分式的基本性质 优秀课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 分式的基本性质
1.理解并掌握分式的基本性质和符号法则;(难点)
2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)
3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点
)
一、情境导入
中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.
二、合作探究
探究点一:分式的基本性质
【类型一】 利用分式的基本性质对分式进行变形
下列式子从左到右的变形一定正
确的是( )
A.a +3b +3=a b
B.a b =ac bc
C.3a 3b =a b
D.a b =a 2
b
2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.
方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的
整式,分式的值不变.
【类型二】
不改变分式的值,将分式的分子、分母中各项系数化为整数
不改变分式0.2x +1
2+0.5x
的值,把它的
分子、分母的各项系数都化为整数,所得结果正确的为( )
A.2x +12+5x
B.x +54+x
C.2x +1020+5x
D.2x +12+x
解析:利用分式的基本性质,把
0.2x +1
2+0.5x
的分子、分母都乘以10得2x +10
20+5x
.故选C.
方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,
只需根据分式的基本性质让分子和分母同乘以某一个数即可.
【类型三】 分式的符号法则
不改变分式的值,使下列分式的
分子和分母都不含“-”号.
(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b . 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.
解:(1)原式=-3b
2a ;
(2)原式=-5y
7x 2;
(3)原式=-a +2b
2a +b
.
方法总结:这类题目容易出现的错误是把分子的符号,
分母的项的符号,特别是首项的符号当成分子或分母的符号.
探究点二:约分及最简分式
【类型一】 判定分式是否为最简分式
下列分式是最简分式的是( )
A.2a 2+a ab
B.6xy 3a
C.x 2-1x +1
D.x 2+1x +1
解析:A 中该分式的分子、分母含有公
因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.
方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、
分母分解因式,并且观察有无公因式.
【类型二】 分式的约分
约分:(1)-5a 5bc 3
25a 3bc 4
;
(2)x 2
-2xy x 3-4x 2y +4xy 2
. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.
解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)
5a 3bc 3·5c =-
a
2
5c
; (2)x 2
-2xy x 3
-4x 2y +4xy 2=x (x -2y )
x (x -2y )2
=1x -2y
. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.
三、板书设计
1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.
2.符号法则:分式的分子、分母及分
式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.
本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.第2课时 平行四边形的判定定理3与两平行线间的距离
1.复习并巩固平行四边形的判定定理
1、2;
2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)
3.根据平行四边形的性质总结出求两
条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,
难点)
一、情境导入
小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?
二、合作探究 探究点一:对角线互相平分的四边形是平行四边形
【类型一】 利用平行四边形的判定定理
(3)判定平行四边形
已知,如图,AB 、CD 相交于点O ,
AC ∥DB ,AO =BO ,E 、F 分别是
OC 、OD 中点.
求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;
(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.
证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪
⎧AO =OB ,∠AOC =∠BOD ,
∠C =∠D ,∴△AOC ≌△BOD (AAS);
(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =1
2OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.
【类型二】 利用平行四边形的判定定理
(3)证明线段或角相等
如图,在平行四边形ABCD 中,
AC 交BD 于点O ,点E ,F 分别是OA ,OC
的中点,请判断线段BE
,DF 的位置关系和数量关系,并说明你的结论.
解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .
解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .
方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.
探究点二:平行线间的距离
如图,已知l 1∥l 2,点E ,F 在l 1
上,点G ,H 在l 2上,试说明△
EGO 与△FHO 的面积相等.
解析:结合平行线间的距离相等和三角形的面积公式即可证明.
证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =1
2GH ·h ,S △
FGH
=12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .
方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.
探究点三:平行四边形判定和性质的综合
如图,在直角梯形ABCD 中,AD
∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、
FG
.
(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.
解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =1
2BC
=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.
解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =1
2AG ,
DF =1
2DC ,即GE =DF ,GE ∥DF ,∴四边
形DEGF 是平行四边形;
(2)∵点G 是BC 的中点,BC =12,∴BG =CG =1
2=6.∵四边形AGCD 是平行
四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.
方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.
三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;
2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.
3.平行四边形判定和性质的综合.
本节课的教学主要通过分组讨论、操作探究
以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。