学年南京市建邺区中考数学二模试卷含参考答案及评分标.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008-2009学年南京市建邺区九年级数学二模试卷
注意事项:
1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共8小题,每小题3分,共计24分.在每小题所给出的四个选项中,
恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡相应的位置上) 1.下列数中,倒数为-2 的数是( ) A . 2- B .
21 C . 2 D . 2
1
- 2.国家体育场呈“鸟巢”结构,是2008年第29届奥林匹克运动会的主体育场,其建筑面积为258 0002
m .将258 000用科学记数法表示为( ) A .6
0.25810⨯
B .3
25810⨯
C .6
2.5810⨯
D .5
2.5810⨯
3.数据0,1-,6,1,x 的平均数为1,则这组数据的方差是( ) A .2
B .
345
C
D .
265
4.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 ( )
A
B .1
4
C
D .4
5. 平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件可以是( )
A . A
B =B
C B .AC =B
D C . AC ⊥BD D .AB ⊥BD
6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( ) 7.

A .
B .
C .
D .
A
B
列事件中,必然事件是( )
A .抛掷1个均匀的骰子,出现6点向上
B .两条直线被第三条直线所截,同位角相等
C .367人中至少有2人的生日相同
D .实数的绝对值是正数 8.在平面直角坐标系中,函数1+-=x y 与2)1(2
3
--
=x y 的图象大致是( )
二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把答案
直接填写在答题卡相应.....的.位置..
上) 9. 小华在解一元二次方程x 2-4x =0时.只得出一个根是x =4,则被他漏掉的一个根是x =____. 10.一副三角板如图所示叠放在一起,则图中α∠的度数是_________.
11.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的
顺序沿菱形的边循环运动,行走2009厘米后停下,则这只蚂蚁停在 点. 12.从-1,1,2三个数中任取一个,作为一次函数y =k x +3的k 值,则所得一次函数中y 随
x 的增大而增大的概率是 .
13.请写出一个原命题是真命题,逆命题是假命题的命题 . 14.如图,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B =120°,则∠AN M = °.
15.如图,在Rt △ABC 中,∠C =90°
,AC =1,BC =2.以边BC 所在直线为轴,把△ABC 旋
转一周,得到的几何体的侧面积是 . 16.如图,AB 是
O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的
长为 .
D .
C . B . A .
30
45 α
(第10题)
E A
(第11题)
(第14题)
17.如图所示,矩形纸片ABCD 中,E 是AD 的中点且AE =1, BE 的垂直平分线MN 恰好过
点C .则矩形的一边AB 长度为 .
18.用三个全等的直角三角形△AEF 、△BDF 和△CDE 拼成如图所示的大的正三角形,已
知大的正三角形的边长是3,则下列叙述中正确的是 .(只要填序号)
①∠A =60°; ②△DEF 是等边三角形;
③△DEF 的边长为2; ④△DEF 的面积为343

三、解答题(本大题共12小题,共计96分.请在答题卡指定区域.......
内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(8分)先化简,再求值:⎪⎭⎫
⎝⎛--÷-+x x x x x 1211
,其中x =
20.(8分)解方程:(1)2
610x x -+=;(2)4
122
x x x -
=--.
21.(8分)解不等式组20512112
3x x x ->⎧⎪
+-⎨+⎪⎩,≥,并把解集在数轴上表示出来.
22.(8分)四张大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝
下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.
(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2)求取到的两张卡片上的数字之积为奇数的概率.
(第21题)
5-4- 3-
(第18
题)
(第15题)
N
(第17题)
(第16题)
M
23.( 10分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,连接DE 、BF 、BD . (1)求证:ADE CBF △≌△.
(2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论.
24.(10分)如图,某幢大楼顶部有一块广告牌CD ,甲、乙两人分别在相距8m 的A ,B
两处测得D 点和C 点的仰角分别为45°和60°,且A ,B ,E 三点在一条直线上,若15m BE =,求这块广告牌的高度.
1.73,计算结果保留整数) 25.(10分)振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动
进行抽样调查,得到了一组学生捐款数额情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人. (1)他们一共调查了多少人?
(2)这组学生捐款数额的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款
多少元?
26.(10分)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种
蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y (亩)与补贴数额x (元)之间大致满足如图1所示的一次函数关系.随着补贴数额x 的不断增大,出口量也不断增加,但每亩蔬菜的收益z
(元)会相应降低,且z 与x 之间也大致满足如图2所示的一次函数关系.
/元
图1
x /元 (第26题)
图2
x /元
C D
E
A B 4560
C
第23题
第24题
图②
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)求政府补贴政策实施后,种植亩数y 、每亩蔬菜的收益z 分别与政府补贴数额x 之
间的函数关系式;
(3)要使全市种植这种蔬菜的总收益w (元)最大,政府应将每亩补贴数额x 定为多
少?并求出总收益w 的最大值.
27.(12分)如图①所示,在直角梯形ABCD 中,∠BAD =90°,E 是直线AB 上一点,过E
作直线l //BC ,交直线CD 于点F .将直线l 向右平移,设平移距离BE 为t (t ≥0),直角梯形ABCD 被直线l 扫过的面积(图中阴影部份)为S ,S 关于t 的函数图象如图②所示,NQ 为射线,N 点横坐标为4.
(1)梯形上底的长AB = ;
(2) 直角梯形ABCD 的面积= ; 图象理解
(3)写出图②中射线NQ 表示的实际意义; (4) 当42<<t 时,求S 关于t 的函数关系式; 问题解决
(5)当t 为何值时,直线l 将直角梯形ABCD 分成的两部分面积之比为1: 3. 28.(12分)已知:如图,△ABC 中,AB=AC =6,1
cos 3
B =
,⊙O 的半径为OB ,圆心在AB 上,且分别与边AB 、BC 相交于D 、E 两点,但⊙O 与边AC 不相交,又EF AC ⊥,垂足为F .设OB =x ,CF =y .
(1)判断直线EF 与⊙O 的位置关系,并说明理由; (2)设OB =x ,CF =y .
①求y 关于x 的函数关系式;
O
F E D
C
B
A
②当直线DF 与⊙O 相切时,求OB 的长.
2009年九年级数学模拟卷(二)
参考答案及评分标准
说明:本评分标准每题只给出了一种解法供参考,如果考生的解法与本解答不同,参照本
评分标准的精神给分.
一、选择题(每小题3分,共计24分)
9.0
10.75°
11.B
12.23
13.略 14.60
15 16.2 17.3 18.①、②、④ 三、解答题(本大题共12小题,共计96分) 19.(本题8分)
解:原式=
)12(112x
x
x x x x ---÷-+ =)1(112x x x x x ---÷-+ ············································································ 3分 =)1(112-+÷-+x x x x x =1
1
112+-⋅-+x x x x =x
1
-
. ···························································································· 6分
当x =1
x
-==. ························································· 8分 20.(本题8分)
解:(1)配方得:2
(3)8x -=. ···································································· 2分
解得13x =+23x =- ······················································· 4分 (2)原方程可化为:244x -+=, ························································ 6分
解得: 3x =. ·············································································· 7分 经检验:3x =是原方程的解. ··························································· 8分
21.(本题8分)
解:解不等式①,得2x <. ········································································· 3分 解不等式②,得1x -≥. ············································································· 6分 所以,不等式组的解集是12x -<≤. ···························································· 7分 不等式组的解集在数轴上表示如下:
······················································································· 8分 22.(本题8分)
解:(1)

则所有可能的情况如下:
(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3). ······································ 4分 (2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的, ·································································· 6分 所以,P (积为奇数)21
126
==. ·
····························································· 8分 23.(本题10分)
解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD . ∵E ,F 分别为AB ,CD 的中点,
∴AE =CF . ························································································· 3分
在AED △和CFB △中,AD CB A C AE CF =⎧⎪
∠=∠⎨⎪=⎩

∴(SAS)AED CFB △≌△ . ··································································· 5分 (2)若AD ⊥BD ,则四边形BFDE 是菱形. ······················································ 6分 证明:
AD BD ⊥,
ABD ∴△是Rt △,且AB 是斜边(或90ADB ∠=)
. ··································· 7分 E 是AB 的中点,
开始 4
1 4
1 2 4
1 2 3 1 2 3 4 第一次 第二次
1
2
DE AB BE ∴=
=. ·
············································································· 8分 由题意可知EB DF ∥且EB DF =,
∴四边形BFDE 是平行四边形,
∴四边形BFDE 是菱形. ········································································ 10分
24.(本题10分)
解:8AB =,15BE =,
23AE ∴=. ·
······················································································ 2分 在Rt ADE △中,45DAE ∠=,23DE AE ∴==. ·································· 5分 在Rt BCE △中,60CBE ∠=,31560tan =⋅=∴
BE CE . ··················· 8分
23 2.953CD CE DE ∴=-=≈≈.
∴这块广告牌的高度约为3米. ······························································· 10分
25.(本题10分)
解:(1)设捐款30元的有6x 人,则8x +6x =42.
∴ x =3.…………………………………………………………3分 ∴ 捐款人数共有:3x +4x +5x +8x +6x =78(人).……………………5分 (2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中
间位置的两个数都是25(元),故中位数为25(元).…………………7分 (3) 全校共捐款:
(9×10+12×15+15×20+24×25+18×30)×78
1560
=34200(元).……………10分 26.(本题10分)
解:(1)政府没出台补贴政策前,这种蔬菜的收益额为
30008002400000⨯=(元)
. ························································ 2分 (2)由题意可设y 与x 的函数关系为800y kx =+,
将(501200),代入上式得120050800k =+,
得8k =,
所以种植亩数与政府补贴的函数关系为8800y x =+. ·························· 4分 同理可得,每亩蔬菜的收益与政府补贴的函数关系为33000z x =-+. ···· 5分 (3)由题意(8800)(33000)u yz x x ==+-+ ············································ 7分
F 224216002400000x x =-++
224(450)7260000x =--+. ························································· 8分
所以当450x =,即政府每亩补贴450元时,全市的总收益额最大,最大值为7260000元. ·················································································· 10分
注:本卷只在第26题中,学生若出现答题时未写单位或未答分别扣除1分. 27.(本题12分)
(1)2AB = . ··················································································· 2分 (2)S 梯形ABCD =12 . ·············································································· 4分 (3)当平移距离BE 大于等于4时,直角梯形ABCD 被直线l 扫过的面积恒为12.
······························································································ 6分
(4)当42<<t 时,如下图所示,
直角梯形ABCD 被直线l 扫过的面积S =S 直角梯形ABCD -S Rt △DOF 21
12(4)2(4)84
2
t t t t =-
-⨯-=-
+-. ··········································· 8分 (5)①当20<<t 时,有
4:(124)1:3t t -=,解得34
t =
. ······················································ 10分 ②当42<<t 时,有
:3)]48(12[:)48(2
2=-+---+-t t t t 即2
8130t t -+=,解得341-=t ,
342-=t (舍去).
答:当2
3
=
t 或34-=t 时,直线l 将直角梯形ABCD 分成的两部分面积之比为1: 3. ················································································ 12分
28.(本题12分)
解:(1)直线EF 与⊙O 相切. ····································································· 1分
理由:如图①,连结OE ,则OE =OB ,OBE OEB ∠=∠.
∵AB =AC ,∴OBE C ∠=∠,∴OEB C ∠=∠,∴OE ∥AC . ······················ 2分
∵EF AC ⊥,∴EF OE ⊥.
∵点E 在⊙O 上,∴EF 是⊙O 的切线. ··················································· 4分 (2)① 如图②,作AH BC ⊥,H 为垂足,并连结OE ,那么BH =1
2
BC . ∵AB =6,1
cos 3
B =
,∴BH =2,BC =4. ······················································ 5分 ∵OE ∥AC ,∴BOE ∆∽BAC ∆.∴BE OE BC AC =,即46BE x =,∴BE =23
x

∴2
43
EC x =-. ··················································································· 7分
在Rt △E CF 中,1
cos cos 3
C B ==.
∴21cos 433
CF EC C x ⎛⎫=⋅=- ⎪⎝⎭, ∴所求函数的关系式为42
39
y x =
-.·
····················································· 8分 (2)② 如图③,连接OE ,DE ,OF ,由EF 、DF 与⊙O 相切,
∴FD=FE ,且DFO EFO ∠=∠,则OF 垂直平分DE . ························· 10分 由90DEB ∠=︒,∴BC DE ⊥,∴OF ∥BC ,则四边形OBCF 是等腰梯形. ∴OB =CF ,得
4239x x -=,解得:1211x =,即OB 12
11
=. ·
··················· 12分
A D
O
B
E
F
C
图① A
D O B
E
F C
图③
图② F
E B
O
D
A H。

相关文档
最新文档