湖南省湘潭市2016年中考数学模拟试卷(一)(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省湘潭市2016年中考数学模拟试卷(一)(解析版)
一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)
1.下列各数中最大的数是()
A.5 B.C.π D.﹣8
2.据统计,2015年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学记数法表示为()
A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×1012
3.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()
A.16° B.33° C.49° D.66°
4.不等式组的解集在数轴上表示为()
A.B.
C.D.
5.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()
A.255分B.84分C.84.5分D.86分
6.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()
A.4 B.6 C.8 D.10
7.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一
条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()
A.C.
8.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()
A.B.C.D.
二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)
9.函数y=﹣1中,自变量x的取值范围是.
10.分解因式:x3﹣xy2=.
11.现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是.
12.如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65度.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器台.
13.如图,已知AP是⊙O的切线,切点为P,AP=3,∠PAO=30°,那么线段
OA=.
14.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=度.
15.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣;因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣;
猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等
于.
16.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第6个图形有个圆.
三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)
17.计算:﹣4tan60°﹣(﹣2)0+3﹣1.
18.解方程:x2﹣3x+2=0.
19.先化简,再求值:÷﹣,其中a=.
20.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
21.2014年1月3日,长沙轨道交通3号线一期工程正式开工建设,交警队计划在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.
22.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.
(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
23.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内
温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?
24.如图,A、B是圆O上的两点,∠AOB=120°,C是的中点.
(1)求证:AB平分∠OAC;
(2)延长OA至P,使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.
25.“五一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.如图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
26.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.
(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP 面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.
2016年湖南省湘潭市中考数学模拟试卷(一)
参考答案与试题解析
一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)
1.下列各数中最大的数是()
A.5 B.C.π D.﹣8
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【解答】解:根据实数比较大小的方法,可得
﹣8,
所以各数中最大的数是5.
故选:A.
【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2.据统计,2015年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学记数法表示为()
A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×1012
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:40570亿=4.0570×1012.
故选D.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()
A.16° B.33° C.49° D.66°
【分析】由AB∥CD,∠C=33°可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE 的度数,然后由两直线平行,内错角相等,求得∠BED的度数.
【解答】解:∵AB∥CD,∠C=33°,
∴∠ABC=∠C=33°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC=66°,
∵AB∥CD,
∴∠BED=∠ABE=66°.
故选D.
【点评】此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,内错角相等.
4.不等式组的解集在数轴上表示为()
A.B.
C.D.
【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.
【解答】解:,
解不等式①得:x≥﹣5,
解不等式②得:x<2,
由大于向右画,小于向左画,有等号画实点,无等号画空心,
∴不等式的解集在数轴上表示为:
故选C.
【点评】此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.
5.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()
A.255分B.84分C.84.5分D.86分
【分析】根据题意列出算式,计算即可得到结果.
【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),
故选D
【点评】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.
6.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()
A.4 B.6 C.8 D.10
【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到
AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.
【解答】解:连结EF,AE与BF交于点O,如图,
∵AB=AF,AO平分∠BAD,
∴AO⊥BF,BO=FO=BF=3,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
而BO⊥AE,
∴AO=OE,
在Rt△AOB中,AO===4,
∴AE=2AO=8.
故选C.
【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.
7.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一
条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()
A.C.
【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.
【解答】解:半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P1秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,
∵2015÷4=503 (3)
∴A2015的坐标是(2015,﹣1),
故选:B.
【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
8.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()
A.B.C.D.
【分析】本题考查了拼摆的问题,仔细观察图形的特点作答.
【解答】解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,
所以所剪得的直角三角形较短的与较长的直角边的比是1:2.
故选A.
【点评】本题考查了剪纸的问题,难度不大,以不变应万变,透过现象把握本质,将问题转化为熟悉的知识去解决,同时考查了学生的动手和想象能力.
二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)
9.函数y=﹣1中,自变量x的取值范围是x≥0.
【分析】根据二次根式的意义,被开方数不能为负数,据此求解.
【解答】解:根据题意,得x≥0.
故答案为:x≥0.
【点评】函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
10.分解因式:x3﹣xy2=x(x+y)(x﹣y).
【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.
【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).
故答案为:x(x+y)(x﹣y).
【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.
11.现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片
所标数字不同的概率是.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字不同的情况,再利用概率公式即可求得答案.
【解答】解:画树状图得:
∵共有16种等可能的结果,两次抽出的卡片所标数字不同的有12种情况,
∴两次抽出的卡片所标数字不同的概率是:=.
故答案为:.
【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
12.如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65度.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器3台.
【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是130°,则共需安装360°÷130°≈3.
【解答】解:∵∠A=65°,
∴该圆周角所对的弧所对的圆心角是130°,
∴共需安装360°÷130°≈3.
【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.
13.如图,已知AP是⊙O的切线,切点为P,AP=3,∠PAO=30°,那么线段OA=6.
【分析】连接OP,根据切线的性质得出∠OPA=90°,解直角三角形求出OA即可.
【解答】解:连接OP,
∵AP是⊙O的切线,切点为P,
∴∠OPA=90°,
∵AP=3,∠PAO=30°,
∴OA==6,
故答案为:6.
【点评】本题考查了切线的性质和解直角三角形的应用,能熟练掌握切线的性质定理是解此题的关键,注意:圆的切线垂直于过切点的半径.
14.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=40度.
【分析】根据题中所给的关系,找到等量关系,由于共交电费56元,可列出方程求出a.【解答】解:∵0.50×100=50<56,
∴100>a,
由题意,得
0.5a+(100﹣a)×0.5×120%=56,
解得a=40.
故答案为:40.
【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.此题的关键是要知道每月用电量超过a度时,电费的计算方法为0.5×(1+20%).
15.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣;因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣;
猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于﹣.【分析】根据已知条件找出规律,根据此规律及特殊角的三角函数值求解.
【解答】解:∵当a为锐角时,有cos(180°+a)=﹣cosa,
∴cos240°=cos(180°+60°)=﹣cos60°=﹣.
【点评】阅读理解题意,寻找规律解题.
16.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第6个图形有46个圆.
【分析】由题意可知第1个图形有小圆4+2=6个;
第2个图形有小圆4+(2+4)=10个;
第3个图形有小圆4+(2+4+6)=16个;
第4个图形有小圆4+(2+4+6+8)=24个;
第5个图形有小圆4+(2+4+6+8+10)=34个;
∴第n个图形有小圆4+(2+4+6+8+…+2n)个,
故第6个图形有小圆4+(2+4+6+8+10+12)=46个.
【解答】解:第6个图形有小圆4+(2+4+6+8+10+12)=46个.
【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)
17.计算:﹣4tan60°﹣(﹣2)0+3﹣1.
【分析】原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.
【解答】解:原式=2﹣4×﹣1+=﹣2﹣.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
18.解方程:x2﹣3x+2=0.
【分析】把方程的左边利用十字相乘法因式分解为(x﹣1)(x﹣2),再利用积为0的特点求解即可.
【解答】解:∵x2﹣3x+2=0,
∴(x﹣1)(x﹣2)=0,
∴x﹣1=0或x﹣2=0,
∴x1=1,x2=2.
【点评】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0
后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.
19.先化简,再求值:÷﹣,其中a=.
【分析】先把分子分母因式分解后除法运算化为乘法运算,再约分后进行同分母的减法运算得到原式=,然后把a的值代入计算即可.
【解答】解:原式=﹣
=﹣
=,
当a=时,原式==2﹣.
【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
20.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
【分析】(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;
(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;
【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,

∴△ABG≌△AFG(HL);
(2)∵△ABG≌△AFG,
∴BG=FG,
设BG=FG=x,则GC=6﹣x,
∵E为CD的中点,
∴CE=EF=DE=3,
∴EG=3+x,
∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,
∴BG=2.
【点评】此题主要考查了勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.
21.2014年1月3日,长沙轨道交通3号线一期工程正式开工建设,交警队计划在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.
【分析】在Rt△ADB中,由∠BDA=45°,AB=3可得出DA=3,在Rt△ADC中,由特殊角的正切值即可得出线段CA的长度,再利用线段间的关系即可得出结论.
【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3,
∴DA=3.
在Rt△ADC中,∠CDA=60°,
∴tan60°=,
∴CA=DAtan60°=3,
∴BC=CA﹣BA=3﹣3(米).
答:路况显示牌BC的高度是(3﹣3)米.
【点评】本题考查了解直角三角形的应用中的俯角仰角问题,解题的关键是求出线段CA的长度.本题属于基础题,难度不大,解决该题型题目时,在直角三角形中结合特殊角的正切值找出线段间的关系是关键.
22.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.
(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
【分析】(1)首先设A种型号计算器的销售价格是x元,A种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.
【解答】解:(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y 元,由题意得:

解得:;
答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元;
(2)设购进A型计算器a台,则购进B台计算器:(70﹣a)台,
则30a+40(70﹣a)≤2500,
解得:a≥30,
答:最少需要购进A型号的计算器30台.
【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出总的进货费用是解题关键.
23.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内
温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?
【分析】(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);
(2)利用待定系数法求反比例函数解析式即可;
(3)将x=16代入函数解析式求出y的值即可.
【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.
(2)∵点B(12,18)在双曲线y=上,
∴18=,
∴解得:k=216.
(3)当x=16时,y==13.5,
所以当x=16时,大棚内的温度约为13.5℃.
【点评】此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.
24.如图,A、B是圆O上的两点,∠AOB=120°,C是的中点.
(1)求证:AB平分∠OAC;
(2)延长OA至P,使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.
【分析】(1)求出等边三角形AOC和等边△OBC,推出OA=OB=BC=AC,即可得出答案;(2)求出AC=OA=AP,求出∠PCO=90°,∠P=30°,即可求出答案.
【解答】(1)证明:连接OC,
∵∠AOB=120°,C是AB弧的中点,
∴∠AOC=∠BOC=60°,
∵OA=OC,
∴△ACO是等边三角形,
∴OA=AC,同理OB=BC,
∴OA=AC=BC=OB,
∴四边形AOBC是菱形,
∴AB平分∠OAC;
(2)解:连接OC,
∵△OAC是等边三角形,OA=AC,
∴AP=AC,
∴∠APC=30°,
∴△OPC是直角三角形,
∴.
【点评】本题考查了圆心角、弧、弦之间的关系,勾股定理,等边三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.
25.“五一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.如图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
【分析】(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;
(2)根据概率公式直接求解即可求得答案;
(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.
【解答】解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,
解得x=10.
即D地车票有10张.
补全统计图如图所示.
(2)小胡抽到去A地的概率为=.
(3)不公平.
以列表法说明:
小李掷得数字
小王掷得数字 1 2 3 4
1 (1,1)(1,2)(1,3)(1,4)
2 (2,1)(2,2)(2,3)(2,4)
3 (3,1)(3,2)(3,3)(3,4)
4 (4,1)(4,2)(4,3)(4,4)
或者画树状图法说明(如图)
由此可知,共有16种等可能结果.
其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
∴小王掷得数字比小李掷得数字小的概率为:=.
则小王掷得数字不小于小李掷得数字的概率为1﹣=.
∴这个规则对双方不公平.
【点评】本题考查的是游戏公平性的判断与与条形统计图的知识.注意判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
26.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.
(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP
面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.
【分析】方法一:
(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;
(2)如答图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;
(3)“存在唯一一点Q,使得∠OQC=90°”的含义是,以OC为直径的圆与直线AB相切于点Q,由圆周角定理可知,此时∠OQC=90°且点Q为唯一.以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一点是考虑直线AB是否与抛物线交于C 点,此时亦存在唯一一点Q,使得∠OQC=90°.
方法二:
(1)联立直线与抛物线方程求出点A,B坐标.
(2)利用面积公式求出P点坐标.
(3)列出定点O坐标,用参数表示C,Q点坐标,利用黄金法则二求出k的值.
【解答】方法一:
解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.
联立两个解析式,得:x2﹣1=x+1,
解得:x=﹣1或x=2,
当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,
∴A(﹣1,0),B(2,3).
(2)设P(x,x2﹣1).
如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).
∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.
S△ABP=S△PFA+S△PFB=PF(x F﹣x A)+PF(x B﹣x F)=PF(x B﹣x A)=PF
∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+
当x=时,y P=x2﹣1=﹣.
∴△ABP面积最大值为,此时点P坐标为(,﹣).。

相关文档
最新文档