DPS处理系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DPS
DPS ( 2-1) , DPS DPS
2-1 DPS
DPS Excel Word
DPS
( 2-1)
1
1 DPS
1
DPS ( ) DPSW.CLL 2-2
2-2 DPS
2-2 ( )
( 2-3)
2-3
2-3 ( ) ( )
2
−>
2
3
3
Windows Word Excel
4 ( ffx )
, , B4:B10 A4:A10 2 B4=sin(2*A4) B5=sin(2*A5) B6=sin(2*A6)
B4:B10 ( ) B4 B4 sin(2*A4) B4:B10
B4
3
5
2-4
2-4
DPS ( DPS ) ( )
( )
DPS ( ) DPS : 45 58+log10(45) ( loopcell() ( ):
loopcell() > 45 AND loopcell() < 58+log(45)
DPS
6
2-5
4
5
2-5
7
10%~200%
, ,
8
BMP
9.
10.
2-6
2-6
11.
( 2-7)
2-7
12.
6
13.
2-8
2-8
14
15.
DPS 16384 1024
7
16.
DPS
17
18
19.
F1 DPS
DPS
2
( ) ( ) x1 x2 x m 2-9 7 8
Ctrl
SHIFT
A B C D E F G
1 /mm / -1
2 3 4 4 4
8
9
3 x1 x2 x3 x
4 x
5 x6
4 53.9 117.4 54.1 116.0 44 569 12.9318
5 62.3 15.7 26.7 77.9 51 1348 26.4314
6 2.8 21.3 80.0 28.1 140 4275 30.535
7 7 88.3 29.3 46.3 89.3 203 2200 10.8374
8 188.0 122.3 29.3 6.0 20 990 49.5000
9 55.4 31.6 81.3 31.4 1036 12624 12.1853 10 30.3 45.0 62.7 61.1 259 2931 11.3166 11 39.3 172.3 41.4 73.9 114 1343 11.7807 12 24.0 34.7 41.1 28.9 275 1601 5.8218 13 4.5 69.9 148.2 48.1 170 1146 6.7412 14 30.3 57.9 76.6 56.6 409 2193 5.3619 15 38.6 14.3 10.8 1.0 1119 2529 2.2601 16
64.6
56.0
127.5
102.7
421
2212
5.2542
2-9
3
DPS
fx , 2-10
2-10 /
2-10
+ - * / ^ ( ) 6
2-1 ( )
2-1 DPS
sqrt(x) x ( ) sqrt(10)= 3.1623 sqr(x) x sqr(5)= 25.0000 lb(x) x 2 (x ) lb(15)= 3.9069 ln(x) x (x ) ln(15)= 2.7081 lg(x) x 10 (x ) lg(15)= 1.1761 log(x1 x2) x1 x2 (x1 x2
)
log(2 10)= 3.3219 exp(x) e x exp(3.5)= 33.1155 fact(x) x! ( ) fact(5)= 120
lgic(x) x logistic , lgic(x) =
ln(x/(1-x)) 0 1
lgic(0.31)= -0.8001 abs(x) x abs(-13.5)= 13.5000 sin(x) x( ) sin(0.5)= 0.4794 cos(x) x( ) cos(0.5)= 0.8776 arcsin(x) x ( ) arcsin(0.5)= 0.5236 norm(x) x (0 1)
x
norm(0.9)= 0.81594 prb(x) x prb(55)= 5.12566
poisson(x λ) poisson
f(x)=(e-x^λx)/x! λ
x x 2 λ 0.45
poisson (2 0.45)= 0.075439
1-poisson(3+1
0.2)=
0.99994
bin(n m p) bin(7 2 0.2)= 0.423283
probf(d1 d2 x) f d1 d2
x f
α=1-probf(d1 d2 x)
probf(4 1 0.4)= 0.189004
probt(d x) t d x t
α=1-probt(d x)
probt(4 1.5)= 0.7920
probchi(d x) d x
α=1-probchi (d x)
probchi(4 1.5)= 0.7228 hazard(x) x 0 1 hazard(15)= 1.0000
Switch(x1,x2,x
3) x1 x2 x3 switch(0,7,8)= 7.0000
4
(sum) (mean) (variance) (standard deviation) (skewness) (kurtosis)
1. (mean)
, (arithmetic mean) (geometric mean )
10
11
(median) ,
1
1n i i x x n == (1). ( )
x
n x 1 x 2 … x n x
==n i i x n x 11
1/n
(2).
n n G
n n x x x G ......21=
n x x x G n
lg lg lg lg 21+++=
(3).
Me
12
n x x n x n n n ()(21Me (Me 12221
+++==
2. (variation index)
,
(1). (adev)
,
−= =n i i x x n 11adev (2)
, }{1min }{1max i x n
i i x n i ≤≤−≤≤ (3) (VAR)
, =−−=n i i x x n 1
2)(11var (4) (SD)
SD =−−=n i i x x n 1
2)(11SD (5) (SE)
, ,
13
SE n /SD SE =
(6) (CV)
, x /SD CV = ,
3.
t F -
- γ1 γ2 γ1 0 0 0 γ2 0 0 0 γ1 γ2
33
1))((X X E X E σγ−= 3))((442−−=X X E X E σγ
x 1 x 2 … x n n skew kurt
331SD )()
2)(1(skew x x n n n
i n i −−−= = )
3)(2()1(3SD )()3)(2)(1()1(kurt 2441−−−−−−−−+= =n n n x x n n n n n i n
i x SD skew kurt γ1 γ2 skew kurt σskew σkurt
)
3)(1)(2()1(6skew ++−−=n n n n n σ )5)(3)(2)(3()1(242kurt ++−−−=n n n n n n σ
14
u skew u kurt kurt
kurt skew skew kurt skew u u == N (0,1) u
100 DPS ( 2-11)
2-11
2-11 100 2-11 skew -0.6373 u skew =-2.6404 p =0.008282 p <0.01 γ1 0 kurt -0.01049 u kurt =-0.02193 p =0.9825 p >0.05 γ2 0
4
(1).
(2).
(3).
(4).
(5).
(6).
5
DPS
1. norm(x)
2
2
()
22
(;,)
x
N
f x
µ
σ
µσ
−
−
=
x
u
µ
σ
−
= 0 1
2
2
(;0,1)
u
N
f u−
=
N (0 1)
2
2
()d
t
u
u t
−
Φ=
15
16
norm(x ) x (0,1) x
ξ n (0 1) : (1) p ( ξ<0.64); (2) p ( 1.53≤ξ); (3) p ( -2.12≤ξ<-0.25)
DPS
p (ξ<0.64)=Φ(0.64) DPS =norm(0.64)
0.738914 p (1.53≤ξ)=1−p (ξ<1.53)=1-Φ(1.53) =1-norm(1.53)
0.063008 p (-2.12≤ξ<-0.25)=Φ(-0.25)−Φ(-2.12) =norm(-0.25)−norm(-2.12) 0.38429
2. bin (n m p )
(;,)()C (1)x x n x B n f x n p P x p p ξ−===−
x =0 1 2 n ; 0<p <1 !C !()!
x n n x n x =− np np (1-p )
0(;,)(;,)x
B B y F x n p f y n p ==
bin(n ,m ,p ) n a m ( a p )
0.96 100 97
n =100 p =0.96 m =97 DPS =bin(100 97 0.96) 0.42947557 97 0.4295
3. poisson (x λ)
e (,)!x P
f x x λ
λλ−= (x =0 1 2 )
17
λ>0 λ
0(;)(;)x
P P y F x f y λλ==
poisson (x λ) x p =0.0045 100 2 2
λ=np =100×0.0045=0.45 2 2 =poisson (2,0.45) , 0.075439
4. (χ2) probchi (n x )
n x k (k =1 2 n ) 221
n
k k x χ== χ2 χ2 2122221(;)e 222n f n n χχχ−− = Γ
(0≤χ2<∞) n 120
e d 2n x n x x −∞− Γ= n 2n
2
20(;)(;)d F n f u n u χχ=
( ) α=1-22(;)(;)d F n f u n u χχ∞
=
n =20 5 DPS =probchi(20,5) 0.000277 =1-probchi(20 5) 0.999723
5. student’s t probt (n x )
t t=ξ
η
( ξ~(0,1))
η=n χ2
) t
1
(1)
22
1
(;)1
1
22
n
t
f t n
n n
,
−+
=+
(-∞<t<+∞),
n
1
11
1
22
1
B(,)(1)d
22
n
n
x x x
−−
=−
, 0(n>1)
2
n
n− (n>2) t (;)(;)d
t
F t n f u n u
−∞
=
( )
α=1-(;)(;)d
t
F t n f u n u
∞
=
n=4 t=1.5 DPS =probt (4 1.5) 0.7920 =1-probt(4 1.5) 0.2080
6. F probf (n1 n2 x)
f χ2
2
11
2
22
/
/
n
F
n
χ
χ
=,
22
12
,
χχ n1 n2 f
12112
2
2222
1221
12
1
(;1,2)()
B,
22
n n n n n
f F n n n n F n n F
n n
−+
−
=+
(0≤f<∞)
n1 n2 f
1212
(;,)(;,)d
f
P F n n f F n n F
=
( )
α=1-1212
(;,)(;,)d
f
P F n n f F n n F
∞
=
f n1 n2
18
x f α=1-probf(n1 n2 x) n1=4 n2=1 x=0.4 DPS =probf (4 1 0.4) 0.189004
6
( ) DPS
1. F
ftest(d1 d2 α)
F d1 d2 α
DPS =ftest(3 25 0.01) F 4.6755
2. Student’s t
ttest(d α)
Student’s t d α
=ttest(25 0.01) 2.7874
3. ρ=0
=rtest(d m α)
ρ=0 d m α
=rtest(20 5 0.01) 0.7116
4. (χ2) 2
χ
α
chitest(d α)
19
.d α
=chitest(25 0.01) 44.314
7
DPS Tidestone Formula One
( ) 0
2-12 2
DPS ( ) 2-12 2-13 2 3
20
21
2-13 3。