高中物理万有引力与航天解题技巧及练习题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理万有引力与航天解题技巧及练习题及解析
一、高中物理精讲专题测试万有引力与航天
1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .
(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;
(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.
【答案】(1)2π=T ω;(2)2
3124GMT h R π
(3)h 1= h 2 【解析】 【分析】
(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】
(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T
ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2
1
212π=()()()Mm G
m R h R h T
++ 解得:2
312
=4π
GMT
h R
(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2
2
222=()()()Mm G
m R h R h T
π++ 解得:2
322
=4GMT
h R π
- 因此h 1= h 2.
故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π
- (3)h 1= h 2 【点睛】
对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.
2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;
(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)
(3)
【解析】 【详解】
(1)设宇宙飞船的质量为m ,根据万有引力定律
求出行星质量 (2)在行星表面
求出:
(3)在行星表面
求出:
【点睛】
本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.
3.如图所示是一种测量重力加速度g 的装置。

在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:
(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。

【答案】(1)22h
g t
= (2)222hR Gt (3)2hR t
【解析】(1)由竖直上抛运动规律得:t 上=t 下=t
由自由落体运动规律: 212
h gt = 22h g t
=
(2)在地表附近: 2Mm
G
mg R
= 22
2
2gR hR M G Gt
== (3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R
=
12GM
hR
v R =
= 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。

4.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于
地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;
(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .
【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】
(1) 物体放在北极的地表,根据万有引力等于重力可得:2Mm
G mg R = 物体相对地心是静止的则有:1F mg =,因此有:12Mm F G
R
= (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:
2
2
224Mm G
F m
R R
T
π-=
解得: 2
2224Mm F G m R R T
π=-
(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T
以卫星为研究对象,根据牛顿第二定律:2
2
24()()
Mm G
m
R h R h T
π=++
解得卫星距地面的高度为:h R =
5.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;
(2)地球同步卫星的线速度大小.
【答案】(1) G
gR M 2
= (2)v = 【解析】 【详解】
(1)两极的物体受到的重力等于万有引力,则
2
GMm
mg R = 解得
G
gR M 2
=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则
()
2
2
77GMm
v m R
R =
而2
GM gR =,解得
7
gR
v =
.
6.地球同步卫星,在通讯、导航等方面起到重要作用。

已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;
(2)同步卫星距离地面的高度h 。

【答案】(1) (2)
【解析】 【详解】
(1)地球表面的物体受到的重力等于万有引力,即:mg=G
解得地球质量为:M=

(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有
引力提供向心力,由牛顿第二定律得:
解得:;
【点睛】
本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.
7.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。

求: (1)月球的密度; (2)月球的第一宇宙速度。

【答案】(1)0
32v RGt ρπ=
(2)02v R
v t
=
【解析】 【详解】
(1)根据竖直上抛运动的特点可知:01
02
v gt -= 所以:g=
2v t
设月球的半径为R,月球的质量为M,则:2
GMm
mg R
= 体积与质量的关系:34
·3
M V R ρπρ== 联立得:0
32v RGt
ρπ=
(2)由万有引力提供向心力得
2
2
GMm v m R R
=
解得;v =
综上所述本题答案是:(1)0
32v RGt ρπ=(2)v =
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于v =。

8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .
(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;
b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12
p m m E G
r
=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径
R 最大不能超过多少?
【答案】(1)3M 0c 2
(2)23
02
4r M GT
π=;22GM R c '= 【解析】 【分析】 【详解】
(1)合并后的质量亏损
000(2639)623m M M M ∆=+-=
根据爱因斯坦质能方程
2E mc ∆=∆
得合并所释放的能量
203E M c ∆=
(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律
2
0202Mm G m r r T π⎛⎫= ⎪⎝⎭
解得
23
02
4r M GT π=
b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律
2102Mm mv G R ⎛⎫+-= ⎪⎝
⎭ 解得
22GM R v '
=
因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过
2
2GM R c '
=
9.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。

(1)求火星表面的重力加速度和火星的质量;
(2)如果在火星上发射一颗贴近它表面运行的卫星,求该卫星做匀速圆周运动的线速度和周期。

【答案】(1)g =kx m ,M =2
kxR Gm
; (2)v
2
【解析】 【详解】
(1)物体静止时由平衡条件有: mg =kx ,所以火星表明的重力加速度g =
kx
m
;在火星表面重力由万有引力产生:mg =G 2mM R ,解得火星的质量M =2
kxR Gm。

(2)重力提供近地卫星做圆周运动的向心力:mg =m 2
v R
,解得卫星的线速度v
近地卫星的周期T =
2R v π=2
10.2018年12月08日凌晨2时23分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射嫦娥四号探测器,开启了月球探测的新旅程。

嫦娥四号探测器后续将经历地月转移、近月制动、环月飞行,最终实现人类首次月球背面软着陆。

设环月飞行阶段嫦娥四号探测器在靠近月球表面的轨道上做匀速圆周运动,经过t 秒运动了N 圈,已知该月球的半径为R ,引力常量为G ,求: (1)探测器在此轨道上运动的周期T ; (2)月球的质量M ;
(3)月球表面的重力加速度g 。

【答案】(1)t T N = (2)22324N R M Gt π= (3)222
4N R
g t π=
【解析】 【详解】
(1)探测器在轨道上运动的周期t
T N
=
; (2)根据2
224mM G m R R T
π=得,
行星的质量223
2
4N R M Gt
π=; (3)根据万有引力等于重力得,2mM
G
mg R
=, 解得222
4N R
g t
π=。

相关文档
最新文档