2019-2020数学中考第一次模拟试卷带答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020数学中考第一次模拟试卷带答案
一、选择题
1.已知反比例函数 y =
的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a
在同一平面直角坐标系中的图象可能是( )
A .
B .
C .
D .
2.将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A .23(2)3y x =++
B .23(2)3y x =-+
C .23(2)3y x =+-
D .23(2)3y x =-- 3.已知11(1)11
A x x ÷+=-+,则A =( ) A .
2
1
x x x -+ B .
2
1
x x - C .
2
1
1
x - D .x 2﹣1
4.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( )
A .
B .
C .
D .
5.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )
A 5
B 25
C 5
D .
23
6.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )
A.3.5B.3C.4D.4.5
7.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为()
A.61B.72C.73D.86
8.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()
A.6060
30
(125%)
x x
-=
+
B.
6060
30
(125%)x x
-=
+
C.60(125%)60
30
x x
⨯+
-=D.
6060(125%)
30
x x
⨯+
-=
9.下列二次根式中,与3是同类二次根式的是()
A.18B.1
3
C.24D.0.3
10.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()
A.1B.0,1C.1,2D.1,2,3
11.an30°的值为()
A.B.C.D.
12.下列各式化简后的结果为32的是()
A.6B.12C.18D.36
二、填空题
13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.
14.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例
函数y =
k
x
的图象上,则k 的值为________.
15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.
16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.
17.若a ,b 互为相反数,则22a b ab +=________.
18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.
19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)
20.10a b b --=,则1a +=__.
三、解答题
21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角
是 °;
(2)请补全条形统计图;
(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.
22.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)
按如下分数段整理、描述这两组样本数据
组别班级65.6~
70.5
70.5~
75.5
75.5~
80.5
80.5~
85.5
85.5~
90.5
90.5~
95.5
甲班224511
乙班11a b20
在表中,a=,b=.
(分析数据)
(1)两组样本数据的平均数、众数、中位数、方差如下表所示:
班级平均数众数中位数方差
甲班80x8047.6
乙班8080y26.2
在表中:x=,y=.
(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相
关知识合格的学生有人
(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.
23.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.
(1)求证:直线FG是⊙O的切线;
(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.
24.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:
男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188
女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.
根据统计数据制作了如下统计表:
个数x150≤x<170170≤x<185185≤x<190x≥190
男生5852
女生38a3
两组数据的极差、平均数、中位数、众数如表所示:
极差平均数中位数众数
男生55178b c
女生43181184186
(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;
(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?
(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.
25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所
示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.
(1)求如图所示的y与x的函数解析式:(不要求写出定义域);
(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.
【详解】
∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;
∵反比例函数y=的图象在第一、三象限,
∴ab>0,即a、b同号,
当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;
当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;
C正确.
故选C.
【点睛】
本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.
2.A
解析:A
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】
将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .
3.B
解析:B 【解析】 【分析】 由题意可知A=
111)11
x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果. 【详解】 解:A=11111x x ++-=111x
x x +-g =21
x x -
故选B. 【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
4.B
解析:B 【解析】 【分析】
若y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,可对A 、D 进行判断;若y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,则可对B 、C 进行判断. 【详解】
A 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以A 选项错误;
B 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以B 选项正确;
C 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以C 选项错误;
D 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以D 选项错误. 故选B . 【点睛】
本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).
5.A
【解析】
【分析】
在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sin B.
【详解】
在直角△ABC中,根据勾股定理可得:AB2222
52
AC BC
=+=+=
()3.
∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴sin∠ACD=sin∠
B
5 AC
AB
==.
故选A.
【点睛】
本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.B
解析:B
【解析】
【分析】
【详解】
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=30°,
∵BD平分∠ABC,
∴∠ABD=1
2
∠ABC=30°,
∴∠A=∠ABD,
∴BD=AD=6,
∵在Rt△BCD中,P点是BD的中点,
∴CP=1
2
BD=3.
故选B.
7.C
解析:C
【解析】
【分析】
设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.
【详解】
设第n个图形中有a n个点(n为正整数),
观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,
∴a n =2n +1+2+3+…+(n+1)=n 2+n+1(n 为正整数), ∴a 9=×92+×9+1=73. 故选C . 【点睛】
本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n =n 2+n+1(n 为正整数)”是解题的关键.
8.C
解析:C 【解析】
分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.
详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%
x
+万
平方米,
依题意得:6060
30
125%
x x
-=+,即()60125%6030x x
⨯+-=. 故选C .
点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
9.B
解析:B 【解析】 【分析】 【详解】
A 18323
B 1333
3 C 24=63 D 0.3310=3010
3 故选B .
10.A
解析:A 【解析】 【分析】
【详解】
由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,
解得k≤4
3

由于一元二次方程的二次项系数不为零,所以k≠0,
所以k的取值范围为k≤4
3
且k≠0,
即k的非负整数值为1,
故选A.
11.D
解析:D
【解析】
【分析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
12.C
解析:C
【解析】
A6不能化简;B123C182,故正确;D36,故错误;
故选C.
点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.
二、填空题
13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得
∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<
解析:36°或37°.
【解析】
分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设
∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.
详解:如图,过E作EG∥AB,
∵AB ∥CD ,
∴GE ∥CD ,
∴∠BAE=∠AEG ,∠DFE=∠GEF ,
∴∠AEF=∠BAE+∠DFE ,
设∠CEF=x ,则∠AEC=2x ,
∴x+2x=∠BAE+60°,
∴∠BAE=3x-60°,
又∵6°<∠BAE <15°,
∴6°<3x-60°<15°,
解得22°<x <25°,
又∵∠DFE 是△CEF 的外角,∠C 的度数为整数,
∴∠C=60°-23°=37°或∠C=60°-24°=36°,
故答案为:36°或37°.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.
14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等
解析:-6
【解析】
因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,
k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X
,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x
=⨯-⨯=菱形,解得 6.k =- 15.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000
解析:2000,
【解析】
【分析】
设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.
设这种商品的进价是x元,
由题意得,(1+40%)x×0.8=2240,
解得:x=2000,
故答案为:2000.
【点睛】
本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.
16.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-
30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300 s则可以求得此时乙与甲的距离即可求出
解析:30
【解析】
【分析】
由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相
遇的时间.
【详解】
由图象可得V甲==3m/s,V追==1m/s,
∴V乙=1+3=4m/s,
∴乙走完全程所用的时间为:=300s,
此时甲所走的路程为:(300+30)×3=990m.
此时甲乙相距:1200﹣990=210m
则最后相遇的时间为:=30s
故答案为:30
【点睛】
此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.
17.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数
解析:0
【解析】
【分析】
先提公因式得ab(a+b),而a+b=0,任何数乘以0结果都为0.
解:∵22a b ab = ab (a+b ),而a+b=0,
∴原式=0.
故答案为0,
【点睛】
本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零. 18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形
∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1
解析:30°.
【解析】
【分析】
【详解】
解:∵AB//CD ,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,
∵五边形是正五边形,∴∠EAC=108°,
∵∠ACD=42°,∴∠1=180°-42°-108°=30°
故答案为:30°.
19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a 次a 次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合 解析:2160
【解析】
【分析】
根据“甲、乙两车单独运这批货物分别用2a 次、a 次能运完”甲的效率应该为
12a ,乙的效率应该为1a ,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.
【详解】
设这批货物共有T 吨,甲车每次运t 甲吨,乙车每次运t 乙吨,
∵2a ⋅t 甲=T ,a ⋅t 乙=T ,∴t 甲:t 乙=1:2,
由题意列方程:180270180270T T t t --=甲乙
, t 乙=2t 甲,
∴180270180135
T T --=, 解得T =540. ∵甲车运180吨,丙车运540−180=360吨,
∴丙车每次运货量也是甲车的2倍,
∴甲车车主应得运费15402021605
⨯⨯= (元),
故答案为:2160.
【点睛】
考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b ﹣1|=0又∵∴a ﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要
解析:【解析】
【分析】
利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.
【详解】
∵a b -+|b ﹣1|=0,
又∵0a b -≥,|1|0b -≥,
∴a ﹣b =0且b ﹣1=0,
解得:a =b =1,
∴a +1=2.
故答案为2.
【点睛】
本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.
三、解答题
21.(1)2000,108;(2)作图见解析;(3)

【解析】
试题分析:(1)根据B 组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;
(2)根据C 组的人数,补全条形统计图;
(3)根据甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种画树状图或列
表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.
试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣
800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案
为:2000,108;
(2)条形统计图如下:
(3)画树状图得:
∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.
考点:列表法与树状图法;扇形统计图;条形统计图.
22.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.
【解析】
【分析】
由收集的数据即可得;
(1)根据众数和中位数的定义求解可得;
(2)用总人数乘以乙班样本中合格人数所占比例可得;
(3)甲、乙两班的方差判定即可.
【详解】
解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,
故a=7,b=4,
故答案为:7,4;
(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,
众数是x=85,
67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,
中位数是y=80,
故答案为:85,80;
(2)60×10
15
=40(人),
即合格的学生有40人,
故答案为:40;
(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,
∵甲班的方差>乙班的方差,
∴乙班的学生掌握垃圾分类相关知识的整体水平较好.
【点睛】
本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.
23.(1)证明见解析(2)48
【解析】
【分析】
(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;
(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】
(1)连接FO,
∵ OF=OC,
∴∠OFC=∠OCF.
∵CF平分∠ACE,
∴∠FCG=∠FCE.
∴∠OFC=∠FCG.
∵ CE是⊙O的直径,
∴∠EDG=90°,
又∵FG//ED,
∴∠FGC=180°-∠EDG=90°,
∴∠GFC+∠FCG=90°
∴∠GFC+∠OFC=90°,
即∠GFO=90°,
∴OF⊥GF,
又∵OF是⊙O半径,
∴FG与⊙O相切.
(2)延长FO,与ED交于点H,
由(1)可知∠HFG=∠FGD=∠GDH=90°,
∴四边形FGDH是矩形.
∴FH⊥ED,
∴HE=HD.
又∵四边形FGDH是矩形,FG=HD,
∴HE=FG=4.
∴ED=8.
∵在Rt△OHE中,∠OHE=90°,
∴OH=22
OE HE
-=22
54
-=3.∴FH=FO+OH=5+3=8.
S四边形FGDH=1
2
(FG+ED)•FH=
1
2
×(4+8)×8=48.
24.(1)a=6,b=179,c=188;(2)600;(3)详见解析.
【解析】
【分析】
(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.
【详解】
(1)满足185≤x<190的数据有:186,188,186,185,186,187.
∴a=6,
20名男生的跳绳成绩排序后最中间的两个数据为178和180,
∴b=(178+180)=179,
20名男生的跳绳成绩中出现次数最多的数据为188,
∴c=188,
故答案为:6;179;188;
(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,
∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=
600(人);
(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.
【点睛】
本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.25.(1)y=5x+400.(2)乙.
【解析】
试题分析:(1)利用待定系数法即可解决问题;
(2)绿化面积是1200平方米时,求出两家的费用即可判断;
试题解析:(1)设y=kx+b,则有
400
100900
b
k b
=


+=

,解得
5
400
k
b
=


=


∴y=5x+400.
(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,
∵6300<6400
∴选择乙公司的服务,每月的绿化养护费用较少.。

相关文档
最新文档