九年级数学上册 23.1 平均数与加权平均数 平均数典型题素材 (新版)冀教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数典型题
例 从某校学生某次数学测验的成绩中,任抽了10名学生的成绩如下: 125, 120, 129, 107, 125, 107, 120, 125, 133, 129。
估计这次参加数学测验的学生成绩的平均分。
分析:本题是用样本的特性去估计总体的特性的正确理解,也初步考查平均数的计算。
解 利用平均数计算公式,则:
)129120125(101+++=
x 122010
1⨯= .122=
即样本平均数为122。
可以估计,这次数学测验中,参加的同学的平均分是122分。
说明:用样本的特性估计总体的特性,在实际生活中应用颇多。
用样本估计总体时,样本的容量越大,样本对总体的估计越精确,但相应地,搜集、整理、计算数据的工作量也就越大,实际生活中,要具体问题,具体分析
例 下表是某班20名学生的一次语文测验的成绩分配表:
根据上表,若成绩的平均数是72,计算x ,y 的值。
分析:本题考查学生对加权平均数中的“权”的理解。
解 由题意得:
⎩⎨⎧⨯=⨯+⨯+⨯+⨯+⨯=++++.
20722908070360250,20232y x y x
整理,得: ⎩⎨⎧=+=+.
9887,13y x y x
解之,得:.7,6==y x
答:x 、y 的值分别为6和7。
说明:当一组数据中有不少的数据重复时,可以使用加权平均数公式来计算平均数,其中尤其应注意各“权”之和等于样本的容量。
例 某班第一小组有12人,一次数学测验成绩如下:85、96、74、100、96、85、79、65、74、85、65、80,试计算这12人的数学平均数。
解法1 利用平均数的公式计算。
)809685(121+++=
x 8298412
1=⨯=(分) 解法2 建立新数据,再利用平均数简化公式计算。
取80=a ,将上面各数据同时减去80,得到一组新数据:5,16,-6,20,16,5,-1,-15,-6,5,-15,0。
)015206165(121+-++-+=
' x .22412
1=⨯= ∴ 822802=+=+'=x x (分)。
解法3 利用加权平均数公式计算。
)2652741791803852961100(121⨯+⨯+⨯+⨯+⨯+⨯+⨯=
x 8298412
1=⨯=(分)。
解法4 建立新数据,再利用加权平均公式计算。
]2)15(2)6(35216120[12
1⨯-+⨯-++⨯+⨯+⨯=' x
22412
1=⨯= ∴ 82802=+=+'=a x x (分)
说明:①平均数公式是一个计算平均数的基本公式,在一般情况下,要计算一组数据的平均数可使用这个公式。
②当数据较大,且大部分数据在某一常数左右波动,解法2可以减轻运算基,故此法比较简便,常数a 通常取接近这组数据的平均数的较“整”的数,以达到简化计算过程的目的。
常数a 的取法并不惟一。
③当一组数据中有不少数重复出现时,可用加权平均数公式来计算平均数。
在加权平均数公式中,相同数据n x 的个数n f 叫做权,这个“权”含有所占份量轻重之意,n f 越大,表明n x 的个数越多,“权”就越大。
例 车间某天生产一种工件情况如下:
100个的7人,90个的15人,80个的18人,70个的6人,60个的2人,50个的2人,试计算车间的生产平均数(精确到1.0)如果从上面的数据中,取出100个的3人,90个的5人,80个的6人,70个的2人,60个的1人,50个的1人,组成一个样本,试计算这个样本的平均数(精确到1.0)
解 将100、90、80、70、60、50分别减去80,得:20,10,0,-10,-20,-30。
∴ )2302206101801510720(50
1⨯-⨯-⨯-⨯+⨯+⨯='x .6.2=
∴ 6.826.28080=+=+'=x x (个)
)13012021060510320(17
1⨯-⨯-⨯-⨯+⨯+⨯='样本x .2.2= ∴2.82802.2=+=样本x (个)。
说明:一般地,用样本估计总体时,样本的容量越大,样本对总体的估计也就越精确。
相应地,搜集、整理数据的工作量也就越大因此样本容量的确定既要考虑问题的需要,又要考虑实现可能性与付出代价的大小。