江苏省师范大学附属实验学校物理第十章 静电场中的能量精选测试卷专题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省师范大学附属实验学校物理第十章 静电场中的能量精选测试卷专题练
习
一、第十章 静电场中的能量选择题易错题培优(难)
1.如图所示,真空中有一个边长为L 的正方体,正方体的两个顶点M 、N 处分别放置电荷量都为q 的正、负点电荷.图中的a 、b 、c 、d 是其他的四个顶点,k 为静电力常量.下列表述正确是( )
A .a 、b 两点电场强度大小相等,方向不同
B .a 点电势高于b 点电势
C .把点电荷+Q 从c 移到d ,电势能增加
D .同一个试探电荷从c 移到b 和从b 移到d ,电场力做功相同 【答案】D 【解析】
A 、根据电场线分布知,a 、b 两点的电场强度大小相等,方向相同,则电场强度相同.故A 错误.
B 、ab 两点处于等量异种电荷的垂直平分面上,该面是一等势面,所以a 、b 的电势相等.故B 错误.
C 、根据等量异种电荷电场线的特点,因为沿着电场线方向电势逐渐降低,则c 点的电势大于d 点的电势.把点电荷+Q 从c 移到d ,电场力做正功,电势能减小,故C 错误.
D 、因cb bd U U 可知同一电荷移动,电场力做功相等,则D 正确.故选D .
【点睛】解决本题的关键知道等量异种电荷周围电场线的分布,知道垂直平分线为等势线,沿着电场线方向电势逐渐降低.
2.如图所示,匀强电场中有一个以O 为圆心、半径为R 的圆,电场方向与圆所在平面平行,圆上有三点A 、B 、C ,其中A 与C 的连线为直径,∠A =30°。
有两个完全相同的带正电粒子,带电量均为q (q >0),以相同的初动能E k 从A 点先后沿不同方向抛出,它们分别运动到B 、C 两点。
若粒子运动到B 、C 两点时的动能分别为E kB =2E k 、E kC =3E k ,不计粒子的重力和粒子间的相互作用,则匀强电场的场强大小为
A .k E qR
B .2k E qR
C .3
3k
E qR
D .23
3k
E qR
【答案】D 【解析】 【分析】 【详解】
从A 点到B 点应用动能定理有:2-AB k k k qU E E E == 从A 点到C 点应用动能定理有:32-AC k k k qU E E E == 所以2AC AB U U =
做出等势面和电场线如图所示:
则从A 点到B 点应用动能定理有:,3k k R
qEd qE AD E qE E ===即 解得23
3k
E E qR
=。
选项D 正确,A 、B 、C 错误。
3.空间某一静电场的电势φ在x 轴上分布如图所示,x 轴上两点B 、C 点电场强度在x 方向上的分量分别是E Bx 、E cx ,下列说法中正确的有
A .
B 、
C 两点的电场强度大小E Bx <E cx B .E Bx 的方向沿x 轴正方向
C .电荷在O 点受到的电场力在x 方向上的分量最大
D .负电荷沿x 轴从B 移到C 的过程中,电场力先做正功,后做负功 【答案】D 【解析】 【分析】
本题的入手点在于如何判断E Bx 和E Cx 的大小,由图象可知在x 轴上各点的电场强度在x 方向的分量不相同,如果在x 方向上取极小的一段,可以把此段看做是匀强电场,用匀强电
场的处理方法思考,从而得到结论,此方法为微元法. 【详解】
A 、在
B 点和
C 点附近分别取很小的一段d ,由题图得,B 点段对应的电势差大于C 点段对应的电势差,将电场看做匀强电场,有E d
ϕ
∆=
,可见E Bx >E Cx ,A 项错误.C 、同理可知O 点的斜率最小,即场强最小,电荷在该点受到的电场力最小,C 项错误.B 、沿电场线方向电势降低,在O 点左侧,E Bx 的方向沿x 轴负方向,在O 点右侧,E Cx 的方向沿x 轴正方向,B 项错误.D 、负电荷沿x 轴从B 移到C 的过程中,电场力先向右后向左,电场力先做正功,后做负功,D 项正确.故选D . 【点睛】 挖掘出x φ-
图象两大重要性质:图象的斜率反映电场强度的大小,图象中ϕ降低的方向
反映场强沿x 轴的方向.
4.如图所示,虚线AB 和CD 分别为椭圆的长轴和短轴,相交于O 点,两个等量异号点电荷分别位于椭圆的两个焦点M 、N 上.下列说法中正确的是( )
A .O 点的电场强度为零
B .A 、B 两点的电场强度相同
C .将电荷+q 沿曲线CA
D 从C 移到D 的过程中,电势能先减少后增加 D .将电荷+q 沿曲线CBD 从C 移到D 的过程中,电势能先增加后减少 【答案】B 【解析】 【详解】
AB.由等量异种电荷的电场线分布情况可知,A 、B 两点的电场强度相同, O 点的电场强度不为零,故A 错误;B 正确;
CD. 由等量异种电荷的等势面分布情况可知,
A C D
B φφφφ>=>
正电荷在电势高的地方电势能大,所以将电荷+q 沿曲线CAD 从C 移到D 的过程中,电势能先增大后减少,将电荷+q 沿曲线CBD 从C 移到D 的过程中,电势能先减少后增大,故CD 错误。
5.在竖直平面内有水平向右、场强为E=1×104N/C 的匀强电场.在场中有一根长L=2m 的绝缘细线,一端固定在O 点,另一端系质量为0.04kg 的带电小球,它静止时细线与竖直方向成37°角.如图所示,给小球一个初速度让小球恰能绕O 点在竖直平面内做圆周运动,取小球在静止时的位置为电势能和重力势能的零点,下列说法正确的是
(cos37°=0.8,g=10m/s 2)
A .小球所带电量为q=3.5×10-5C
B .小球恰能做圆周运动动能最小值是0.96J
C .小球恰能做圆周运动的机械能最小值是1.54J
D .小球恰能做圆周运动的机械能最小值是0.5J 【答案】C 【解析】
对小球进行受力分析如图所示:
根据平衡条件得:37mgtan qE ︒=,解得:537310mgtan q C E
-︒
=
=⨯,故A 错误;由于重力和电场力都是恒力,所以它们的合力也是恒力
在圆上各点中,小球在平衡位置A 点时的势能(重力势能和电势能之和)最小,在平衡位置的对称点B 点,小球的势能最大,由于小球总能量不变,所以在B 点的动能kB E 最小,对应速度B v 最小,在B 点,小球受到的重力和电场力,其合力作为小球做圆周运动的向心
力,而绳的拉力恰为零,有:0.40.5370.8
mg F N cos =
==︒合,而2
B
v F m L =合,所以211
0.522
KB B E mv F L J =
==合,故B 错误;由于总能量保持不变,即k PG PE E E E C ++=(C 为恒量).所以当小球在圆上最左侧的C 点时,电势能PE E 最
大,机械能最小,由B 运动到A ,()PA PB W E E =--合力,·
2W F L =合合力,联立解得:2PB E J =,总能量 2.5PB kB E E E J =+=,由C 运动到
A ,()21370.96P W F L sin J W E =+︒==电电电,,所以C 点的机械能为
2 1.54?P C E E E J 机=-=,即机械能的最小值为1.54J ,故C 正确,D 错误;故选C .
【点睛】根据小球在平衡位置合力为0,可以求出小球所受的电场力从而得出小球的带电荷量;根据小球恰好在竖直面内做圆周运动这一临界条件,知,在平衡位置处合外力提供圆周运动的向心力从而求出小球动能的最小值.抓住小球能量守恒,电势能最大处小球的机械能最小,根据做功情况分析.
6.如图甲所示,平行金属板A 、B 正对竖直放置,C 、D 为两板中线上的两点。
A 、B 板间不加电压时,一带电小球从C 点无初速释放,经时间T 到达D 点,此时速度为v 0;在A 、B 两板间加上如图乙所示的交变电压,t =0带电小球仍从C 点无初速释放,小球运动过程中未接触极板,则t =T 时,小球( )
A .在D 点上方
B .恰好到达D 点
C .速度大于v
D .速度小于v
【答案】B 【解析】 【分析】 【详解】
小球仅受重力作用时从C 到D 做自由落体运动,由速度公式得0v gT =,现加水平方向的周期性变化的电场,由运动的独立性知竖直方向还是做匀加速直线运动,水平方向0~4
T
沿电场力方向做匀加速直线运动,
~42
T T
做匀减速直线运动刚好水平速度减为零,3~24
T T 做反向的匀加速直线运动,3~4T
T 做反向的匀减速直线运动水平速度由对称性减为零,故t =T 时合速度为v 0,水平位移为零,则刚好到达D 点,故选B 。
【点睛】
平行板电容器两极板带电后形成匀强电场,带电离子在电场中受到电场力和重力的作用,根据牛顿第二定律求出加速度,根据分运动和合运动的关系分析即可求解。
7.如图(a)所示,两平行正对的金属板AB 间加有如图(b)所示的交变电压,将一带正电的粒子从两板正中间的P 点处由静止释放,不计粒子重力,下列说法正确的是
A .在t =0时刻释放该粒子,粒子一定能到达
B 板 B .在4
T
t =
时刻释放该粒子,粒子一定能到达B 板 C .在04
T
t <<期间释放该粒子,粒子一定能到达B 板 D .在
42
T T
t <<期间释放该粒子,粒子一定能到达A 板 【答案】AC 【解析】 【分析】 【详解】
A .若在t =0时刻释放该粒子,带正电粒子先加速向
B 板运动、再减速运动至零,运动方向一直不变,最终打在B 板上,选项A 正确; B .若在4
T
t =
时刻释放该粒子,带正电粒子先加速向B 板运动、再减速运动至零;然后再反方向加速运动、减速运动至零;如此反复运动,每次向左运动的距离等于向右运动的距离,所以若极板间距较大,则粒子可能打不到B 板,B 错误 C .若在04
T
t <<
期间释放该粒子,带正电粒子先加速向B 板运动、再减速运动至零;然后再反方向加速运动、减速运动至零;如此反复运动,每次向右运动的距离大于向左运动的距离,粒子整体向右运动,最终打在B 板上,C 正确 D .若在
42
T T
t <<期间释放该粒子,带正电粒子先加速向B 板运动、再减速运动至零;然后再反方向加速运动、减速运动至零;如此反复运动,每次向右运动的距离小于向左运动的距离,粒子整体向A 板运动,一定打在A 板上,若直接加速向B 板,则不会回到A 板,D 错误。
故选AC 。
8.静电场中,一带电粒子仅在电场力的作用下自M 点由静止开始运动,N 为粒子运动轨迹上的另外一点,则
A .运动过程中,粒子的速度大小可能先增大后减小
B .在M 、N 两点间,粒子的轨迹一定与某条电场线重合
C .粒子在M 点的电势能不低于其在N 点的电势能
D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行
【答案】AC
【解析】
【分析】
【详解】
A.若电场中由同种电荷形成即由A点释放负电荷,则先加速后减速,故A正确;
B.若电场线为曲线,粒子轨迹不与电场线重合,故B错误.
C.由于N点速度大于等于零,故N点动能大于等于M点动能,由能量守恒可知,N点电势能小于等于M点电势能,故C正确
D.粒子可能做曲线运动,故D错误;
9.如图,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,上面放一质量为m 的带正电小球,小球与弹簧不连接,施加外力F将小球向下压至某位置静止.现撤去F,使小球沿竖直方向运动,在小球由静止到离开弹簧的过程中,重力、电场力对小球所做的功分别为W1和W2,小球离开弹簧时的速度为v,不计空气阻力,则上述过程中
A.小球的重力势能增加-W1
B.弹簧对小球做的功为1
2
mv2-W2-W1
C.小球的机械能增加W1+1
2
mv2
D.小球与弹簧组成的系统机械能守恒
【答案】AB
【解析】
A、重力对小球做功为W1,重力势能增加-W1;故A正确.
B、电场力做了W2的正功,则
电势能减小W 2;故B 正确.C 、根据动能定理得,2
121=
2
W W W mv ++弹,因为除重力以外其它力做功等于小球机械能的增量,则机械能的增量为2
211=
2
W W mv W +-弹;故C 错误.D 、对小球和弹簧组成的系统,由于有电场力做功,则系统机械能不守恒.故D 错误.故选AB .
【点睛】解决本题的关键掌握功能关系,知道重力做功等于重力势能的减小量,电场力做功等于电势能的减小量,除重力以外其它力做功等于机械能的增量.
10.如图所示,光滑的水平轨道AB 与半径为R 的光滑的半圆形轨道BCD 相切于B 点,AB 水平轨道部分存在水平向右的匀强电场,半圆形轨道在竖直平面内,B 为最低点,D 为最高点。
一质量为m 、带正电的小球从距B 点x 的位置在电场力的作用下由静止开始沿AB 向右运动,恰能通过最高点,则( )
A .其他条件不变,R 越大,x 越大
B .其他条件不变,m 越大,x 越大
C .m 与R 同时增大,电场力做功增大
D .R 越大,小球经过B 点后瞬间对轨道的压力越大 【答案】ABC 【解析】 【详解】
AB.小球在BCD 部分做圆周运动,在D 点,有:
mg =m 2 D
v R
①
从A 到D 过程,由动能定理有:
qEx -2mgR =
1
2
mv D 2,② 由①②得:25qEx
R mg
=
,③ 可知,R 越大,x 越大。
m 越大,x 越大,故AB 符合题意; C.从A 到D 过程,由动能定理有:
W -2mgR =
1
2
mv D 2,⑥ 由①⑥解得:电场力做功 W =5
2
mgR ,可知m 与R 同时增大,电场力做功越多,故C 符合题意;
D.小球由B 到D 的过程中,由动能定理有:
-2mgR =
12mv D 2-1
2
mv B 2,v B =5gR ,④ 在B 点有:
F N -mg =m 2 B
v R
⑤
解得:F N =6mg ,则知小球经过B 点瞬间轨道对小球的支持力与R 无关,则小球经过B 点后瞬间对轨道的压力也与R 无关,故D 不符合题意。
11.质量为m 电量为q +的小滑块(可视为质点),放在质量为M 的绝缘长木板左端,木板放在光滑的水平地面上,滑块与木板之间的动障擦因数为μ,木板长为L ,开始时两者都处于静止状态,所在空间存在范围足够大的一个方向竖直向下的匀强电场E ,恒力F 作用在m 上,如图所示,则( )
A .要使m 与M 发生相对滑动,只须满足()F mg Eg μ>+
B .若力F 足够大,使得m 与M 发生相对滑动,当m 相对地面的位移相同时,m 越大,长木板末动能越大
C .若力F 足够大,使得m 与M 发生相对滑动,当M 相对地面的位移相同时,E 越大,长木板末动能越小
D .若力F 足够大,使得m 与M 发生相对滑动,
E 越大,分离时长本板末动能越大 【答案】BD 【解析】
A 、m 所受的最大静摩擦力为()f mg Eq μ=+ ,则根据牛顿第二定律得F f f
a m M
-== ,计算得出()()
mg Eq M m F M
μ++=
.则只需满足()()
mg Eq M m F M
μ++>
,m 与M 发生
相对滑动.故A 错误.
B 、当M 与m 发生相对滑动,根据牛顿第二定律得,m 的加速度()
F mg Eq a m
μ-+=
,知m
越大,m 的加速度越小,相同位移时,所以的时间越长,m 越大,m 对木板的压力越大,摩擦力越大,M 的加速度越大,因为作用时间长,则位移大,根据动能定理知,长木板的动能越大.所以B 选项是正确的.
C 、当M 与m 发生相对滑动,E 越大,m 对M 的压力越大,摩擦力越大,则M 相对地面的位移相同时,根据动能定理知,长木板的动能越大.故C.错误
D 、根据22
121122
L a t a t =
- 知,E 越大,m 的加速度越小,M 的加速度越大,知时间越长,因为E 越大,M 的加速度越大,则M 的位移越大,根据动能定理知,分离时长木板的动能越大.所以D 选项是正确的., 故选BD
点睛:当m 与M 的摩擦力达到最大静摩擦力,M 与m 发生相对滑动,根据牛顿第二定律求出F 的最小值.当F 足够大时,M 与m 发生相对滑动,根据牛顿第二定律,结合运动学公式和动能定理判断长木板动能的变化.
12.如图所示,直线上M 、N 两点分别放置等量的异种电荷,A 、B 是以M 为圆心的圆上两点,且关于直线对称,C 为圆与直线的交点。
下列说法正确的是
A .A 、
B 两点的电场强度相同,电势不等 B .A 、B 两点的电场强度不同,电势相等
C .C 点的电势高于A 点的电势
D .将正电荷从A 沿劣弧移到B 的过程中,电势能先增加后减少 【答案】BD 【解析】 【详解】
AB .在等量的异种电荷的电场中,两点电荷产生好的电场强度大小为2
kQ
E r =,由平行四边形定则合成,A 、B 、C 三点的场强方向如图所示:
结合对称性可知,A 与B 两点的电场强度大小相等,方向不同,则两点的场强不同;而比较A 与B 两点的电势,可由对称性可知沿MA 和MB 方向平均场强相等,则由U E d =⋅可知电势降低相同, 故有A B ϕϕ=;或由点电荷的电势(决定式kQ
r
ϕ=
)的叠加原理,可得A B ϕϕ=,故A 错误,B 正确;
C .从M 点沿MA 、MB 、MC 三个方向,可知MA 和MB 方向MC 方向的平均场强较大,由
U E d =⋅可知沿MC 方向电势降的多,而等量异种电荷连线的中垂线与电场线始终垂直,
为0V 的等势线,故有
0V A B C ϕϕϕ=>=,
故C 错误;
D .正电荷在电场中的受力与场强方向相同,故由从A 沿劣弧移到B 的过程,从A 点电场力与运动方向成钝角,到B 点成直角,后变成锐角,故有电场力先做负功后做正功,由功能关系可知电势能先增大后减小,故D 正确; 故选BD 。
13.如图所示,在竖直平面内有一边长为L 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行.一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速V 0进入该正方形区域.当小球再次运动到该正方形区域的边缘时,具有的动能可能为( )
A .可能等于零
B .可能等于201
2
mv C .可能等于12mv 02+12qEL -1
2
mgL D .可能等于
12mv 02+23qEL +1
2
mgL 【答案】BCD 【解析】 【分析】
要考虑电场方向的可能性,可能平行于AB 向左或向右,也可能平行于AC 向上或向下.分析重力和电场力做功情况,然后根据动能定理求解. 【详解】
令正方形的四个顶点分别为ABCD ,如图所示
若电场方向平行于AC :
①电场力向上,且大于重力,小球向上偏转,电场力做功为
12qEL ,重力做功为-1
2
mg ,根
据动能定理得:E k −
12mv 02=12qEL −12mgL ,即E k =12mv 02+12qEL −1
2
mgL ②电场力向上,且等于重力,小球不偏转,做匀速直线运动,则E k =1
2
mv 02. 若电场方向平行于AC ,电场力向下,小球向下偏转,电场力做功为
1
2
qEL ,重力做功为12mgL ,根据动能定理得:E k −12mv 02=12qEL +12mgL ,即E k =12mv 02+12qEL +1
2mgL . 由上分析可知,电场方向平行于AC ,粒子离开电场时的动能不可能为0. 若电场方向平行于AB :
若电场力向右,水平方向和竖直方向上都加速,粒子离开电场时的动能大于0.若电场力向右,小球从D 点离开电场时,有 E k −
12mv 02=qEL +12mgL 则得E k =12mv 02+qEL +1
2
mgL 若电场力向左,水平方向减速,竖直方向上加速,粒子离开电场时的动能也大于0.故粒子离开电场时的动能都不可能为0.故BCD 正确,A 错误.故选BCD . 【点睛】
解决本题的关键分析电场力可能的方向,判断电场力与重力做功情况,再根据动能定理求解动能.
14.某电场的电场线分布如图所示,以下说法正确的是
A .c 点场强大于b 点场强
B .a 点电势高于b 点电势
C .若将一试电荷q +由a 点释放,它将沿电场线运动到b 点
D .若在d 点再固定一点电荷Q -,将一试探电荷q +由a 移至b 的过程中,电势能减小 【答案】BD 【解析】
试题分析:电场线的密的地方场强大,b 点电场线密,所以b 点场强大,故A 错误.沿着电场线方向电势降低,a 点电势高于b 点电势,故B 正确.若将一试探电荷+q 由a 点静止释放,将沿着在a 点的场强方向运动,运动轨迹不是电场线,故C 错误.若在d 点再固定一点电荷-Q ,将一试探电荷+q 由a 移至b 的过程中,原来的电场力和点电荷-Q 对试探电荷+q 做功均为正,故电势能减小,选项D 正确;故选BD . 考点:电场线;电场力的功和电势能
15.如图甲所示,两平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电
场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0。
已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场。
则()
A.所有粒子最终都垂直电场方向射出电场
B.t=0之后射入电场的粒子有可能会打到极板上
C.所有粒子在经过电场过程中最大动能都不可能超过2E k0
D.若入射速度加倍成2v0,则粒子从电场出射时的侧向位移与v0相比必定减半
【答案】AC
【解析】
【分析】
【详解】
AB.粒子在平行极板方向不受电场力,做匀速直线运动,故所有粒子的运动时间相同;t=0时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,说明竖直方向分速度变化量为零,说明运动时间为周期的整数倍;故所有粒子最终都垂直电场方向射出电场;由于t=0时刻射入的粒子在电场方向上始终做单向的直线运动,竖直方向的位移最大,故所有粒子最终都不会打到极板上,A正确,B错误;
C.t=0时刻射入的粒子竖直方向的分位移最大,为
1
2
d;根据分位移公式,有
1
22
ym
v L
d
v
+
=⋅
由于L=d,故
ym0
v v
=
故最大动能
()
22
0ym k0
1
2
2
k
E m v v E
'=+=
C正确;
D.粒子入射速度加倍成2v0,则粒子从电场出射时间减半,穿过电场的运动时间变为电场变化半周期的整数倍,则不同时刻进入电场的侧向位移与原v0相比关系就不确定,如t=0
时刻,粒子从电场出射时的侧向位移与v0相比减半,
4
T
t=进入电场,入射速度v0时,侧向位移为0,入射速度2v0时,侧向位移为
1
8
d,D错误。
故选AC。
二、第十章静电场中的能量解答题易错题培优(难)
16.如图所示,水平面上有相距
2m
L=的两物体A和B,滑块A的质量为2m,电荷量为+q,B是质量为m的不带电的绝缘金属滑块.空间存在有水平向左的匀强电场,场强为
0.4mg
E
q
=.已知A与水平面间的动摩擦因数
1
0.1
μ=,B与水平面间的动摩擦因数2
0.4
μ=,A与B的碰撞为弹性正碰,且总电荷量始终不变(g取10m/s2).试求:
(1)A第一次与B碰前的速度
v的大小;
(2)A第二次与B碰前的速度大小;
(3)A、B停止运动时,B的总位移x.
【答案】(1)2m/s(2)
2
m/s
3
(3)2m
【解析】
【分析】
【详解】
(1)从A开始运动到与B碰撞过程,由动能定理:
2
0100
1
22
2
EqL mgL mv
μ
-⋅=⋅
解得:v0=2m/s
(2)AB碰撞过程,由动量守恒和能量守恒可得:
012
22
mv mv mv
=+
222
012
111
22
222
mv mv mv
⋅=⋅+
解得:
1
2
m/s
3
v=
2
8
m/s
3
v=(另一组解舍掉)
两物体碰撞后电量均分,均为q/2,则B的加速度:
2
2
2
1
22m/s
2
B
E q mg qE
a g
m m
μ
μ
⋅-
==-=-,
A的加速度:
1
1
1
2
20
24
A
E q mg qE
a g
m m
μ
μ
⋅-⋅
==-=
即B 做匀减速运动,A 做匀速运动;A 第二次与B 碰前的速度大小为12
m/s 3
v =; (3)B 做减速运动直到停止的位移:
221216m 23
B v x a ==
AB 第二次碰撞时:
1122222mv mv mv =+
22211222111
22222
mv mv mv ⋅=⋅+ 解得:
12112m/s 39v v == ,2212488
m/s=m/s 393
v v ==
B 再次停止时的位移2222416m 23
B v x a =
= 同理可得,第三次碰撞时,
12132322mv mv mv =+
222121323111
22222
mv mv mv ⋅=⋅+ 可得131212m/s 327v v =
=,23123488
m/s m/s 3273
v v === B 第3次停止时的位移22236
16
m 23B v x a =
= 同理推理可得,第n 次碰撞,碰撞AB 的速度分别为:
11n-112m/s 33n n v v ==(),2n 1n-1)48m/s 33
n
v v ==( B 第n 次停止时的位移:
22n 216m 23n n
B v x a ==
则A 、B 停止运动时,B 的总位移
12324622++16161616m m+m+m 33331=2(1-)m
3n
n n x x x x x =+⋅⋅⋅+=
+⋅⋅⋅+ 当n 取无穷大时, A 、B 停止运动时,B 的总位移2m x =.
17.在空间中取坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,如图所示.一电子从静止开始经电
压U 加速后,从y 轴上的A 点以平行于x 轴的方向射入第一象限区域,A 点与原点O 的距离为h .不计电子的重力.
(1)若电子恰好从N 点经过x 轴,求匀强电场的电场强度大小E 0;
(2)匀强电场的电场强度E 大小不同,电子经过x 轴时的坐标也不同.试求电子经过x 轴时的x 坐标与电场强度E 的关系.
【答案】(1)024Uh E d =(2)Uh
x E
=或22d Uh x Ed =+
【解析】 【分析】
本题考查电子在电场中的受力及运动 【详解】
设电子的电荷量为e 、质量为m ,电子经过电场加速后获得速度v 0.则
2
012
eU mv =
(1)电子从A 点运动到N 点,有
00d v t =
eE a m
=
212
h at =
联立解得电场强度大小
02
4Uh
E d =
(2)讨论两种情况: ①当2
4Uh
E d ≥
时,电子从电场内经过x 轴,有 0x v t =
eE a m
= 212
h at =
联立解得x 坐标与电场强度E 的关系为
2
Uh
x E
= ②当2
4Uh
E d <
时,电子先离开电场,之后再经过x 轴在电场内运动时间为t 1,有 01d v t =
21112
y at =
1y v at =
在电场外运动时间为t 2,电子做匀速直线运动,有
02x d v t -=
12y h y v t -=
联立解得x 坐标与电场强度E 的关系为
22d Uh x Ed
=
+
18.如图,xOy 为竖直面内的直角坐标系,y 轴正向竖直向上,空间中存在平行于xOy 所在平面的匀强电场。
质量为m 的不带电小球A 以一定的初动能从P (0,d )点沿平行x 轴方向水平抛出,并通过Q (22d ,0)点。
使A 带上电量为+q 的电荷,仍从P 点以同样的初动能沿某一方向抛出,A 通过N (2d ,0)点时的动能是初动能的0.5倍;若使A 带上电量为-q 的电荷,还从P 点以同样的初动能沿另一方向抛出,A 通过M (0,-d )点时的动能是初动能的4倍。
重力加速度为g 。
求: (1)A 不带电时,到达Q 点的动能; (2)P 、N 两点间的电势差; (3)电场强度的大小和方向。
【答案】(1)3mgd ;(2)2mg
q
,方向沿y 轴正方向。
【解析】 【详解】
(1)小球做平抛运动,故
212
d gt =
022d υt =
从P到Q,由动能定理
2
1
2
Q
k
mgd E mυ
=-
解得
3
Q
k
E mgd
=
(2)小球带电后,从P到N,由动能定理
00
0.5
PN k k
mgd qU E E
+=-
从P到M由动能定理可得
00
24
PM k k
mgd qU E E
-=-
由(1)中可知,
2
k
E mgd
=
联立以上几式可得
1
2
PN
PM
U
U
=
故O、N两点电势相等,场强方向为y轴正方向,场强大小为
2
NP
U mg
E
d q
==
19.如图所示,A为粒子源,在A和极板B间的加速电压为U1,在两水平放置的平行带电板C、D间的电压为U2,现设有质量为m,电荷量为q的质子初速度为零,从A被加速电压U1加速后水平进入竖直方向的匀强电场,平行带电板的极板的长度为L,两板间的距离为d,不计带电粒子的重力,求:
(1)带电粒子在射出B板时的速度;
(2)带电粒子在C、D极板间运动的时间;
(3)带电粒子飞出C、D电场时在竖直方向上发生的位移y.
【答案】(1)1
2qU
m
(2)
1
2
m
L
qU
(3)
2
2
1
4
U L
U d
【解析】
试题分析:(1)由动能定理得:W=qU1 =
则
(2)离子在偏转电场中运动的时间t L =
(3)设粒子在离开偏转电场时纵向偏移量为y
综合解得
考点:带电粒子在电场中的运动
【名师点睛】本题关键明确粒子的运动性质,对应直线加速过程,根据动能定理列式;对于类似平抛运动过程,根据类似平抛运动的分运动公式列式求解;不难.
20.如图所示,AB 是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数
=0.30μ,BCD 是半径为R =0.2m 的光滑圆弧轨道,它们相切于B 点,C 为圆弧轨道的最低
点,整个空间存在着竖直向上的匀强电场,场强E = 4.0×103N/C ,质量m = 0.20kg 的带电滑块从斜面顶端由静止开始滑下.已知斜面AB 对应的高度h = 0.24m ,滑块带电荷q = -5.0×10-4C ,取重力加速度g = 10m/s 2,sin37°= 0.60,cos37°=0.80.求:
(1)滑块从斜面最高点滑到斜面底端B 点时的速度大小; (2)滑块滑到圆弧轨道最低点C 时对轨道的压力. 【答案】(1) 2.4m/s (2) 12N 【解析】 【分析】
(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B 点时的速度大小; (2)滑块从B 到C 点,由动能定理可得C 点速度,由牛顿第二定律和由牛顿第三定律求解. 【详解】
(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力:
()cos370.96N f mg qE μ=+︒=
设到达斜面底端时的速度为v 1,根据动能定理得:
()211
sin 372
h mg qE h f
mv +-= 解得:
v 1=2.4m/s。