光纤通信实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤通信实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
光纤通信实验报告
课程名称光纤通信实验
实验一
光源的P-I特性、光发射机消光比测试
一、实验目的
1、了解半导体激光器LD的P-I特性、光发射机消光比。

2、掌握光源P-I特性曲线、光发射机消光比的测试方法。

二、实验器材
1、主控&信号源模块、2号、25号模块各一块
2、23号模块(光功率计)一块
3、FC/PC型光纤跳线、连接线若干
4、万用表一个
三、实验原理
数字光发射机的指标包括:半导体光源的P -I 特性曲线测试、消光比(EXT )测试和平均光功率的测试。

1、半导体光源的P-I 特性
I(mA)
LD 半导体激光器P-I 曲线示意图
半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。

在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。

激光器的电流与电压的关系类似于正向二极管的特性。

该实验就是对该线性关系进行测量,以验证P -I 的线性关系。

P -I 特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流I th 尽可能小,没有扭折点, P-I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。

2、光发射机消光比 消光比定义为:00
11
10lg
P EXT P 。

式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。

P 11是光发射机输入全“1”时输出的平均光功率。

从激光器的注入电流(I )和输出功率(P )的关系,即P-I 特性可以清楚地看出消光比的物理概念,如下图所示。

由图可知,当输入信号为“0”时,光源的输出光功率为P 00,它将由直流偏置电流I b 来确定。

无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。

所以从接收机角度考虑,希望消光比越小越好。

但是,应该指出,当I b 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其它特性产生不良影响,因此,必须全面考虑I b 的影响,一般取I b = (0.7~0.9)I th (I th 为激光器的阈值电流)。

在此范围内,能比较好地处理消光比与其它指标之间的矛盾。

考虑各种因素的影响,一般要求发送机的消光比不超过-1dB 。

在光源为LED 的条件下,一般不考虑消光比,因为它不加直流偏置电流I b ,电信号直接加到LED 上,无输入信号时的输出功率为零。

因此,只有以LD 作光源的光发射机才要求测试消光比。

四、实验步骤
1、关闭系统电源,按如下说明进行连线:
(1)用连接线将2号模块TH7(DoutD )连至25号光收发模块的TH2(数字输入),并把2号模块的拨码开关S4设置为“ON ”,使输入信号为全1电平。

(2)用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块的功能选择开关S1打到“光功率计”。

(3)用同轴电缆线将25号光收发模块P4(光探测器输出)连至23号模块P1(光探测器输入)。

ΔP
EX T
PIN
消光比对灵敏度的影响
2、将25号光收发模块开关J1拨为“10”,即无APC 控制状态。

开关S3拨为“数字”,即数字光发送。

3、将25号光收发模块的电位器W4和W2顺时针旋至底,即设置光发射机的输出光功率为最大状态;
4、开电,设置主控模块菜单,选择主菜单【光纤通信】→【光源的P-I 特性测试】功能。

5、用万用表测量R7两端的电压(测量方法:先将万用表打到直流电压档,然后将红表笔接TP3,黑表笔接TP2)。

读出万用表读数U ,代入公式I=U/R7,其中R7=33Ω, 读出光功率计读数P 。

调节功率输出W4,将测得的参数填入下表:
6、将25号光收发模块的电位器W4顺时针旋至底;设置主控模块菜单,选择【光功率计】功能。

7、将2号模块的拨码开关S4设置为“ON ”,使输入信号为全1电平。

测得此时光发端机输出的光功率为P 11。

8、将2号模块的拨码开关S4设置为“OFF ”,使输入信号为全0电平。

测得此时光发端机输出的光功率为P 00。

9、代入公式00
11
10lg P EXT P ,即得光发射机消光比。

10、调节W4,重复7~9步骤,并将所测数据填入下表。

五.实验记录及结果分析
绘制光源P-I特性曲线:
消光比:
P00(uW) 0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
P11(uW) 387.0 366.7 347.7 322.9 307.7 284.9 266.5 EXT -36.3 -36.1 -35.8 -35.4 -35.3 -35.0 -34.7
P00(uW) 0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
P11(uW) 242.3 220.1 198.6 181.4 156.7 148.4 130.7 EXT -34.3 -33.8 -33.4 -33.0 -32.4 -32.1 -31.6
P00(uW) 0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
0.090
1
P11(uW) 111.9 95.05 78.34 53.68 33.82 20.08 EXT -30.9 -30.2 -29.3 -27.7 -25.7 -23.4
实验结果及分析:
1.半导体激光器工作原理是:激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。

半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射
2.环境温度的改变对半导体激光器P-I特性的影响:随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。

3.以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统传输性能的影响是:当注入电流较小时,激活区不能实现粒子束反转,自发发射占主导地位。

,激光器发射普通的荧光。

随着注入电流的增加,激活器里实现了粒子束反转,受激辐射占主导地位。

但当注入电流小于阈值电流时,谐振腔内的增益还不足以克服如介质的吸收、镜面反射不完全等引起的谐振腔的损耗时,不能在腔内建立起振荡,激光器只发射较强荧光。

只有当注入电流大于阈值电流时才能产生功率很强的激光。

4.阈值电流随着温度的升高而增大,外微分量子效率减小,输出光功率明显下降。

5.当注入电流较小时,激活区不能实现粒子束反转,自发发射占主导地位。

激光器发射普通的荧光。

随着注入电流的增加,激活器里实现了粒子束反转,受激辐射占主导地位。

但当注入电流小于阈值电流时,谐振腔内的增益还不足以克服如介质的吸收、镜面反射不完全等引起的谐振腔的损耗时,不能在
腔内建立起振荡,激光器只发射较强荧光。

只有当注入电流大于阈值电流时才能产生功率很强的激光。

6.对于数字脉冲光发射机,消光比这个指标很重要,它定义为全“0”时平均光功率p0和全“1”时平均光功率p1之比,可用EXT表示,定义式如
EXT=10lg(p1/p0)(dB) ,消光比的不足容易引起对码元的误判等一系列问题。

在实际生产中,由于设备及环境差异的问题,消光比很难控制,只能将消光比控制在某一范围。

通过本实验,我学习了解半导体激光器发光原理和激光光源工作原理,掌握了半导体激光器P-I曲线的测试方法,同时了解数字光发射机平均输出光功率和消光比的指标要求,通过动手操作,掌握了数字光发射机平均输出光功率和消光比的测试方法,为以后的学习奠定了基础。

实验二
模拟信号光纤传输系统
一、实验目的
1、了解模拟信号(正弦波、三角波、方波等)光纤传输系统。

二、实验器材
1、主控&信号源模块、25号模块各一块
2、双踪示波器一台
3、FC型光纤跳线、连接线若干
三、实验原理
1、实验原理框图
25#模块光纤跳线
25#模块
模拟信号光纤传输系统
2、实验框图说明
主控信号源模块可输出正弦波、三角波、方波等模拟信号,信号送入光发射机的模拟输入端,经过光调制电路转换成光信号,完成电光转换;光信号经光纤跳线传输后,由接收机接收,并完成光电转换,输出原始信号。

注:由于实验设备配置模块情况不同,光收发模块的波长类型有所不同,比如1310nm 、1550nm 等,需根据实际情况确定。

四、实验步骤
1、关闭系统电源,用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块的功能选择开关S1打到“光接收机”。

2、将信号源&主控模块的模拟输出A-out 连接到25号光收发模块的模拟信号输入端TH1。

3、把25号光收发模块的S3设置为“模拟”。

4、将25号光收发模块的W5(接收灵敏度的调节旋钮,顺时针旋转时输出信号减小)逆时针旋到最大,适当调节W6(调节电平判决电路的门限电压)。

5、打开系统电源开关及各模块电源开关。

在主控模块中设置实验参数主菜单【光纤通信】→【模拟信号光纤传输系统】
6、用示波器观测模拟信号源模块的A-out,调节信号源模块的“输出幅度”旋钮,使信号为适当大小(保证输出信号最大且不失真)。

7、用示波器观测模拟信号源的A-out和25号光收发模块的TH4,适当调节W5,使得观测到的两处波形相同。

此时,25号光收发模块无失真的传输模拟信号(可以通过“主控”模块中“信号源”进入“模拟信号源”菜单选择所需波型)。

五.实验记录及结果分析
示波器显示图
正弦波
三角波
方波
实验结果及分析:
1、光纤传输系统能传输数字信号,因为光纤传输的是光能量。

像我们所说的光功率,一台光源发出光信号并有一定的功率可以支持传输到终端,光源或者说这个一定功率的光信号则是一个载体,在传输前需要将数字信号调制进去,也就是附加在光信号上面。

这时数字信号通过光纤进行传播。

当然,传至终端的时候,则需要另一个解调器,将数字信号还原成我们可识别的信息继续进行传播。

3、通过本次实验了解了模拟信号光纤系统的通信原理,了解了完整的模拟信号光纤通信系统的基本结构。

实验三
PN 序列光纤传输系统
一、实验目的
1、了解PN 序列光纤传输系统的原理。

二、实验器材
1、 主控&信号源模块、25号模块 各一块
2、 双踪示波器 一台
3、
FC 型光纤跳线、连接线 若干
三、实验原理
1、实验原理框图
25#模块光纤跳线
25#模块
PN 序列光纤传输系统实验框图
2、实验框图说明
本实验是了解和验证数字序列光纤传输系统的原理。

由主控信号源模块提供输入信号PN 序列,PN 序列经过光发射机完成电光转换,送入到光纤媒介中传输,最后通过光接收机完成光电转换以及门限判决,恢复出原始码元信号。

注:由于实验设备配置模块情况不同,光收发模块的波长类型有所不同,比如1310nm 、1550nm 等,需根据实际情况确定。

四、实验步骤
1、关闭系统电源,用光纤跳线连接25号光收发模块的光发和光收,并将25号光收发模块的功能选择开关S1打到“光接收机”。

2、将信号源&主控模块的数字信号PN15连接到25号光收发模块的数字信号输入端TH2。

3、把25号光收发模块的光发模式选择S3设置为“数字”。

4、将25号光收发模块中的光发模块的J1第一位拨“ON”(数字光调制的通状态),第二位拨“OFF”(自动光功率控制补偿电流的断状态),将W5(接收灵敏度的调节旋钮,逆时针旋转时输出信号减小)顺时针旋到最大。

5、将输出光功率旋钮W4顺时针旋转到最大。

6、打开系统电源开关及各模块电源开关。

在主控模块中设置实验参数主菜单【光纤通信】→【PN序列光纤传输系统】。

用示波器观测25号光收发模块的数字输入TH2和数字输出端TH3,比较二者码元情况,适当调节25号光收发模块W6(调节电平判决电路的门限电压)及W5,使两路波形相同。

五.实验记录及结果分析
示波器波形
实验结果及分析:
本次实验的原理就是由主控信号源模块提供输入信号PN序列,PN序列经过光发射机完成电光转换,送入到光纤媒介中传输,最后通过光接收机完成光电转换以及门限判决,恢复出原始码元信号。

第一个波形为信源输入的PN序列,第二个波形为输入信号PN序列,经过光发射机完成电光转换,送入到光纤媒介中传输,最后通过光接收机完成电光转换以及门限判决,恢复出的原始码元信号,基本实现了无失真传输。

本次实验学习了PN序列光纤传输系统的基本知识,主要学习了PN序列的特点和PN序列的产生,了解了PN是一种伪随机码,本次是采用长线性反馈移位寄存器序列作为伪随机序列。

实验四
CMI码编译码及其光纤传输系统
一、实验目的
1、了解和掌握CMI编译码原理和用途。

2、了解CMI编译码光纤传输系统的相关原理。

二、实验器材
1、主控&信号源模块、
2、8、25号模块各一块
2、双踪示波器一台
3、FC型光纤跳线、连接线若干
三、实验原理
1、实验原理框图
数据
实验原理框图
2、实验原理说明
和数字电缆通信一样,通常在数字光纤通信的传输通道中,一般不直接传输终端机输出的数字信号,而是经过码型变换电路,使之变换成为更适合传输通道的线路码型。

在数字电缆通信中, 电缆中传输的线路码型通常为三电平的“三阶高密度双极性码”,即HDB3码,它是一种传号以正负极性交替发送的码型。

在数字光纤通信中由于光源不可能发射负的光脉冲,因而不能采用HDB3码,只能采用“0”“1”二电平码。

但简单的二电平码的直流基线会随着信息流中
“0”“1”的不同的组合情况而随机起伏,而直流基线的起伏对接收端判决不利,因此需要进行线路编码以适应光纤线路传输的要求。

线路编码还有另外两个作用:一是消除随机数字码流中的长连“0”和长连“1”码,以便于接收端时钟的提取。

二是按一定规则进行编码后,也便于在运行中进行误码监测,以及在中继器上进行误码遥测。

本实验CMI编码中,码字“0”由“01”表示,码字“1”由“00”、“11”交替表示。

其变换规则如表所示:
CMI码型变换规则
CMI(Coded Mark Inversion)码是典型的字母型平衡码之一。

CMI在ITU-T G.703建议中被规定为139.264Mb/s(PDH的四次群)和155.520Mb/s(SDH 的STM-1)的物理/电气界面的码型。

CMI由于结构均匀,传输性能好,可以用游动数字和的方法监测误码,因此误码监测性能好。

由于它是一种电接口码型,因此有不少139.264Mb/s的光纤数字传输系统采用CMI码作为光线路码型。

除了上述优点外,它不需要重新变换,就可以直接用四次群复接设备送来的CMI码的电信号去调制光源器件,在接收端把再生还原的CMI码的电信号直接送给四次群复用设备,而无须电接口和线路码型变换/反变换电路。

其缺点是码速提高太大,并且传送辅助信息的性能较差。

四、实验步骤
1、关电,按表格所示进行连线。

2、用光纤跳线连接光收发模块的光发和光收,并将光收发模块的功能选择开关S1打到“光接收机”。

3、把光收发模块的S3设置为“数字”。

4、将1310nm光发模块的J1第一位拨“ON”(数字光调制的通状态),第二位拨“OFF”(APC自动光功率控制补偿电流的断状态),将25号光收发模块的W5(接收灵敏度的调节旋钮,逆时针旋转时输出信号减小)顺时针旋到最大。

5、将输出光功率旋钮W4顺时针旋转到最大。

6、开电(打开主控&信号源模块、2、8、25号各模块电源),设置主菜单【光纤通信】→【CMI编译码及光纤通信系统】。

用示波器观测信号源模块的PN15与8号模块的TH13波形,观测8号模块的TH3与8号模块的TH6波形,观测25号模块的TH2与25号模块的TH3波形,观测8号模块的TH10与8号模块的TH13波形,比较PN序列编解码过程各段前后的波形有何变化。

五.实验记录及结果分析解码前
解码后
实验结果及分析:
通过实验的显示,我们可以看到,信号基本实现了无失真传输,但是会出现延时现象。

经过CMI编码之后只是有少量延时,但是经过整个光纤线路后,延时比较明显。

通过本次实验,让我对CMI编译码原理及CMI码光纤传输系统有了初步的了解,CMI即反转码,是一种两电平不归零码,误码监测性能好。

通过实验认识了CMI的三大好处,即同步、检错、无直流分量,对CMI编码的认识有了进一步的深入了解。

同时进一步加深了对光纤通信传输系统的认识。

相关文档
最新文档