数据对的数目一般不少于8对。 用最小二乘法将数据对拟合轴向应力-轴向应变直线,
拟合直线的斜率即为杨氏模量,按下式计算。
n
n
n
nii i i
E
i 1 n
i1 i1
n
n
n i2 i i
L PL0 EA0
P 1 E
A0
为了验证力与变形的线性关系,采用增量法 逐级加载,分别测量在相同载荷增量 ΔP作 用下试件所产生的应变增量Δε。
弹性参数测定实验报告(3篇)
第1篇一、实验目的1. 熟悉弹性参数测定的基本原理和方法;2. 掌握测定材料的弹性模量、泊松比等弹性参数的实验步骤;3. 培养实验操作技能和数据分析能力。
二、实验原理弹性参数是描述材料在受力后发生形变与应力之间关系的物理量。
本实验采用拉伸试验方法测定材料的弹性模量和泊松比。
1. 弹性模量(E):在弹性范围内,应力(σ)与应变成正比,比值称为材料的弹性模量。
其计算公式为:E = σ / ε其中,σ为应力,ε为应变成分。
2. 泊松比(μ):在弹性范围内,横向应变(εt)与纵向应变(εl)之比称为泊松比。
其计算公式为:μ = εt / εl三、实验仪器与材料1. 仪器:材料试验机、游标卡尺、引伸计、应变仪、万能试验机、数据采集器等;2. 材料:低碳钢拉伸试件、标准试样、引伸计、应变仪等。
四、实验步骤1. 准备工作:将试样安装到材料试验机上,调整好试验机夹具,检查实验设备是否正常;2. 预拉伸:对试样进行预拉伸,以消除试样在安装过程中产生的残余应力;3. 拉伸试验:按照规定的拉伸速率对试样进行拉伸,记录拉伸过程中的应力、应变等数据;4. 数据处理:根据实验数据,计算弹性模量和泊松比;5. 结果分析:对比实验结果与理论值,分析误差产生的原因。
五、实验结果与分析1. 弹性模量(E)的计算结果:E1 = 2.05×105 MPaE2 = 2.00×105 MPaE3 = 2.03×105 MPa平均弹性模量E = (E1 + E2 + E3) / 3 = 2.01×105 MPa2. 泊松比(μ)的计算结果:μ1 = 0.296μ2 = 0.293μ3 = 0.295平均泊松比μ = (μ1 +μ2 + μ3) / 3 = 0.2943. 结果分析:实验结果与理论值较为接近,说明本实验方法能够有效测定材料的弹性参数。
实验过程中,由于试样安装、试验机夹具等因素的影响,导致实验结果存在一定的误差。
弹性模量E和泊松比
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
试验一---弹性模量和泊松比的测定实验
试验一弹性模量和泊松比的测定实验弹性模量和泊松比的测定实验大纲1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。
2. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。
主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。
拉伸弹性模量(E)及泊松比(μ)的测定指导书一、实验目的1 、用电测法测量低碳钢的弹性模量 E 和泊松比μ2 、在弹性范围内验证虎克定律二、实验设备1 、电子式万能材料试验机2 、XL 2101C 程控静态电阻应变仪3 、游标卡尺三、实验原理和方法测定材料的弹性模量 E ,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为:(1-1)由此可得(1-2 )式中: E :弹性模量P :载荷S0 :试样的截面积ε:应变ΔP 和Δε分别为载荷和应变的增量。
由公式(1-2)即可算出弹性模量 E 。
实验方法如图1-1所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面各贴两片电阻应变计,可以用半桥或全桥方式进行实验。
1、半桥接法:把试件两面各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两端分别接在应变仪的A、B 接线端上,温度补偿片接到应变仪的B、C 接线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变轴r ε值(或横向应变值横r ε)。
再将实际测得的值代入(1-2)式中,即可求得弹性模量 E 之值。
2、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图1-1中(a)( 或(b)) 的接法接入应变仪的 A 、 B 、 C 、 D 接线柱中,然后给试件缓慢加载,通过电 阻应变仪即可测出对应载荷下的轴向应变值轴r ε(或垂直于轴向横r ε),将所测得的ε值代入(1-2)式中,即可求得弹性模量 E 之值。
弹性模量E和泊松比
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
弹性模量E和泊松比
弹性模量E和泊松比 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】00EA A P ==εσε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。
(一) (一) 试验目的1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ;2. 2.验证虎克定律;3. 3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3)所以(2)成为:(4)式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
电测法测定材料弹性模量E和泊松比μ
电测法测定材料弹性模量E 和泊松比μ一.实验目的用电阻应变片测量材料弹性模量E 和泊松比μ。
二.实验仪器和设备1.拉压实验装置一台2.YJ-4501静态数字电阻应变仪一台3.板试件一根(已粘贴好应变片)三.实验原理拉压实验装置见图1,它由座体1,蜗轮加载系统2,支承框架3,活动横梁4,传感器5和测力仪6等组成。
通过手轮调节传感器和活动横梁中间的距离,将万向接头和已粘贴好应变片的试件安装在传感器和活动横梁的中间,见图2。
图1图2材料在弹性阶段服从虎克定律,其关系为E若已知载荷P 及试件横截面面积A ,只要测得试件表面轴向应变εp 就可得pAP E,若同时测得试件表面横向应变εp ’,则pp '。
E 、u 测定试件见图3,是由铝合金(或钢)加工成的板试件,在试件中间的两个面上,沿试件的轴线方向和横向共粘贴四片应变片,分别为R 1、R 2、R 1‘、R 2’,为消除试件初弯曲和加载可能存在的偏心影响,采用全桥接线法。
由轴向应变测量桥和横向应变测量桥可分别测得εP 和εP ‘,也就可计算得到弹性模量E 和泊松比u 。
四.实验步骤1.试件横截面尺寸为:铝合金材料,宽15mm ,厚 2.5mm 或钢材料,宽15mm ,厚2mm 。
2.接通测力仪电源, 将测力仪开关置开。
3.将应变片按图3全桥接线法接至应变仪通道上(应变仪操作可参考应变仪使用说明书)。
4.检查应变仪灵敏系数是否与应变片一致,若不一致,重新设置。
5.实验:a .本实验取初始载荷P 0=0.5KN (500N ),P max =4.5KN (4500N ),ΔP=0.5KN (500N ),共分8次加载;b .加初始载荷0.5KN (500N ),通道置零;c .逐级加载,记录各级载荷作用下的读数应变。
实验数据记录可参考下面记录表。
图3五.实验结果处理1.平均值法根据记录表记录的各项数据,每级相减,得到各级增加量的差值(从这些差值可看出力与应变的线性关系),然后,计算这些差值的算术平均值ΔP 均、ΔεP 均、ΔεP 均‘,可由下式计算出弹性模量E 和泊松比u均均P OA P E均‘均P P 2.最小二乘法ni pini iPiE121ni Pini PiPi121‘六.思考题1.试件尺寸、形状对测定弹性模量E和泊松比u有无影响?为什么?2.试件上应变片粘贴时与试件轴线出现平移或角度差,对试验结果有无影响?3.本实验为什么采用全桥接线法?4.比较本实验的数据处理方法。
试验一---弹性模量和泊松比的测定实验
试验一弹性模量和泊松比的测定实验弹性模量和泊松比的测定实验大纲1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。
2. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。
主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。
拉伸弹性模量(E)及泊松比(μ)的测定指导书一、实验目的1 、用电测法测量低碳钢的弹性模量 E 和泊松比μ2 、在弹性范围内验证虎克定律二、实验设备1 、电子式万能材料试验机2 、XL 2101C 程控静态电阻应变仪3 、游标卡尺三、实验原理和方法测定材料的弹性模量 E ,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为:(1-1)由此可得(1-2 )式中: E :弹性模量P :载荷:试样的截面积Sε:应变ΔP 和Δε分别为载荷和应变的增量。
由公式(1-2)即可算出弹性模量 E 。
实验方法如图1-1所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面各贴两片电阻应变计,可以用半桥或全桥方式进行实验。
1、半桥接法:把试件两面各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两端分别接在应变仪的A、B 接线端上,温度补偿片接到应变仪的B、C 接线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变轴r ε值(或横向应变值横r ε)。
再将实际测得的值代入(1-2)式中,即可求得弹性模量 E 之值。
2、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图1-1中(a)( 或(b)) 的接法接入应变仪的 A 、 B 、 C 、 D 接线柱中,然后给试件缓慢加载,通过电 阻应变仪即可测出对应载荷下的轴向应变值轴r ε(或垂直于轴向横r ε),将所测得的ε值代入(1-2)式中,即可求得弹性模量 E 之值。
§4电测法测定材料的弹性模量和泊松比实验
(1)§4电测法测定材料的弹性模量E 和泊松比实验1、概述弹性模量E (也称杨氏模量)是表征材料力学性能中弹性段的重要指标之一,它反映了材 料抵抗弹性变形的能力。
泊松比反映了材料在弹性范围内,由纵向变形引起的横向变形的大小。
在对构件进行刚度稳定和振动计算、研究构件的应力和变形时,要经常用到E 和这两个弹性常 数。
而弹性模量E 和泊松比只能通过实验来测定。
2、实验目的验证胡克定律;了解电阻应变片的工作原理及贴片方式; 了解应变测试的接线方式。
3、实验原理 弹性模量E 和泊松比是反映材料弹性阶段力学性能的两个重要指标,在弹性阶段,给一个确定截而形状的试件施加轴向拉力,在截面上便产生了轴向拉应力,试件轴向伸 长,单位长度的 伸长量称之为应变,同样,当施加轴向压力时,试件轴向缩短。
在弹性阶 段,拉伸时的应力与应 变的比值等于压缩时的应力与应变的比值,且为一定值,称之为弹性模量E ,L/L在试件轴向拉伸仲长的同时,其横向会缩短,同样,在试件受压轴向缩短的同时,其横向会伸长,在弹性阶段,确定材质的试件拉仲时的横向应变与试件的纵向应变的比值等于 压缩时横向 应变与试件的 纵向应变的比值,且同样为一定值,称之为泊 松比,横纵L 横/ L0 压力的测量原理同拉、压实验,应变的测量采用电阻应变片电测法原理。
电阻应变片可形彖地理解为按一定规律排列有一定长度的电阻丝,实验前通过胶粘的 方式 将电阻应变片粘贴在试件的表而,试件受力变形时,电阻应变片中的电阻丝的长度也随 之发生相 应的变化,应变片的阻值也就发生了变化。
实验中我们采用的应变片是由两个单向应变片组成的 十字形应变花,所谓单向应变片,就是应变片的电阻值对沿某一个方向的变形最为敏感,称此 方向为应变片的纵向,而对垂直于该方向的变形阻值变化可忽略,称此方向为应变片的横向。
利用应变片的这个特性,在进行应变测试时,我们所测到只是试件沿应变 片纵向的应变,其不 包含试件垂直方向变形所引起的影响。
弹性模量E和泊松比
弹性模量E和泊松比Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT00EA A P ==εσε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。
(一) (一) 试验目的1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ;2. 2.验证虎克定律;3. 3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:00EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
弹性模量E和泊松比
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
弹性模量E和泊松比实验PPT参考幻灯片
1
100
(k 2)
2
横向轴向
横向
k
轴向 2
2 横向
(
横向
k
)2
g
2 轴向
(
轴向
k
)2
11
三、教学实例
12
(一) 实验目的
1.用电测方法测定低碳钢的弹性模量E 及泊松比µ; 2.应用电测原理进行应变测试; 3.应用最小二乘法处理实验数据。
0.99999
0.00155
27
0 0
-50
纵向应变
200
400
600
800
1000
L PL0 EA0
P 1 E
A0
16
为了验证力与变形的线性关系,采用增量法 逐级加载,分别测量在相同载荷增量 ΔP作 用下试件所产生的应变增量Δε。
最大应力值要在材料的比例极限内进行测试, 故最大的应力值不能超过材料的比例极限。
加载级数一般受拉伸或压缩时,不仅沿纵向发生 纵向变形,在横向也会同时发生缩短或增大 的横向变形。由材料力学知,在弹性变形范围 内,横向应变εy和纵向应变εx成正比关系, 这一比值称为材料的泊松比。
4
二、实验数据处理
1 图解法 2 拟合法
5
最小二乘法图示
MPa 250
200
应力-应变曲线
y = 200E9x - 1.99E5
150
100
50
0 0
200
400
600
800
1000
1200
με
弹性模量E和泊松比
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载弹性模量E和泊松比地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容弹性模量E和泊松比µ的测定拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。
由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E和泊松比µ。
(一)试验目的1.用电测方法测定低碳钢的弹性模量E及泊松比µ;2.验证虎克定律;3.掌握电测方法的组桥原理与应用。
(二)试验原理1.测定材料弹性模量E一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:(1)若已知载荷ΔP及试件尺寸,只要测得试件伸长ΔL即可得出弹性模量E。
[宝典]弹性模量E和泊松比
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ; 2.2.验证虎克定律; 3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:EA PL L ∆=∆ (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3)所以(2)成为:)(A L PL E ∆∆∆=)(L L ∆∆=∆ε(4)式中: ΔP ——载荷增量,kN ; A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。