数学理解能力差怎么提高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学理解能力差怎么提高
数学理解能力差怎么办
对于学习数学来说,数学理解能力非常关键。
理解能力强的学生,理解数学知识
就很容易,而那些数学理解能力弱一些的学生,需要老师多遍讲解也不一定能理解透彻。
那老师该如何做才能提高数学理解能力呢?
首先来分析一下理解能力差的原因:
1. 对基础知识掌握不够灵活。
2. 缺乏独立分析理解题意的能力,不清楚题中所给条件的运用
3. 对基本的数学思想方法不能灵活运用
4. 对含参数(未知数)的题目的畏惧,逃避未知参数
我们都知道,要学好数学,提高数学成绩,需要通过大量的习题来巩固掌握的公
式定理等等。
应对方法:
1. 认真理解数学基础知识:数学基础知识是数学中最基本的要素,只有把基础的知识正确理解,才能做到思维清晰,调理明确,找到问题的突破口。
2. 学会分析理解题意:解决数学题的关键在于分析、理解题意,将其转化为所学过的知识点,分析运用。
在理解题意的同时,还要提取有用的数学信息,捕捉关键点,方便解题的时候快速找到它们。
3. 独立自主解决数学问题:数学是思维的体操,很多学生做题时心里没有底,害怕自己做错了,总喜欢看着答案解题,这对于他们的思维得不到提高。
要学会独立自
主的解决遇到的数学题,按照自己的思维逻辑,解题方法先做一遍,完成之后再对照
自己的方法和答案所提供的的方法。
4. 要善于总结归纳:完成了练习之后不能就不管了,还要从解题的方法、规律、做题策略等方便进行多角度、多方面的总结
高中数学高效学习方法
明晰概念
高中数学中的概念是比较严谨的,各个定义间都有很强的逻辑联系,逐个理解后
就应把概念记牢,高考的选择题会涉及这方面的内容,而某些解答题也会由于概念定
义所限而由繁变简,掌握好数学概念之后,有利于基础打牢,要做到“明晰”,关键
是要多查书,勤查书,不要一知半解。
刻苦练习
熟能生巧,对数学而言,也是如此。
做题能提高对题型的熟识度,对技巧的熟识度,以及计算的准确度。
而以上这些,会大大提高解题速度和准确率。
而练习,也是
要掌握方法的,习题太易,会使人生厌;习题太难,会让人胆怯。
调整状态
状态对于考生来讲,非常重要,数学考试中状态的差异,会带来成绩上巨大的波动。
一般考前一段时间,老师会发很多练习以强化训练,而实际上,状态的调整因人
而异。
有的人在数学训练之后对数学题目很厌烦,即使在考场上题目会做,往往草草收笔,过程简略,以致痛失步骤分;有的人训练得不够时,找不到做题的感觉,思维僵了,愣是解不出本在自己实力范围之内的题。
高考数学冲刺注意事项
重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占
有的比例。
例如:三视图、茎叶图、定积分、正态分布、统计案例等。
立足基础,强调通性通法,增大覆盖面。
从历年高考试题看,高考数学命题都把
重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数
学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用
技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。
突出新课程理念,关注应用,倡导“学以致用”。
新课程倡导积极主动、勇于探
索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。
加强应用
意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。
有
意训练每年高考试题中都出现的高频考点。
高考数学必考知识点
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高, 3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高考数学必考公式知识点
1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为
(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4.函数奇偶性:
(1)对于属于R上的奇函数有f(0)=0
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5.数列爆强定律:
1.等差数列中:S奇=na中,例如S 13 =13a 7
2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
4.等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q
6.数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列
通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
二阶有点麻烦,且不
常用。
所以不赘述。
希望同学们牢记上述公式。
当然这种类型的数列可以构造(两边同时加数)
7.函数详解补充:
(1)复合函数奇偶性:内偶则偶,内奇同外
(2)复合函数单调性:同增异减
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。
它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可
以用x带入原函数界定。
另外,必有唯一一条过该中心的直线与两旁相切。
8.常用数列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2记忆方法
前面减去一个1,后面加一个,再整体加一个2
9.适用于标准方程(焦点在x轴)爆强公式
k椭=-{(b?)xo}/{(a?)yo}k双={(b?)xo}/{(a?)yo}k抛=p/yo
注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10.强烈推荐一个两直线垂直或平行的必杀技
已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0
若它们垂直:(充要条件)a1a2+b1b2=0;
若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合) 注:以上两公式避免了斜率是否存在的麻烦,直接必杀!。