第1章 电力系统的基本概念
电力系统分析教案
第一章:电力系统基本概念1.1 电力系统简介电力系统的定义电力系统的基本组成部分电力系统的主要设备及其功能1.2 电力系统的分类交变电力系统与直流电力系统同步电力系统与异步电力系统高压电力系统与低压电力系统1.3 电力系统的运行方式电力系统的正常运行方式电力系统的不正常运行方式电力系统的稳定性和可靠性第二章:电力系统参数与电路模型2.1 电力系统参数电压、电流、功率和能量阻抗、电抗和容抗电力系统的等效电路2.2 电力系统的电路模型单相电路模型三相电路模型2.3 电力系统的相量图相量图的表示方法相量图的应用相量图的绘制与分析第三章:电力系统的稳定性与控制3.1 电力系统的稳定性电力系统稳定性的定义电力系统稳定性的判据电力系统稳定性的分析方法3.2 电力系统的控制电力系统控制的目标电力系统控制的方法电力系统控制的设备及其作用3.3 电力系统的保护与故障处理电力系统保护的作用与分类电力系统保护的方法与设备电力系统故障的类型与处理方法第四章:电力系统的优化与经济运行4.1 电力系统的优化电力系统优化的定义与目标电力系统优化的方法与算法电力系统优化的应用领域4.2 电力系统的经济运行电力系统经济运行的定义与目标电力系统经济运行的优化方法与算法电力系统经济运行的应用领域4.3 电力系统的节能与环保电力系统的节能措施与效果电力系统的环保措施与要求电力系统的可持续发展第五章:电力系统的负荷与短路分析5.1 电力系统的负荷电力系统负荷的分类与特性电力系统负荷的预测与计算电力系统负荷的分配与控制5.2 电力系统的短路分析短路故障的类型与特点短路分析的方法与步骤短路电流的计算与分析5.3 电力系统的保护与故障处理电力系统保护的作用与分类电力系统保护的方法与设备电力系统故障的类型与处理方法第六章:电力系统的传输与分配6.1 电力系统的传输输电线路的类型与特性输电线路的传输能力与损耗输电线路的优化设计与运行6.2 电力系统的分配配电线路的类型与特性配电线路的分配原则与方法配电线路的优化运行与维护6.3 电力系统的电压与无功控制电压控制的重要性与方法无功功率的概念与作用无功补偿设备的类型与配置第七章:电力系统的可靠性评估7.1 电力系统可靠性的指标与计算电力系统可靠性的基本指标电力系统可靠性的统计计算方法电力系统可靠性的评估模型7.2 电力系统的可靠性分析电力系统故障的类型与影响电力系统故障的传播与影响分析电力系统可靠性的优化提高措施7.3 电力系统的可靠性管理电力系统可靠性管理的重要性电力系统可靠性管理的方法与流程电力系统可靠性数据的收集与分析第八章:电力市场的运行与管理8.1 电力市场的概念与结构电力市场的定义与特点电力市场的结构与参与者电力市场的运作机制8.2 电力市场的运行与监管电力市场的运行规则与流程电力市场的监管机构与法规电力市场的竞争与公平性8.3 电力市场的交易与合同电力市场的交易类型与方式电力市场的合同管理与风险控制电力市场的信息技术支持第九章:电力系统的未来发展趋势9.1 电力系统的绿色与可持续发展清洁能源的发展与利用电力系统的绿色转型与减排电力系统的可持续发展战略9.2 电力系统的智能化与自动化智能电网的概念与架构电力系统的自动化控制技术电力系统的信息化与数字化转型9.3 电力系统的新技术与创新新能源技术的发展与应用电力系统的储能技术与需求响应电力系统的微电网与分布式能源第十章:电力系统的案例分析与实践10.1 电力系统的案例分析电力系统故障案例的分析与启示电力系统优化运行案例的分析与借鉴电力市场改革案例的分析与评价10.2 电力系统的实践操作电力系统的模拟与仿真电力系统的实验与测试电力系统的现场实习与操作培训10.3 电力系统的项目管理电力项目的基本流程与管理原则电力项目的风险评估与控制电力项目的质量管理与进度控制重点和难点解析一、电力系统的基本概念和分类:理解电力系统的定义、组成部分以及不同分类方式是理解后续内容的基础。
电力系统简答题
电力系统简答题第一章电力系统的基本概念1、什么是电力系统、电力网?答:把发电、变电、输电、配电和用户的整体称电力系统。
把除开发电机和用户以外的变配电和输电部分称电力网。
2、电力系统运转的特点存有哪些,对电力系统的基本建议就是什么?答:电能生产、输送、消费的特点(1)电能与国民经济各个部门之间的关系都很密切(2)电能不能大量储存(3)生产、输送、消费电能各环节所组成的统一整体不可分割(4)电能生产、输送、消费工况的改变十分迅速(5)对电能质量的要求颇为严格基本要求(1)保证可靠地持续供电(2)保证良好的电能质量(3)保证系统运行的经济性3、电力系统中将负荷分成几级,如何考量对其供电?答:三级:第一级负荷、第二级负荷和第三级负荷。
对第一级负荷要保证不间断供电;对第二级负荷,如有可能,也要保证不间断供电4、电力系统接线方式的存有水泵、并无水泵接线方式各存有几种基本形式?答:有备用接线:双回路放射式、干线式、链式以及环式和两端供电网络无备用接线:单回路放射式、干线式和链式网络。
5、为什么必须高压交流电网?与否各种电力线路都必须使用高压电网?答:高压交流输电节省电量因传播过程中发热等而引起的损耗。
远距离需要,近距离没必要。
6、电力系统为什么存有相同的电压等级?降压变压器和升压变压器的额定电压有何区别?请问:因为三相功率s和线电压u、线电流i之间的关系为s=3ui。
当输送功率一定时,输电电压愈高,电流愈小,导线等载流部分的截面积愈小,投资愈小;但电压愈高,对绝缘的要求愈高,杆塔、变压器、断路器等绝缘的投资也愈大。
7、电力线路、发电机、变压器的一次和二次绕组的额定电压是如何决定的?请问:1.挑线路始端电压为额定电压的105%;2.挑发电机的额定电压为线路额定电压的105%;3.变压器分后降压变小和升压变小考量升压:一次侧=线路额定电压(=发电机额定电压105%与发电机相连)二次两端=110%线路额定电压升压:一次两端=线路额定电压二次侧=110%(接负荷)或105%(不接负荷)线路额定电压8、电力系统中性点运行方式有几种,各适用于什么范围?请问:轻易中剧和不中剧两类。
简述电力系统的基本概念
简述电力系统的基本概念
电力系统是指由发电厂、输电系统(包括变电站、高压输电线路和变电设备)以及配电系统(包括配电变压器、低压输电线路和配电设备)组成的一个整体,用于将发电厂产生的电能输送到各个终端用户。
电力系统的基本概念包括以下几个方面:
1. 发电厂:发电厂是电力系统的起源,通过使用不同的能源(如化石燃料、水力、核能等)转化成电能。
发电厂可以分为火力发电厂、水电站、核电站等。
2. 输电系统:输电系统是连接发电厂和终端用户的一系列设施和设备。
其中包括变电站、高压输电线路和变电设备。
变电站负责将发电厂产生的电能升压至更高的电压,以减小输电损耗。
高压输电线路负责将电能远距离输送。
变电设备则用于在不同电压之间进行电能转换。
3. 配电系统:配电系统将输电系统输送的高压电能转换为适用于终端用户的低压电能。
配电系统主要由配电变压器、低压输电线路和配电设备组成。
配电变压器将高压电能降压至适用于家庭、商业和工业用电的低压。
4. 终端用户:终端用户是电力系统的最终使用者,包括家庭、商业和工业用户等。
终端用户通过接入配电系统来获得所需的电能。
电力系统的运行是通过协调发电厂的输出、输电系统的传输和配电系统的分配来实现的。
它们共同构成了一个复杂的网络,确保电能的安全、稳定和高效供应。
电力系统的发展和管理是一个重要的国家能源规划和管理领域,对经济和社会发展具有重要意义。
电力系统分析期末重点复习newer
例:
变电所运 算负荷SB
发电厂运算 功率SC
S B S LD
1 1 ST 1 S0T 1 ( j QCAB j QCBC ) 2 2
1 S C S G S P S T 2 S 0T 2 ( j QCBC ) 2
变压器T2的二次侧供 电距离较短,可不考 U2N=1.1×110=121(kV ) 虑线路上的电压损失
变压器T1的变比为:10.5/121kV
变压器T2的额定电压:U1N=110(kV) U2N=1.05×6=6.3(kV)
变压器T2的变比为:110/6.3kV
二.电力系统的负荷
1、电力负荷的分级及其对供电的要求
和三类负荷。电力系统供电的可靠性,就是要保证一级负荷在 任何情况下都不停电,二级负荷尽量不停电,三级负荷可以停 电。 2.保证良好的电能质量。
保证系统的电压、频率、波形在允许的范围内变动。
电压偏移:一般不超过用电设备额定电压的±5%。 频率偏移:一般不超过±0.2Hz。 3.为用户提供充足的电能。
SB IB 3U B
2 UB UB ZB 3I B S B
近似计算法
在实际计算中,总是希望基准电压等于(或接近于)该电压级 的额定电压。考虑到电力系统中同一电压等级的各元件额定电 压也不同,取该电压级的平均额定电压Uav。将变压器的变比 用其两侧网络的平均额定电压之比来代替,称近似计算法。 采用近似计算法后,各段的基准电压即为该段网络的Uav, 不需再计算。 必需注意:采用近似法时,各元件的额定电压一律采用该元件所 在段网络的平均额定电压代替,只有电抗器除外。
2 变压器的功率损耗
阻抗支路中的功率损耗(变动损耗)
S
电力系统概念概要
35 60 110 220 330 500 -
3.15 及 3.3 6.3 及 6.6 10.5 及 11.0
38.5 66 121 242 363 550 -
电气设备 最高电压
/kV 3.6 7.2 12
24
40.5 72.5 126 252 363 550 800
⑶ 三类负荷:指不属于第一类、第二类的其它负荷。对这类负荷中断供 电,造成的损失不大。因此,对三类负荷的供电无特殊要求。
二、电力系统负荷曲线的基本概念及其分类
❖ 电力系统负荷曲线 ❖ 分类:
按时间分类: 日负荷曲线:
日平均负荷曲线 日负荷持续曲线 三、电力系统日负荷曲线 最小负荷 最大负荷 基荷、峰荷、腰荷
1. 低于3kV系统的额定电压
低于3kV交流三相/单相电力系统额定电压和电气设备 额定电压
电力系统额 定电压/kV
发电机 额定电 压/kV
变压器额定电压/kV 一次绕组 二次绕组
0.22/0.127 0.23 0.22/0.127 0.23/0.133
0.38/0.22 0.40 0.38/0.22 0.40/0.23
电力系统 额定电压
/kV 3
6
10 20 35 60 110 220 330 500 750
发电机 额定电压
/kV 3.15
6.30
10.50 13.80 15.75 18.0 20.0 22.0 24.0
电力变压器额定电压/kV
一次绕组 二次绕组
3 及 3.15 6 及 6.30 10 及 10.5
A
B
负
荷
C
a. 电路图
电力系统分析
九、隐极机和凸极机的电压相量图(出现过,但很少)
十、隐极机的运行极限图(P-Q图)及其限制条件(出现过,但很少)
第三章 电力系统的潮流计算(手算)
一、阻抗支路和导纳支路的功率损耗计算公式 典型题目 • 1)阻抗支路流过各种功率(感性功率、容性功率、纯有功、纯无功
第二章 电力系统元件的数学模型与电力系统的数学模型
• 一、输电线路的参数及其物理意义、单位、耗能参数和蓄能参数;
典型题目:
• 1)电力线路中,电纳参数B主要反映电流流过线路产生的(
)
• A.热效应 B.电场效应
• C.磁场效应 D.电晕损耗
• 2)线路参数中那些参数单位相同;
• 3)线路参数中那些是耗能参数(消耗有功功率)?那些是储能参数
• 1、接线方式 1)无备用接线——用户只能从一个方向获得电能的接线方式,包括单
回路放射式、单回路干线式、单回路链式接线; 2)有备用接线——用户可以从两个或两个以上方向获得电能的接线方
式。包括双回路放射式、干线式、链式极限;环式接线和两端供电方式。 2、特点 1)无备用接线方式: 优点—接线简单、投资少、运行维护方便; 缺点—供电可靠性差 2)有备用接线方式: 双回路放射式: 优点:供电可靠性高、电压质量好; 缺点:投资 大、经济性差 环形接线: 优点;供电可靠性较高、较为经济; 缺点:运行调度 复杂、故障或检修切除一侧线路时,电压质量差,供电可靠性下降。
第一章 电力系统基本概念
一、基本概念(电力系统、电力网、发电厂主要类型、电 力系统分析中所说电压、功率及其表达式)
1、电力系统 由发电机、变压器、输配电线路和用电设备连接而成的用于电能 生产、变换、输送分配以及消费的系统。
电力系统的基本概念
对于环式网: 优点:供电可靠且较双回路要经济。 缺点:运行调度复杂,且故障时电压质量差。
两端供电网: 是常见的接线方式,但必须有两个及两个以
上的独立电源。
3、选择接线方式考虑的因素:
供电可靠,有良好的电能质量和经济指标, 经过各种方案的技术、经济比较,而且也要考虑 运行调度灵活和操作安全。
第一章 电力系统的基本概念
第一节 电力系统概述
一、电力系统的形成和发展: 从1831年法拉第发现了电磁感应定律,到1875 年巴黎北火车站发电厂的建立,电真正进入了实 用阶段。
Δ 第一次高压输电技术:
1882年 直流输电(法国)
德普勒(Marcel Depree)用装在米斯巴赫 煤矿的直流发电机功率约为3kw,以 1500~2000VDC沿57km电报线,把电能送至慕 尼黑国际博览会,供给一台电动机,使装饰喷泉 转动。
f=50HZ±0.2 U=UN±5% 波形:正弦波 3、保证系统运行的经济性
三、单一电力系统的联合
优点: 1、提高供电的可靠性; 2、合理地调配用电,降低联合系统的最大负荷,减 小系统发电设备的总装机容量; 3、合理地利用各类发电厂,提高运行的经济性 4、联合系统容量很大,个别负荷的波动对系统电能 质量影响很小
缺点: 需要投资,特别是系统间相距较远时。
第四节 电力系统的接线方式
一、几种典型接线方式的特点: 由地理接线图可见,复杂的接线可以简化分
解为几种典型的接线方式,大致可分成两大类: 无备用和有备用方式。
1、有备用接线方式:
包括单回放射式、干线式和链式网络。即:每 个负荷只能靠一条线路取得电能。见图1-16(a) (b)(c)(P21)
《电力系统分析》第一章 电力系统的基本概念
例1.1的附图
解:发电机G的额定电压为10.5KV。
变压器T1:低压侧额定电压为10.5KV,高压侧额定电压为242KV;
变压器T2:高压侧额定电压为220KV,中压侧额定电压为121KV ,
低压侧额定电压为38.5KV;
变压器T3:高压侧额定电压为110KV,低压侧额定电压为11KV;
变压器T4:高压侧额定电压为35KV,低压侧额定电压为6.6KV;
6
二、电力工业发展概况
1.电力系统的发展简史 2.我国的电力系统发展现状 3.我国的电力工业展望与改革
12/22/2019
电力系统分析
7
2.中国电力工业的现状
(1)发电量:1980年以来,平均年增长率9%,现为世 界第二位。
12/22/2019
电力系统分析
8
2.中国电力工业的现状
(2)装机容量:居世界第二位。
• 系统与用电设备的额定电压(表1-3) • 电力网中的电压分布。
• 额定频率:50Hz。
12/22/2019
电力系统分析
31
12/22/2019
电力系统分析
32
表 1-3 1000V 以上的额定电压
用电设备额定线电压/kV
系统的额定电压
交流发电机额定线电压/kV
变压器额定线电压/kV
一次绕组
二次绕组
34
3. 变压器 –一次侧:相当于用电设备,其额定电压与 系统(或线路)相同;与发电机直接相连时, 则与发电机相同 –二次侧:相当于电源,其额定电压应比系 统高5%,考虑变压器内部的电压损耗(5%), 实际应定为比线路高10%。
12/22/2019
电力系统分析
35
例题1.1 电力系统接线图如图1.2所示,图中标明了各级电 力线路的额定电压。试求发电机和变压器绕组的额定电压。
第一章-电力系统基本概念PPT优秀课件
➢1-1 电力系统概述 ➢1-2 电力系统的特点和运行要求 ➢1-3 电力系统的接线方式和电压等级 ➢1-4 三相电力系统的中性点运行方式
第一章 电力系统的基本概念
需
1o 电力系统的组成?
掌
2o 电力系统的特点?
握 的
3o 系统电压等级?
问
4o 各设备额定电压?
题
5o 中性点运行方式?
500kV • 目前国际上实际投运的最高电压等级750kV(加、美、
俄、巴西、南非等国) • 我国晋东南—南阳—荆门特高压交流试验示范工程,
世界上第一条投入商业化运行的1000千伏输电线路
(3)直流输电、紧凑型输电和灵活交流输电
• 直流输电在远距离输电中具有优越性,我国已有 多条±800kV输电线路。
• 电压愈来愈高、容量和规模愈来愈大的区域性、地区性、 全国性甚至跨国性的电力系统
高压?
(2)特高压(1000kV以上)输电的出现与展望
• 习惯上,1~100kV为高压, 100~1000kV为超高压, 1000kV以上为特高压。
• 20世纪60年代国际上开始特高压输电的研究 • 1985年苏联1228km的1150kV,但至今运行于500kV • 20世纪90年代日本300km的1000kV,但至今运行于
对应于一定的输送功率和输送距离应有一最合理的线 路电压。但从设备制造角度和电力工业发展,国家 标准规定标准电压等级
➢ 所谓额定电压,就是发电机、变压器和电气设 备等在正常运行时具有最大经济效益时的电压。
➢ 国家规定了标准电压等级系列,
– 有利于电器制造业的生产标准化和系列化 – 有利于设计的标准化和选型 – 有利于电器的互相连接和更换 – 有利于备件的生产和维修等
第一章 电力系统的基本概念
I CA I CB I CC I C 0 CU
中性点对地电压 U 0 0
30
图2 中性点不接地系统发生A相接地故障时的电路图和相量图
a)电路图 b)相量图
U U A U0 U A U A 0 A U U U U U 在数值上 U U 3U UB B 0 B A BA B C U C U C U 0 U C U A U CA
(2) 230kV,115kV,10.5kV , 3.15kV,37kV,6.3kV
26
电力网的额定电压、传输功率和传输距离之间的关系见表2-2
220 kV及以上:用于大型电力系统的主干线。
110kV:用于中小型电力系统的主干线。
35kV:用于大型工业企业内部电力网。 10kV:常用的高压配电电压,当6kV高压用电设备较多时, 也可考虑用6kV配电。 3kV:仅限于工业企业内部采用 。
22
(3)变压器的额定电压 ★ 一次绕组的额定电压
变压器一次绕组的额定电压等于电网的额定电压。
当升压变压器与发电机直接相连时,一次绕组的
额定电压与发电机的额定电压相同。
23
★ 二次绕组的额定电压
变压器二次绕组的额定电压一般比同级电网的额
定电压高10%。
当变压器二次侧输电距离较短,或变压器阻抗较
31
流过故障点的接地电流为: I PE ( I CB I CC )
数值上:
I PE
3I CB
UB 3 XC
3U B 3 3CU 3I C 0 XC
单相接地电流(电容电流)的经验公式: I PE
电力系统的基本概念
非再生能源
随人类的利用而越来越少,总有枯竭之时的能源 例如煤、石油、天然气、核燃料等
-7-
能源及其分类
4. 按能源本身的性质分: 含能体能源
可以直接储存的能源 例如煤、石油、天然气、核燃料、地热、氢能等
过程性能源
800MW及以上。 超超临界压力发电厂,压力26.25MPa,温度600℃ ,PN=1000MW及以
上。目前世界最大机组容量已达1300MW。
(3) 按原动机分
凝汽式汽轮机发电厂 燃气轮机发电厂 内燃机发电厂 蒸汽—燃气轮机发电厂
-16-
一、火力发电厂
(4) 按输出能源分
凝汽式电厂(200MW及以上的机组) 容量大,靠近燃料产区(坑口、矿口),燃烧劣质煤。 电能经高压或超高压线路送往负荷中心,单纯供电。
能源及其分类
2. 按被利用的程度分: 常规能源
在一定的历史时期和科学技术水平下,已经被人们广泛利用的能源 例如煤、石油、天然气、水能等
新能源
古老的能源采用先进的方法加以广泛利用,以及用新发展的技术开发的 能源
例如太阳能、风能、海洋能、地热能、生物质能、氢能、核能等
-6-
能源及其分类
3. 按能否再生分: 可再生能源
我国目前已探明的最大水电站在雅鲁藏布江的墨脱,可装机4380万KW
-36-
二、水力发电厂
优点:发电成本低; 对环境没有污染; 运行灵活方便; 可防洪、灌溉、航运等。
缺点:一次投资大; 建设周期长; 受水文气象影响; 淹没土地、移民搬迁等。
火电和水电的简单比较 火电厂投资相对少,建设工期相对短,但原料储量不如水电丰富,而
1电力系统的基本概念
1.2.2 额定电压等级
(1) 意义: 意义: 为进行设备的成批、系列化生产及设备互换, 为进行设备的成批、系列化生产及设备互换,必须规定额 定电压标准——即规定的额定电压等级 定电压标准 即规定的额定电压等级 (2) 标准额定电压的分类及适用范围: 标准额定电压的分类及适用范围: 100V以下:蓄电池、安全照明 以下: 以下 蓄电池、 500V以下:一般工、民用电气设备 以下: 以下 一般工、 1000V以上:高压电气设备 以上: 以上
第一章 电力系统的基本概念
1.2 电力系统的额定电压和额定频率
1.2.2 电气设备额定电压的配合 (4) 变压器分接头 举例——SF31500/220 ±2× 2.5% ⑧ 举例 ×
第一章 电力系统的基本概念
1.2 电力系统的额定电压和额定频率
1.2.2 电气设备额定电压的配合 (5) 网络平均额定电压 VN:500 330 220 110 35 10 6 3 0.38 Vav:525 345 230 115 37 10.5 6.3 3.15 0.4 变压器平均变比k 变压器平均变比 av:变压器两侧网络平均额定电压之比 2× 2.5%,升压型、 例: SF31500/220 ±2× 2.5%,升压型、降压型变压器一律 为: kav =230/10.5 不同电压等级的适用范围: (6) 不同电压等级的适用范围:
第一章 电力系统的基本概念
1.2 电力系统的额定电压和额定频率
1.2.2 电气设备额定电压的配合
(1)基本原则: 基本原则: 基本原则 一般允许电气设备正常运行电压为额定电压的0.95~1.05 ① 一般允许电气设备正常运行电压为额定电压的 电压偏移± % (电压偏移±5%),并尽量运行在额电压 线路电压损耗一般为10% ② 线路电压损耗一般为 (2)线路沿线电压的理想分布: 线路沿线电压的理想分布: 线路沿线电压的理想分布
电 力 系 统第1章电力系统的基本概念
离列于表1.4中,与220 kV以上电压级相适应的输送功率和输送距离则示于
图1.11。 1.3.3电力系统中性点的运行方式
电力系统的中性点是指系统中星形联结的变压器或发电机的中性点。中性点
的运行方式即指中性点的接地方式,这是与电压等级、绝缘水平、通讯干扰 、接地保护方式、系统结线等多方面相关的复杂问题。
线路、交直流输电系统、交流紧凑型输电线路等输电方式,以及提高输送能
32
力等方面的问题。
5)配电技术主要涉及电能安全技术、电能保质技术、需求预测管理技术等 方面的问题。
6)电力系统运行主要涉及稳态运行分析,暂态过程分析,安全性分析,运
行方式优化等方面的问题。 7)电力系统保护主要涉及故障分析,元件保护、线路保护、系统性故障保
柔性交流输电系统(Flexible AC Transmission System)是在1986年由美 国N.G.Hingorani创建的一种崭新的输电技术
34
图1.14 能量管理系统的功能
35
图1.15 全局能量管理系统示意图
36
FACTS技术是综合电力电子技术、微处理和微电子技术、通信技术和控制技 术而形成的用于控制交流输电的新技术。 FACTS技术包含系统应用技术及其控制器技术。 配电综合自动化(DOA)技术 配电综合自动化(Distribution Overall Automatic)技术是在传统的配电 自动化(DA)的基础上,利用计算机技术、通信技术、数字信号处理技术, 将原来单个自动化装置(量测、监视、保护、控制等)经过设备微机化、性 能软件化、信号数字化、功能集成化、通信局域网化或光缆化(甚至应用通 信卫星)等高新技术改造而成具有综合功能、性能更先进的自动监测控制技 术。
7
电力系统分析总复习
第一章 电力系统的基本概念电力系统的根本任务:向用户提供充足、可靠、优质、价格合理的电能 电力系统的组成:广义上是指由若干发电厂、变电所、负荷中心,通过电力线路连接在 一起的统一整体,用以完成电能的生产、输送、分配和使用;狭义上是指由发电机、变 压器、线路及用电设备等电气设备连接起来构成的整体 电力网:在电力系统中,实现输送、分配电能的部分,由发电厂和变电所中的变压器、 电力线路连接起来构成的整体 电力线路:是传输电能的电气设备——从功能上分为输电线路(是指发电厂向负荷中心 输送大量电力的主要干线, 以及不同地区电网间互送电力的高压联络线路) 、配电线路(是 指变电所与电力终端用户间的较低电压等级的联络线路) ;从结构上分为架空线路 (由导 线、 避雷线、绝缘子、 金具、杆塔、基础接地装置等组成) 、电缆线路 (由导线、绝缘层、 保护层组成) 负荷=电力系统中所有的用电设备所消耗的功率总和; 供电负荷 =负荷+电力网功率损耗; 发电负荷 =供电负荷 +发电厂厂用电 负荷分类:按负荷对供电可靠性要求分:一类负荷(是指中断供电将造成人身伤亡或将 在政治上、 经济上造成重大损失的负荷) 、二类负荷 (是指中断供电将在政治上、经济上 造成重大损失的负荷) 、三类负荷 负荷曲线:用来描述负荷随时间变化的规律,常采用折线法、阶梯法绘制 负荷曲线分类:A .按负荷种类分类:有功功率负荷曲线、无功功率负荷曲线B •按负荷对象分类:用电设备、车间、企事业单位、行业、县网、区域网、地区网、 省网负荷曲线 and so onC .按时间分类:日、周、月、季、年负荷曲线and so on电力系统运行的特点: a.电能不能大量储存;b •过渡过程非常短暂;c •影响因素众多;d.电能与国民经济各部门及人民生活关系密切电力系统运行的要求: a.保证供电的可靠性;b.保证良好的电能质量(频率一一50Hz 、 电压一一电压偏差,电压波动,电压闪变,三相电平衡、波形一一正弦波);c.提高电力系统运行的经济性 电力系统的电气接线方式:无备用接线方式(有单回路放射式、干线式、链式网络,常 适用于三类负荷) 、有备用接线方式(有双回路放射式、干线式、链式、环式、两端供电 网络,常适用于一类和二类负荷) 电力系统分类: 按职能分为 输电系统(其任务是将区域性发电厂的电能, 通过电力系统 中高压等级最高的一级或两级电力线路和枢纽变电所,可靠而经济地输送到负荷集中地区)、配电系统(其任务是将输电系统输入的电能分配给终端用户)国标电压等级分 3类:a.第一类为100V 以下;b.第二类为500V 以下;c.第三类为1000V 以上★电力线路、发电机、变压器的额定电压等级的确定:A •电力线路——他的额定电压 =用电设备的额定电压 =对应电力系统电压等级B .发电机一一他的额定电压 =线路额定电压*105%C •变压器:a.—次测直接与发电机相连的变压器,一次侧额定电压=发电机额定电压=线路额定电 压*105%,二次侧额定电压 =线路额定电压 *105% b.二次侧在带负荷运行时,一次侧额定电压 =线路额定电压,二次侧额定电压 =线路额12 3 4 5 67 89 10 111213 14定电压*110%(如果变压器内阻抗较小,或二次侧直接与用电设备相连,则二次侧额定电压=线路额定电压*105% )15 电力系统中性点运行方式分类:有效接地系统(大电流接地系统)——中性点直接接地、中性点经小阻抗接地;非有效接地系统(小电流接地系统)——中性点不接地、中性点经消弧线圈接地、中性点经高阻抗接地16中性点直接接地方式的特点:a.短路回路中的短路电流很大;b.中性点电位保持不变,仍为地电位;c.非故障相对地电压仍为相电压17 中性点运行方式的优缺点比较:供电可靠性——中性点不接地、中性点经消弧线圈接地系统的供电可靠性要大很多;对绝缘要求——中性点直接接地系统对绝缘水平要求较低;中性点经消弧线圈接地系统能够解决间歇性电弧对系统产生的过电压现象第二章电力系统元件参数和等效电路18 四大参数的物理意义:电阻——反映线路通过电流时产生的有功功率损耗的效应;电抗——反映载流导线周围产生的磁场效应;电导——反映带电导线绝缘介质泄漏损耗和导线周围电晕损耗的效应;电纳——反映带点导线周围的电场效应19 电力线路参数及等效电路:★一般线路:Z=R+jX Y=G+jBa. 短线路(长度不超过100Km的架空线路):R=r i l; X=x i l; G=0; B=0,采用一字型等效b. ★★★中等长度线路(长度在i00Km~300Km 之间的架空线路和i00Km 以下的电缆线路):R=r i| ;X=x i l; G=g i l=O ; B=b i l,采用n型等效或T型等效长线路(长度超过300Km的架空线路和超过iOOKm以上的电缆线路):采用n型等效20 变压器参数及等效电路:Z T=R T+jX T Y T=G T-jB T我国国标双绕组只有五种:Yyni2、Ydii、YNdii、YNyi2、Yyi2 (绕组的连接方式只有星形Y、三角形△两种)变压器分类:按绕组结构分——普通变压器(双绕组和三绕组)、自偶变压器;按绕组分布分——升压变压器、降压变压器; 按变压器的调压方式分——普通分接头变压器、有载调压变压器A . ★★★双绕组变压器参数及等效电路:通常采用r型等效的理由:额定电流时,一次侧绕组的压降只有 2.5%~5%U,且励磁电流小于一次侧3%I N,所以直接把励磁支路直接移至电源端具体参数:22R T=P s U N2/(i000S N2)2X T=U s%U N2/(i00S N)2G T=P0/(i000U N2)2 B T=I0%S N/(i00U N2)其中U N为额定线电压(U N的选择与R T有关),P s为短路损耗其中U s%为短路电压百分值其中P0 是空载损耗其中10%是空载电流百分值B •★三绕组变压器参数及等效电路:磁通:主磁通(链过三个绕组的磁通)、漏磁通(自漏磁、互漏磁)三绕组变压器分类:按川型100/50/1003个绕组容量比分——I型100/100/100、n型100/100/50、a. ^^ ★【型变压器参数:P s1=(P s1-2+P s3-1-P s2-3)/2P s2=(P s1-2+P s2-3-P s3-1)/2P s3=(P s2-3+P s3-1-P s1-2)/22 2 2 2 2 2 R T1= P s1U N2/(1000S N2) R T2= P s2U N2/(1000S N2)R T3= P s3U N2/(1000S N2)U s1%=(U s1-2%+U s3-1%-U s2-3%)/2U s2%=(U s1-2%+U s2-3%-U s3-1%)/2U s3%=(U s2-3%+U s3-1%-U s1-2%)/22 2 2X T1=U s1%U N2/(100S N) X T2=U s2%U N2/(100S N) X T3=U s3%U N2/(100S N) 2G T=P0/(1000U N2)2B T=I0%S N/(100U N ) 此处变压器的电纳为负b. n型、川型变压器参数:由于容量为100 的高、中绕组电流只为他们额定电流的一半,所以对其需要归算:P s2-3=4P s2-3P s3-1=4P s3-1 其余的计算和I型一样c. 按最大短路损耗计算:22R T(100)=P smax U N2/(2000S N2) R T(50)=2 R T(100)C.变压器n型等效参数:2 y12=1/(kZ T) y10=(k-1)/(kZ T)y20=(1-k)/(k 2Z T)21 ★★★电力系统的等效电路:A .★有名制等效电路:a •确定基本电压等级(稳态时,取最高电压等级;短路时,取短路处电压等级)b •计算实际参数c. 变比k计算k=基本级侧U NI :待归侧U N2d .★归标'2R=R(k i k2……也)X=X '(k i k2…… 心)2'2G=G /(k i k2……k n)'2B=B /(k i k2……k n)U=u'(k i k2……k n)1=1/(k i k2……k n)e.作等效电路图注意:归算前后功率不变;各级电压、电流都是归算至基本级量;变比k=基本级侧U NI : 待归侧U N2;一定要跨过,不跨不计入B .标幺制等效电路:标幺值=有名值:基准值基准值的俩限制条件:一是基准值的单位应与有名值相同;二是Z、Y、U、I、S的基准值之间要符合对应的电路关系★一般取S B=100的倍数MVA U B=基本电压等级,由此推出:22Z B=U B/S B Y B=S B/U B I B=S B/( V 3U B)其次是R*=R/Z B X*=X/Z B G*=G/Y B B*=B/Y B★ 不同基准值标幺值的换算:第一步:额定标幺值还原为有名值——X=X (N)*U N2/S N 第二步:选定基准值换算——X(B)*=X/ZB=X S B/U B2 总结:X(B)*= X (N)*U N 2S B/(S N U B2)第三章简单电力系统的潮流计算22电力系统运行要求:1电源发电量=负荷需求+损耗;2节点电压保持在额定值左右;3发电机运行在额定有功功率和无功功率上下限内;4输电线路和变压器不过负荷23潮流计算的任务:根据给定运行条件及系统接线方式来确定电力系统稳态运行状态;潮流计算的结果:评价系统运行方式和系统规划设计方案的合理性、安全可靠性、经济性的依据,是电力系统故障分析及计算的重要部分24电力网的功率损耗和电压降落A .电力线路的功率损耗和电压降落a.电力线路的功率损耗:串联阻抗的功率损耗+并联导纳的功率损耗串联阻抗的功率损耗:' 2 ' 2 ' 2 2 ' 2 ' 2 2A S Z=(S 2/U 2) Z=(P 2 +Q 2 )R/U 2 +j(P 2 +Q 2 )X/U 2' 2' 2' 2 2' 2 ' 2 2A S Z=(S 1/U1) Z=(P 1 +Q 1 )R/U i +j(P 1 +Q 1 )X/U 1并联导纳的功率损耗:*22A S YI=U I(YU i/2) =(G-jB)U i2/2~ -jBU i2/22 2A S Y2=U2(YU 2/2) =(G-jB)U 2 /2〜-jBU 2 /2b•电力线路的电压降落:是指线路始末两端的向量差dU=U i-U2,实际上是线路阻抗中的电压降落(高压电网中,线路的无功功率主要影响线路的电压损耗,有功功率主dU=(S ‘2/U2)*Z=(P 2R+Q ‘2X)/U 2+j(P 2X-Q 2R)/U 2= △U+j S UdU=(S 'i/U i)*Z=(P 'i R+Q‘i X)/U i+j(P '1X-Q 'i R)/U 1= △U+j S U'U i= U2+dU=(U2 + A U)+j S U U2=U i-dU =(U i-A U )-j S US =arctan( S U/(U 2+ A U)) S =arctan(- S U /(U 2- A U '))c. 电压质量指标与输电效率:电压损耗:是指始末两端电压有效值之差 A U%=100%(U I-U2)/U N电压偏差:是指始端或末端与线路额定电压的数值差 A U iN%=100%(U i-U N)/U N电压调整:是指线路末端空载与负载时电压的数值差 A U o%=1OO%(U 20-U 2)/U 20输电效率:是指线路末端输出有功功率与线路始端输入有功功率的比值n %=100%P2/P iB .变压器的功率损耗和电压降落:------- ►---------------------- > ------- ►a. 变压器的功率损耗:阻抗功率损耗+导纳功率损耗(变压器的阻抗支路功率损耗与负荷功率或传输功率有关,励磁导纳支路功率损耗取决于电压大小)阻抗功率损耗: △ S ZT = (S 2/U 2) Z T =(P 2+Q 2)R T /U 2+j(P 2+Q 2)X T /U 2' 2 ' 2 ' 2 2 ' 2 ' 2 2△ S ZT =(S 1/U 1) Z T =(P 1 +Q 1 )R T /U I +j(P 1 +Q 1 )X T /U I导纳功率损耗:△ S YT =U 1(Y T U 1 )*=G T U 1 2+jB T U 12b. 变压器的电压降落: dU=(S 2/U 2)*Z T =(P 2R T +Q 2X T )/U 2+j(P ‘2X T -Q ‘2R T )/U 2= △ U+j S UdU=(S ‘ 1/U 1)*Z T =(P ‘1R T +Q ‘ 1X T )/U 1+j(P ‘1X T -Q ‘ 1R T )/U F △ U+j S U ‘c. 近似计算功率损耗:(S 1~ S 1U 1^ U 2~ U NS 2~ S 2 )2222△ S zT =P s S i /(1000S N )+jU s %S N S i /(100S N ) △ S YT =P o /1OOO+jl 0%S N /100C .负荷和电源的功率:负荷功率S 4:变电所负荷侧功率 等效负荷功率S 3:从网络输入到变电所的功率 运算负荷S 3 ':为等效负荷功率+进线末端导纳功率电源功率S 1:发电厂电源侧的功率 等效电源功率S 2:为发电机高压母线向系统送出的功率 运算功率S 2 ':为等效电源功率-出线始端导纳功率25 ★简单开式网络的潮流计算:简单潮流计算的三种情况计算步骤:A. ★★★已知同端负荷功率和同端电压(已知 S 1和U 1 、 S 4和U 4):a. 求各元器件参数b. 做等效电路图c. 由给定条件求各功率分点分布和功率损耗、节点电压 B. 已知末端负荷功率和始端电压(已知S 4和U 1 ):a.假定全网电压为额定电压U N ,则U 4=U Nb •由S 4、U 4推出S i (推算功率分布,不计电压降落)c •由S i 、U 1推出U 4 (推算电压分布,计入电压降落) 26闭式网络的潮流计算: A •环式网络潮流计算步骤:(忽略电压降一一 U N 为全网电压)Z i2 Z23 Z31a. 作等效电路:U i=U i =U Nb. 求基本功率:* * * * * *S a=((Z 23 +Z31 )S2+Z 31 S3)/(Z 12 +Z23 +Z31 )* * * * * *S b=((Z 23 +Z12 )S3+Z12 S2)/(Z 12 +Z23 +Z 31 )C. 校验:S a+S b=S2+S3?d. 确定功率分点(两边流入):S3=S23+S be. 计算实际功率分布:打开功率分点,其余同开式网计算法B •两端供电网络潮流计算步骤:a. 做等值电路:各元件参数b. 求基本功率:S a=((Z 23 +Z34 )S2+Z 34 S3)/(Z 12 +Z23 +Z34 )+(U N dU )/(Z 12 +Z 23 +Z34 )S b=((Z 23 +Z12 )S3+Z12 S2)/(Z 12 +Z23 +Z 34 )-(U N dU )/(Z 12 +Z 23 +Z 34 )S c=(U N dU*)/(Z12*+Z23*+Z34*)C.校验:S a+S b=S2+S3?d. 确定功率分点:功率由两侧流入的节点e. 计算实际功率分布:打开功率分点,其余同开式网计算法第四章复杂电力系统的潮流计算27节点导纳矩阵的特点:它是一个方阵( n个节点就是n阶矩阵,不含参考节点);对称矩阵;稀疏矩阵对角线为自导纳;非对角线为互导纳(通常取地为参考点,编号0,节点电压都是各节点对地电压)28自导纳:节点导纳矩阵的对角元素Y ii,他等于在节点i加上单位电压,其他节点都接地时,经节点i向网络注入的电流;也等于在节点i加电压,其他节点都接地时,从节点i注入网络的电流同施加于节点i的电压之比;Y ii=X y j (自导纳是节点i以外的所有节点都接地时,节点i对地的总导纳,即等于与节点i相接的各支路导纳之和)29互导纳:节点导纳矩阵非对角元素Y ji,他等于在节点i加单位电压,其他节点都接地时,经节点j注入网络的电流;也等于在节点i加电压,其他节点都接地时,从节点j注入网络的电流同施加于节点i的电压之比;Y j=Y ji=-y ji =-y j (节点j的电流实际上是自网络流出并注入大地中的,所以互导纳等于节点i与j之间的支路导纳的负值30 节点导纳矩阵的形成:A .矩阵阶数= 节点数B .非对角元素中非零元素的个数=对应节点所连的不接地支路数C .对角元素就是各节点的自导纳=相应节点所连支路的导纳之和D .非对角元素=i 节点与j 节点之间支路导纳的负值E .矩阵是一个对称的,只要求下三角或上三角部分F •对于变压器支路,利用n型等效或归算法做都能求出(等效或归算后,按以上规则求)31 P-Q 分解法的迭代次数一般多于牛顿-拉夫逊法,但每次迭代所需的时间比牛顿-拉夫逊法少得多,所以其计算时间小很多第五章电力系统正常运行方式的调整与控制32 有功功率负荷的变动及调整:电力系统的总负荷(据变化规律)分三类:第一类是变化幅度很小,变化周期很短的负荷;第二类是变化幅度较大、变化周期较长的负荷;第三类是变化幅度很大、变化周期很长的负荷频率的调整分三种:频率一次调整——由于第一类负荷变化引起的频率偏移将由发电机组调速系统的调速器进行调整;频率二次调整——由于第二类负荷变化引起的频率偏移将由发电机组调速系统的调频器进行调整;频率三次调整——由于第三类负荷变化引起的频率偏移将在有功功率平衡的基础上,责成各发电设备按经济最优分配原则进行有功功率分配33 电力系统的功—频静特性:负荷的功—频静特性、发电机组的功—频静特性A .负荷的有功功率一频率静态特性:K L D=△ P LD/△ f K L D =K LD f N/P LDN其中K LD是负荷的频率调节效应系数(表征负荷的频率调节特性)f N=50HzP LD是频率等于f时系统的有功功率P LDN是频率等于工频50Hz时系统的有功功率注意:K LD负荷的频率调节效应系数不能整定,其K LD*大小取决于全系统各类负荷所占比重(1~3);他是调度部门确定按频率减负荷方案以及低频事故切负荷来恢复频率的计算依据B .发电机组的功一频静态特性:K G=-△ P G /△ f K G*=K G f N/P GN其中K G是发电机组的单位调节功率(表征电源的频率调节特性)f N=50HzS *静态调差系数:表征系统电源频率调节特性的参数之一,S *=(f0-f N)/f N则有K G=P GN/( S *f N)K G*=1/ S *注意:K G是可以整定的,在整定范围内,K G越大,S *就越小,调整结果频率偏移越小;当发电机组满载以后,受调速机构的限制,发电机组不再具有调频能力,此时K G 为0 ,S *为无穷大34频率的一次调整:负荷增量△ P LDO是由调速器作用使得发电机组有功出力增加和负荷功率随频率的下降而自动减少两方面共同调节来平衡的K G刀=E K G:△ P LDO=-(K G刀+ K LD)△ f=-K △ f 注意:式中n台发电机组均未满载一旦满载,则某台发电机的单位调节功率K G=O,参加并联的未满载机组越多,系统单位调节功率K越大,频率变化△ f越小,系统频率就越稳定各机组间的负荷分配:(按单位调节功率或调差系数自然分配)各机组承担的功率增量△P Gi=-K Gi △f=-P GN △f/(S f N)35 调节负荷节点a 处的电压可以采取以下措施:A .调节发电机励磁电流以改变发电机端电压U GB .适当选择变压器变比C •改变线路的电抗参数D .改变无功功率分布第六章电力系统的经济运行36 ★电力系统的经济运行的两大指标:煤耗率(g/kWh )——是指每生产1kWh 电能所消耗的标准煤重(29.31MJ/kg );网损率——是指电力网中损耗的电能与向电力网供应的电能的百分比37 电力网中的电能损耗:变压器绕组和输电线路导线电阻的电能损耗;变压器铁芯、电容器和电缆的绝缘介质以及电晕等的损耗★输电线路电能损耗计算:<最大负荷损耗时间法>、<等值功率法>最大负荷损耗时间T max:若线路中传送的功率一直保持最大负荷功率Smax在T max 时间内电能损耗恰好等于该线路全年的实际电能损耗(T max可由Tmax和cos $查表得出)△ A=E △ Pmaxr max38 降低网损的技术措施:1,提高用户的功率因数,减少电网输送的无功功率;2,改善闭式网络的功率分布;3,合理确定电力网的运行电压水平;4,合理组织变压器的经济运行;5对原有电网进行技术改造39 有功功率的经济分配:等耗量微增率准则——在满足一定的约束条件下,各发电厂之间合理分配系统的有功功率负荷,使整个系统燃料耗量最小刀P Gi-刀PLDi =0第七章同步发电机的基本方程40 派克变换:它是一种线性变换,是将静止的a、b、c 三相坐标系统(abc 坐标系统)表示的电磁量变换为在空间随转子一起旋转的两相直角坐标d、q 系统和静止的0 轴系统(dq0 坐标系统)41 派克矩阵:i dq0=Pi abc[ cos0cos( 0 -120 。
第 1 章 电力系统的基本概念(夏世威)
} 国家电网公司
中国南方电网有限公司
2家电网公司
中国华能集团公司 中国大唐集团公司 中国华电集团公司 中国国电集团公司
}
5家发电公司
中国电力投资集团公司
} 中国电力工程顾问集团公司
中国水电工程顾问集团公司 中国水利水电建设集团公司
4家辅业公司
中国葛洲坝集团公司
国家电力监管委员会
核聚变产生如2果至研产3究个生之新的中中新。子中,子并至放少出有射一线个。再能引起其
例如:它谓氦核链也式的发 反聚生应合裂。变,裂变就能持续进行,形成所
裂变过程中放出的裂变能就是可利用的核能。
2021/7/9
33
核电站的生产过程
反应堆是核电厂的核心,它是一个可以被控制 的裂变装置。
水在反应堆内被加热后,沸腾并蒸发成压力是 6.68×106~7.85×106Pa,温度是280℃~ 290℃的蒸汽,经过管道直接送入汽轮机做功。
东通道-------除利用现有的葛洲坝至上海直流线路输电 120万千瓦外,2002年前建成第二回东送500千伏直流 输电线路和湖北宜昌、江苏常州换流站,额定容量300 万千瓦;2008年再建成第三回送上海的直流线路,增加 容量300万千瓦。同时,在华东地区配套建设500千伏 交流输电线路850公里,变电容量850千伏安。
由排粉机抽出,随同空
结水泵加压 把原煤磨成很细的粉 助燃空气送入入口锅炉的燃烧室
14
火力发电厂
汽轮机转子转动带动发电机转子转动,在发电 机中把机械能转换成电能,发电机发出的电能 经过升压变压器送入高压电力网
蒸汽式火力发电厂中,由于做过功的蒸汽(排 气)中仍含有热量,被凝结成水时有热损失, 这种电厂效率不高,汽损失占燃煤总发热量的 42%以上。
第1章_电力系统的基本概念
第1章电力系统的基本概念今天,我们将进入电力系统基本概念的学习。
也就是教材上册的第1章。
实际上,我们每天都在与电打交道,例如各种家电产品,电车、电梯、自动扶梯等运输设备,计算机等信息设备,商务、教育器材、照明灯、空调。
在这种与电的交往中,最重要的就是与电友好相处。
要友好相处,就必须了解电在各种地方的功能和特性。
本章是一个概述的章节,我们主要对图1-1所示的内容图1-1第1章结构图首先是什么是电力系统?它由哪些部分构成?常常听到的电力网、输电系统等是什么?和电力系统是一个概念吗?之后我们将对系统中最基本的两个额定值,也就是电压和频率额定值,进行定义和说明,了解为什么要规定额定值。
电力系统的运行有其特殊的特点和规律,不能违背这点需要我们了解。
比如有人会问,为什么我们不在春天和秋天用电不紧张的时候多发一点电,存起来到夏天和冬天用呢?那学完后,你们就应该能够向身边的朋友解释了。
最后是电力系统的接线方式,简单了解一下而已,接线方式的详细介绍要到“发电厂电气”课程中介绍。
这个呢,就是我们这一章的基本内容。
下面我们进入基本概念的学习!1-1 电力系统的组成一电力系统由生产、输送、分配和消费电能的各种电气设备连接在一起而组成的整体称为电力系统。
P1 由发电厂(生产)、输电线路(输送)、配电系统(分配)及负荷(消耗电能的各种电气设备)组成。
发电厂将水力能源、火力能源以及地热、潮汐、风力和太阳能等原始能源转换成电能,电能经过变压器和不同电压的输电线路输送至配电系统,再由配电线路把电能分配给负荷(用户)。
二电力网输送和分配电能的部分称为电力网,或电力网络,包括升、降压变压器和各种电压等级的输电线路。
所以,电力网是电力系统的一个组成部分。
三动力系统电力系统中,将火电厂的汽轮机、锅炉、供热管道和热用户;水电厂的水轮机和水库等动力部分包括进来,称为动力系统。
所以,电力系统是动力系统的一个组成部分。
见图1-2。
注意:图1-2 是单相图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.电能不能大量储存
电能的产生、输送、分配和使用实际上是同时 进行的,每时每刻系统中发电机发出的电能必 须等于该时刻用户使用的电能,再加上传输这 些电能时在电网中损耗的电能。这个产销平衡 关系是电能生产的最大特点。
2.过渡过程非常迅速
电能的传输近似于光的速度,以电磁波的形式 传播,传播速度为30万km/s,“快”是它的一 个极大特点。如电能从一处输送至另一处所需 要的时间仅千分之几秒;电力系统从一种运行 状态过渡到另一种运行状态的过渡过程非常快。
变 压 器
交流电压/V 三 相 单 相 二次绕 组 — (133) 230 — —
线电压 110 — 220 — 400 — (127) 220 380 —
相电压 — — 127 220 — 115 — 230 — 460 — (133) 230 400 — — (127) 220 380 — — (133) 230 400 —
第1章 电力系统的基本概念
1.1 1.2 1.3 1.4 电力系统概述 电力系统运行的特点和要求 电力系统的接线方式和电压等级 电力系统中性点的运行方式
1.1 电力系统概述
1.1.1 1.1.2 电力系统、电力网及动力系统 我国电力系统的发展
1.1.1 电力系统、电力网及动力系统
1)火力发电厂的锅炉、汽轮机、供热网络等,如图1-1中所示。 2)水力发电厂的水库、水轮机。 3)核能发电厂的反应堆。 4)风能、太阳能等。
1.2.3 对电力系统运行的基本要求
1.保证可靠地持续供电 2.保证良好的电能质量 3.努力提高电力系统运行的经济性
1.保证可靠地持续供电
电力系统运行首先要满足可靠、不间断供电的 要求。虽然保证可靠、不间断的供电是电力系 统运行的首要任务,但并不是所有负荷都绝对 不能停电,一般可按负荷对供电可靠性的要求 将负荷分为三级,运行人员根据各种负荷的重 要程度不同,区别对待。
(1)无备用接线
图1-6 无备用接线方式 a)放射式 b)干线式 c)链式
(2)有备用接线
图1-7 有备用接线方式 a)双回路放射式 b)双回路干线式 c)双回路链式 d)环式
e)两端供电网
1.3.2 电力系统的电压等级
1.电力系统各元件的额定电压 2.变压器二次绕组栏内3.3kV、6.6kV及11kV电压适用于短路电压值在7.5% 及以上的降压变压器。 3.为证明在技术上和经济上有特殊优点时,水轮发电机的额定电压容许用 非标准电压。 2.电力网电压等级的选择
用电设备 电压/kV
110 220 330 500 750 1000
发电机线 电压/kV
— — — — — —
变压器线电压/kV
110 220 330 500 750 1000
121 242 345,363 525,550 788,825 1050,11 00
3.为证明在技术上和经济上有特殊优点时,水轮发 电机的额定电压容许用非标准电压。
年发电量 /亿kW· h
10794(1869) 13685(2431) 19080(2830) 28344(4167)
年发电量在 国际排位
2 2 2 2 2
备
注
全国电力供 需基本平衡 装机容量突 破3亿kW
装机容量突 破6亿kW 装机容量突 破8亿kW
1.2 电力系统运行的特点和要求
1.2.1 1.2.2 1.2.3 电能的优点 电力系统运行的特点 对电力系统运行的基本要求
(3)发电机的额定电压
发电机作为直接配电的电源,总是接在线路的 始端,为了补偿线路运行时产生的电压降,所 以发电机的额定电压应该比线路的额定电压高5 %(与线路始端电压相当),即为UGN=UN(1+5%)。
(4)变压器的额定电压
图1-9 电力系统各元件的额定电压
2.电力网电压等级的选择
图1-10 330~750kV电压线路的 输送容量与输送距离关系
1.不接地方式
图1-11 中性点不接地系统及单相接地 a)接线图 b)相量图
2.中性点经消弧线圈接地
2.中性点经消弧线圈接地
图1-12 中性点经消弧线圈接地 a)接线图 b)相量图
3.中性点直接接地
图1-13 中性点直接接地的三相系统
3.与国民经济各部门密切相关
现代工业、农业、国防、交通运输业等都广泛 使用着电能,此外在人民日常生活中也广泛使 用着各种电器,而且各部门的电气化程度愈来 愈高。因此,电能供应的中断或不足,不仅直 接影响各行业的生产,造成人民生活紊乱,而 且在某些情况下甚至会造成政治上的损失或极 其严重的社会性灾难。
(2)地理接线图
图1-4 电力系统的电气接线图
(2)地理接线图
图1-5 电力系统的地理接线图
2.电力系统的接线方式
1)必须保证用户供电的可靠性。 2)必须能灵活地适应各种可能的运行方式。 3)应力求节约设备和材料,减少设备费用和运行费用,使电力网的建设和 运行比较经济。 4)应保证在各种运行方式下运行人员都能够安全灵活地操作。
装机容量 /万kW
185(16) 1192(194) 10290(3019) 21722(5218)
装机容量 在国际排位
21 9 5 4
年发电量 /亿kW· h
43(7) 594(74) 4973(1000) 10069(1868)
年发电量在 国际排位
25 — — —
备
注
建国前67年 装机容量突 破1000万kW 装机容量突 破1亿kW 装机容量突 破2亿kW
输送距离/km
100~300 200~600 400~800 500以上
110
10~50
50~100
1000
1.4 电力系统中性点的运行方式
1.不接地方式 2.中性点经消弧线圈接地 3.中性点直接接地
1.不接地方式
1)故障相:C相对地电压为零,Cf=0。 2)非故障相:A相A变成Af,即 3)接地电流:Cf=-(AC+BC)=CC(本身的电容电流)。 1)未接地两相对地电压升高到相电压的倍,即等于线电压,所以在这种系 统中,相对地的绝缘水平应根据线电压来设计。 2)各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因 此可以继续运行一段时间,这便是不接地系统的最大优点,但不允许长期 带接地运行,一相接地系统允许继续运行的时间最多不得超过2h。 3)接地点通过的电流为容性电流,其大小为原来相对地电容电流的3倍。
2.电力网电压等级的选择
表1-5 电力网的额定电压与输送容量及输送距离的关系
额定电压/kV
3 6 10 35
输送容量/M W
0.1~1.0 0.1~1.2 0.2~2.0 2~10
输送距离/km
1~3 4~15 6~20 20~50
额定电压/kV
220 330 500 750
输送容量/M W
100~500 200~800 600~1500 2000~2500
1.电力系统各元件的额定电压
表1-2 第一类额定电压
直流电压/V
交流电压/V
三相(线电压) 单 — 12 — 相 — — —
1 12 24
—
48
36
—
36
—
1.电力系统各元件的额定电压
表1-3 第二类额定电压
用 电 设 备
直流电 压/V 三相交流电压/V
发 电 机
直流电 压 /V 交流三 相 线电压/ V
(1)用电设备的额定电压 (2)电力线路的额定电压 (3)发电机的额定电压 (4)变压器的额定电压
(1)用电设备的额定电压
图1-8 电压沿线路长度的分布
(2)电力线路的额定电压
电压沿线路长度的分布如图1-8所示。线路的始 端和末端均可接有用电设备,而用电设备的端 电压一般允许在额定电压的±5%以内波动。因 而在没有调压设备的情况下,可容许在线路始 末两端之间的电压损耗不大于10%。
一次绕 组 — (127) 220 380 —
1.电力系统各元件的额定电压
表1-4 第三类额定电压
用电设备 电压/kV
3 6 10 — — 35
发电机线 电压/kV
3.15 6.3 10.5 15.75 23 —
变压器线电压/kV
一次绕组 3,3.15 6,6.3 10,1 0.5 15.75 23 35 二次绕组 3.15, 3. 3 6.3, 6. 6 10.5,1 1 — — 38.5
1.1.2 我国电力系统的发展
表1-1 我国发电装机容量和发电量增长情况
年 份
1996 2000 2003 2006 2009年7月
装机容量 /万kW
23654(5558) 31932(7935) 38450 62200(12857) 82752(18200)
装机容量 在国际排位
2 2 2 2 2
1.1.1 电力系统、电力网及动力系统
图1-1 简单电力系统
1.1.1 电力系统、电力网及动力系统
1—动力部分
图1-2 复杂电力系统 2—变压器 3—负荷 4—电动机
5—低压负载
图1-3 凝汽式火力发电厂生产过程
1.1.2 我国电力系统的发展
表1-1 我国发电装机容量和发电量增长情况
年 份
1882~1949 1960 1987 1995
1.3 电力系统的接线方式和电压等级
1.3.1 1.3.2 电力系统的接线方式和接线图 电力系统的电压等级
1.3.1 电力系统的接线方式和接线图
1.电力系统的接线图 2.电力系统的接线方式
1.电力系统的接线图
(1)电气接线图 (2)地理接线图
(1)电气接线图
电力系统的电气接线图如图1-4所示。在电气接 线图上,要求突出表明电力系统各主要元件之 间(发电机、变压器、线路等)的电气连接关系。 要求接线清楚,一目了然,而不过分重视实际 的位置如何、距离的比例关系。