青岛版-数学-九年级上册-3.2 确定圆的条件第2课时 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 确定圆的条件第2课时
一.教学目标:
知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点.
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣.
二.教学重点:了解反证法的思考过程、特点
三. 教学难点:反证法的思考过程、特点
四.教具准备:与教材内容相关的资料.
五.教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况. 六.教学过程:
学生探究过程:综合法与分析法
(一)反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.
(二)例题讲解
例1.证明平行线的性质定理1:两条平行线被第三条直线所截,同位角相等.
已知:如下图,直线AB//CD,直线EF与AB,CD分别相交于点G,H.
求证:∠1=∠2.
证明:假设∠1≠∠2.
过点G 作直线A′B′,使∠EGB′=∠2.根据基本事实“两条直线被第三条直线所截,如果同位角相等,那么两直线平行”可得A′B′//CD.这样,过点G 就有两条直线AB 与A′B′与直线CD 平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”矛盾.
这说明∠1≠∠2的假设是不对的,所以∠1=∠2.
例2.证明:平行于同一条直线的两条直线平行.
已知:如下图,直线a//c.b//c.
求证:a//b.
证明:假设直线a,b 不平行,那么它们相交,设交点为P.
由已知a//c.b//c ,这样过点P 就有两条直线a,b 与直线c 平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”矛盾.
这说明a,b 不平行的假设是不对的,所以a//b.
(三)练习
1.设233=+b a ,求证.2≤+b a
证明:假设2>+b a ,则有b a ->2,从而
.2)1(68126,
61282233323+-=+->+-+->b b b b a b b b a
因为
22)1(62≥+-b ,所以233>+b a ,这与题设条件233=+b a 矛盾,所以,原不
等式2≤+b a 成立.
注意:当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行. 议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.试根据上述,寻找矛盾的手段、方法的特点.
2.已知,,求证:
证:设a < 0, ∵abc> 0, ∴bc< 0

, 则 ∴与题设矛盾
又:若a = 0,则与abc>0矛盾,∴必有a > 0
同理可证:b> 0, c > 0
课后作业:教材练习题
(四)教学反思:
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个.
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.。

相关文档
最新文档