第十章 静电场中的能量精选试卷测试题(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 静电场中的能量精选试卷测试题(Word 版 含解析)
一、第十章 静电场中的能量选择题易错题培优(难)
1.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处的电势为φ=k q r
(q 的正负对应φ的正负)。
假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )
A .若左右两部分的表面积相等,有12E E >,12ϕϕ>
B .若左右两部分的表面积相等,有12E E <,12ϕϕ<
C .不论左右两部分的表面积是否相等,总有12E E >,34E E =
D .只有左右两部分的表面积相等,才有12
E E >,34E E =
【答案】C
【解析】
【详解】
A 、设想将右侧半球补充完整,右侧半球在M 点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M 点的电场强度方向向左,根据对称性和矢量叠加原则可知,E 1方向水平向左,E 2方向水平向右,左侧部分在M 点产生的场强比右侧电荷在M 点产生的场强大,E 1>E 2,根据几何关系可知,分割后的右侧部分各点到M 点的距离均大于左侧部分各点到M 点的距离,根据k
q r
ϕ=,且球面带负电,q 为负,得:φ1<φ2,故AB 错误;
C 、E 1>E 2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M 、N 点的电场强度大小都相等,故左半球壳在M 、N 点的电场强度大小相等,方向相同,故C 正确,
D 错误。
2.如图所示,匀强电场中有一个以O 为圆心、半径为R 的圆,电场方向与圆所在平面平行,圆上有三点A 、B 、C ,其中A 与C 的连线为直径,∠A =30°。
有两个完全相同的带正电粒子,带电量均为q (q >0),以相同的初动能E k 从A 点先后沿不同方向抛出,它们分别运动到B 、C 两点。
若粒子运动到B 、C 两点时的动能分别为E kB =2E k 、E kC =3E k ,不计粒
子的重力和粒子间的相互作用,则匀强电场的场强大小为
A .k E qR
B .2k E qR
C .3 3k E qR
D .23 3k
E qR
【答案】D
【解析】
【分析】
【详解】
从A 点到B 点应用动能定理有:2-AB k k k qU E E E ==
从A 点到C 点应用动能定理有:32-AC k k k qU E E E ==
所以2AC AB U U =
做出等势面和电场线如图所示:
则从A 点到B 点应用动能定理有:,32k k R qEd qE AD E qE
E ===即 解得23 k E E =。
选项D 正确,A 、B 、C 错误。
3.空间某一静电场的电势φ在x 轴上的分布如图所示,图中曲线关于纵轴对称。
在x 轴上取a 、b 两点,下列说法正确的是( )
A .a 、b 两点的电场强度在x 轴上的分量都沿x 轴正向
B .a 、b 两点的电场强度在x 轴上的分量都沿x 轴负向
C .a 、b 两点的电场强度在x 轴上的分量大小E a <E b
D .一正电荷沿x 轴从a 点移到b 点过程中,电场力先做正功后做负功
【答案】C
【解析】
【详解】
A B .因为在O 点处电势最大,沿着x 轴正负方向逐渐减小,电势顺着电场强度的方向减小,所以a 、b 两点的电场强度在x 轴上的分量方向相反。
C .在a 点和b 点附近分别取很小的一段d ,由图像可知b 点段对应的电势差大于a 点段对应的电势差,看作匀强电场Δ=ΔE d
ϕ,可知E a <E b ,故C 正确。
D .x 轴负方向电场线往左,x 轴正方向电场线往右,所以正电荷沿x 轴从a 点移到b 点过程中,电场力先做负功后做正功。
故D 错误。
故选C 。
4.如图所示,虚线AB 和CD 分别为椭圆的长轴和短轴,相交于O 点,两个等量异号点电荷分别位于椭圆的两个焦点M 、N 上.下列说法中正确的是( )
A .O 点的电场强度为零
B .A 、B 两点的电场强度相同
C .将电荷+q 沿曲线CA
D 从C 移到D 的过程中,电势能先减少后增加
D .将电荷+q 沿曲线CBD 从C 移到D 的过程中,电势能先增加后减少
【答案】B
【解析】
【详解】
AB.由等量异种电荷的电场线分布情况可知,A 、B 两点的电场强度相同, O 点的电场强度不为零,故A 错误;B 正确;
CD. 由等量异种电荷的等势面分布情况可知,
A C D
B φφφφ>=>
正电荷在电势高的地方电势能大,所以将电荷+q 沿曲线CAD 从C 移到D 的过程中,电势能先增大后减少,将电荷+q 沿曲线CBD 从C 移到D 的过程中,电势能先减少后增大,故CD 错误。
5.如图甲所示,a 、b 是一条竖直电场线上的两点,一带正电的粒子从a 运动到b 的速度—时间图象如图乙所示,则下列判断正确的是
A.b点的电场方向为竖直向下
B.a点的电场强度比b点的大
C.粒子从a到b的过程中电势能先减小后增大
D.粒子从a到b的过程中机械能先增大后减小
【答案】B
【解析】
【详解】
A.粒子在a点时受到的电场力方向向上,大小大于重力,所以电场的方向为竖直向上,故A错误;
B.粒子在b点时受到的电场力小于重力,所以a点的电场强度比b点的大,故B正确;
C.粒子从a到b的过程中电场力一直做正功,所以电势能一直减小,故C错误;
D.粒子从a到b的过程中,除重力做负功外,只有电场力做正功,则机械能一直增大,故D错误。
6.一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子和,从电容器的点(如图)以相同的水平速度射入两平行板之间.测得和与电容极板的撞击点到入射点之间的水平距离之比为1:2.若不计重力,则和的比荷之比是
A.1:2 B.1:8 C.2:1 D.4:1
【答案】D
【解析】
两带电粒子都做类平抛运动,水平方向匀速运动,有,垂直金属板方向做初速度为零的匀加速直线运动,有,电荷在电场中受的力为,根据牛顿第二定律有,整理得,因为两粒子在同一电场中运动,E相同,初速度相同,
侧位移相同,所以比荷与水平位移的平方成反比.所以比荷之比为,D正确.
【易错提醒】表达式的整理过程易出现问题.
【学科网备考提示】带电粒子在电场中的加速和偏转是高考的重点考查内容.
7.如图所示,真空中有一四面体ABCD,MN分别是AB和CD的中点,现在A、B两点分别都固定电荷量为+Q的点电荷,下列说法正确的是
A.C、D两点的电场强度相同
B.仅受电场力的负点电荷,可以在该电场中作匀速圆周运动
C.N点的电场强度方向平行AB且跟CD垂直
D.将试探电荷+q从C点移到D点,电场力做正功,试探电荷+q的电势能降低
【答案】B
【解析】
【详解】
A.CD在AB的中垂面上,C、D到AB连线的距离相等,根据等量同种电荷在空间的电场线分布特点,知道C、D两点的电场强度大小相等,但方向不同,故A错误;
B.仅受电场力的负点电荷,如果在AB的中垂面内,两个等量正电荷对它的作用总指向A、B连线的中点,就可以提供大小恒定的向心力,可以做匀速圆周运动,故B正确;
C.根据电场叠加原理知道N点的电场强度方向与AB垂直,故C错误;
D.CD在AB的中垂面上,C、D到AB连线的距离相等,C、D两点电势相等,试探电荷+q 从C点移到D点,电场力不做功,其电势能不变,故D错误。
8.静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则
A.运动过程中,粒子的速度大小可能先增大后减小
B.在M、N两点间,粒子的轨迹一定与某条电场线重合
C.粒子在M点的电势能不低于其在N点的电势能
D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行
【答案】AC
【解析】
【分析】
【详解】
A.若电场中由同种电荷形成即由A点释放负电荷,则先加速后减速,故A正确;
B .若电场线为曲线,粒子轨迹不与电场线重合,故B 错误.
C .由于N 点速度大于等于零,故N 点动能大于等于M 点动能,由能量守恒可知,N 点电势能小于等于M 点电势能,故C 正确
D .粒子可能做曲线运动,故D 错误;
9.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为A a 、B a ,电势能分别为PA E 、PB E .下列说法正确的是( )
A .电子一定从A 向
B 运动
B .若A a >B a ,则Q 靠近M 端且为正电荷
C .无论Q 为正电荷还是负电荷一定有PA E <PB E
D .B 点电势可能高于A 点电势
【答案】BC
【解析】
由于不知道电子速度变化,由运动轨迹图不能判断电子向那个方向运动,故A 错误;若a A >a B ,则A 点离点电荷Q 更近即Q 靠近M 端;又由运动轨迹可知,电场力方向指向凹的一侧即左侧,所以,在MN 上电场方向向右,那么Q 靠近M 端且为正电荷,故B 正确;由B 可知,电子所受电场力方向指向左侧,那么,若电子从A 向B 运动,则电场力做负功,电势能增加;若电子从B 向A 运动,则电场力做正功,电势能减小,所以,一定有E pA <E pB 求解过程与Q 所带电荷无关,只与电场线方向相关,故C 正确;由B 可知,电场线方向由M 指向N ,那么A 点电势高于B 点,故D 错误;故选BC .
10.如图所示,在真空中A 、B 两点分别固定等量异种点电荷-Q 和+Q ,O 是A 、B 连线的中点,acbd 是以O 为中心的正方形,m 、n 、p 分别为ad 、db 、bc 的中点,下列说法正确的是
A .m 、n 两点的电场强度相同
B .电势的高低关系n p ϕϕ=
C .正电荷由a 运动到b ,其电势能增加
D .负电荷由a 运动到c ,电场力做负功
【答案】BC
【解析】
【详解】
A .由等量异种电荷的电场的特点知,m 、n 两点的电场的方向不同,故A 错误;
B .n 、p 两点关于A 、B 连线上下对称,电势相等,故B 正确;
C .正电荷由a 运动到b ,电场力做负功,电势能增大,故C 正确;
D .负电荷由a 运动到c ,电场力做正功,故D 错误。
11.如图所示,一水平面...
内的半圆形玻璃管,内壁光滑,在两管口分别固定带正电的点电荷Q 1、Q 2,管内靠近Q 1处有一带正电的小球(带电量很小),小球由静止开始释放,经过管内b 点时速度最大,经过a 、c 两点时速度的大小相等,整个运动过程中小球的电荷量保持不变。
下面关于a 、c 两点的电势及b 点场强的判断正确的是:( )
A .φa =φc
B .φa >φc
C .b 点的场强为E 1
D .b 点的场强为
E 2
【答案】AC
【解析】
【详解】
AB.据题,小球a 、c 两点时速度的大小相等,动能相等,根据能量守恒定律知小球在a 、c 两点的电势能相等,故φa =φc ;故A 正确,B 错误.
CD.据题,小球经过管内b 点时速度最大,沿圆周切向的合力为零,再结合电场的叠加原理知b 点的场强为E 1;故C 正确,D 错误.
12.如图,在竖直平面内有一匀强电场,一带电荷量为+q 、质量为m 的小球在力F (大小可以变化)的作用下沿图中虚线由A 至B 做竖直向上的匀速运动.已知力F 和AB 间夹角为θ,A 、B 间距离为d ,重力加速度为g .则( )
A .力F 大小的取值范围只能在0~cos mg θ
B .电场强度E 的最小值为sin mg q
θ C .小球从A 运动到B 电场力可能不做功
D .若电场强度
E =
tan mg q
θ时,小球从A 运动到B 电势能变化量大小可能为2mgd sin 2θ 【答案】BCD
【解析】
分析小球受力情况:小球受到重力mg 、拉力F 与电场力qE ,因为小球做匀速直线运动,合力为零,则F 与qE 的合力与mg 大小相等、方向相反,作出F 与qE 的合力,如图,可知F 无最大值,选项A 错误;当电场力qE 与F 垂直时,电场力最小,此时场强也最小.
则得:qE=mgsinθ,所以电场强度的最小值为mgsin E q θ=
,选项B 正确.若电场强度mgtan E q
θ= ,即qE=mgtanθ时,电场力qE 可能与AB 方向垂直,如图1位置,电场力不做功,选项C 正确;也可能电场力位于位置2方向,则电场力做功为
W=qEsin2θ•d=q•mgsin q sin2θ•d=2mgdsin 2θ.选项D 正确;故选BCD. 点睛:解决本题的关键是对小球进行正确的受力分析,灵活运用图解法分析极值情况,并根据力图要知道电场力大小一定时,方向可能有两种情况,不能漏解.
13.如图所示,在竖直平面内有一边长为L 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行.一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速V 0进入该正方形区域.当小球再次运动到该正方形区域的边缘时,具有的动能可能为( )
A .可能等于零
B .可能等于2012mv
C .可能等于
12mv 02+12qEL -12mgL D .可能等于12mv 02+23qEL +12
mgL 【答案】BCD
【解析】
【分析】
要考虑电场方向的可能性,可能平行于AB 向左或向右,也可能平行于AC 向上或向下.分析重力和电场力做功情况,然后根据动能定理求解.
【详解】
令正方形的四个顶点分别为ABCD ,如图所示
若电场方向平行于AC :
①电场力向上,且大于重力,小球向上偏转,电场力做功为
12qEL ,重力做功为-12mg ,根据动能定理得:E k −12mv 02=12qEL −12mgL ,即E k =12mv 02+12qEL −12
mgL ②电场力向上,且等于重力,小球不偏转,做匀速直线运动,则E k =
12mv 02. 若电场方向平行于AC ,电场力向下,小球向下偏转,电场力做功为12
qEL ,重力做功为
12mgL ,根据动能定理得:E k −12mv 02=12qEL +12mgL ,即E k =12mv 02+12qEL +12
mgL . 由上分析可知,电场方向平行于AC ,粒子离开电场时的动能不可能为0.
若电场方向平行于AB :
若电场力向右,水平方向和竖直方向上都加速,粒子离开电场时的动能大于0.若电场力向右,小球从D 点离开电场时,有 E k −12mv 02=qEL +12mgL 则得E k =12mv 02+qEL +12
mgL 若电场力向左,水平方向减速,竖直方向上加速,粒子离开电场时的动能也大于0.故粒子离开电场时的动能都不可能为0.故BCD 正确,A 错误.故选BCD .
【点睛】
解决本题的关键分析电场力可能的方向,判断电场力与重力做功情况,再根据动能定理求解动能.
14.空间有一沿x 轴对称分布的电场,其电场强度E 随x 变化的图象如图所示,x 轴正方向为场强的正方向.下列说法中正确的是
A .该电场可能是由一对分别位于x 2和-x 2两点的等量异种电荷形成的电场
B .x 2和-x 2两点的电势相等
C .正电荷从x 1运动到x 3的过程中电势能先增大后减小
D .原点O 与x 2两点之间的电势差大于-x 2与x 1两点之间的电势差
【答案】BD
【解析】
根据等量异种电荷形成的电场的特点可知,在等量异种电荷的连线上,各点的电场强度的方向是相同的,而该图中电场强度的大小和方向都沿x 轴对称分布,所以该电场一定不是由一对分别位于2x 和2x -两点的等量异种电荷形成的电场,A 错误;由于2x 和2x -两点关于y 轴对称,且电场强度的大小也相等,故从O 点到2x 和从O 点到2x -电势降落相等,故2x 和2x -两点的电势相等,B 正确;由图可知,从1x 到x 3电场强度始终为正,则正电荷运动的方向始终与电场的方向相同,所以电场力做正功,电势能逐渐减小,C 错误;2x 和2x -两点的电势相等,原点O 与2x 两点之间的电势差等于原点O 与2x -两点之间的电势差,2x -与1x 两点之间的电势差等于2x 与1x 两点之间的电势差,所以原点O 与2x 两点之间的电势差大于-x 2与1x 两点之间的电势差,D 正确.
15.如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔.右极板电势随时间变化的规律如图乙所示.电子原来静止在左极板小孔处,若电子到达右板的时间大于T ,(不计重力作用)下列说法中正确的是( )
A .从t =0时刻释放电子,电子可能在两板间往返运动
B .从t =0时刻释放电子,电子将始终向右运动,直到打到右极板上
C .从t =4
T
时刻释放电子,电子可能在两板间往返运动,也可能打到右极板上 D .从t =
38
T
时刻释放电子,电子必将打到左极板上 【答案】B 【解析】 【分析】 【详解】
AB.分析电子在一个周期内的运动情况,从0t =时刻释放电子,前2
T
内,电子受到的电场力向右,电子向右做匀加速直线运动.后
2
T
内,电子受到向左的电场力作用,电子向右做匀减速直线运动;接着周而复始,所以电子一直向右做单向的直线运动,直到打在右板上,故A 错误,B 正确
C.分析电子在一个周期内的运动情况;从4T
t = 时刻释放电子,在~42
T T 内,电子向右做匀加速直线运动;在
3~24
T T
内,电子受到的电场力向左,电子继续向右做匀减速直线运动,34T 时刻速度为零;在
3~4
T
T 内电子受到向左的电场力,向左做初速度为零的匀加速直线运动,在5~4
T T 内电子受到向右的电场力,向左做匀减速运动,在54T
时刻速度减为零;接着重复.电子到达右板的时间大于T ,电子在两板间振动,不能打到右极板上,故C 错误.
D.用同样的方法分析从38
T
t =
时刻释放电子的运动情况,电子先向右运动,后向左运动,由于一个周期内向左运动的位移大于向右运动的位移,所以电子最终一定从左极板的小孔离开电场,即不会打到左极板,故D 错误.
二、第十章 静电场中的能量解答题易错题培优(难)
16.如图所示,水平面上有相距
2m
L=的两物体A和B,滑块A的质量为2m,电荷量为+q,B是质量为m的不带电的绝缘金属滑块.空间存在有水平向左的匀强电场,场强为
0.4mg
E
q
=.已知A与水平面间的动摩擦因数
1
0.1
μ=,B与水平面间的动摩擦因数2
0.4
μ=,A与B的碰撞为弹性正碰,且总电荷量始终不变(g取10m/s2).试求:
(1)A第一次与B碰前的速度
v的大小;
(2)A第二次与B碰前的速度大小;
(3)A、B停止运动时,B的总位移x.
【答案】(1)2m/s(2)
2
m/s
3
(3)2m
【解析】
【分析】
【详解】
(1)从A开始运动到与B碰撞过程,由动能定理:
2
0100
1
22
2
EqL mgL mv
μ
-⋅=⋅
解得:v0=2m/s
(2)AB碰撞过程,由动量守恒和能量守恒可得:
012
22
mv mv mv
=+
222
012
111
22
222
mv mv mv
⋅=⋅+
解得:
1
2
m/s
3
v=
2
8
m/s
3
v=(另一组解舍掉)
两物体碰撞后电量均分,均为q/2,则B的加速度:
2
2
2
1
22m/s
2
B
E q mg qE
a g
m m
μ
μ
⋅-
==-=-,
A的加速度:
1
1
1
2
20
24
A
E q mg qE
a g
m m
μ
μ
⋅-⋅
==-=
即B做匀减速运动,A做匀速运动;A第二次与B碰前的速度大小为
1
2
m/s
3
v=;
(3)B 做减速运动直到停止的位移:
221216m 23
B v x a ==
AB 第二次碰撞时:
1122222mv mv mv =+
22211222111
22222
mv mv mv ⋅=⋅+ 解得:
12112m/s 39v v == ,2212488
m/s=m/s 393
v v ==
B 再次停止时的位移2222416m 23
B v x a =
= 同理可得,第三次碰撞时,
12132322mv mv mv =+
222121323111
22222
mv mv mv ⋅=⋅+ 可得131212m/s 327v v =
=,23123488
m/s m/s 3273
v v === B 第3次停止时的位移2223616
m 23
B v x a =
= 同理推理可得,第n 次碰撞,碰撞AB 的速度分别为:
11n-112m/s 33n n v v ==(),2n 1n-1)48m/s 33
n
v v ==( B 第n 次停止时的位移:
22n 216m 23n n
B v x a ==
则A 、B 停止运动时,B 的总位移
12324622++16161616m m+m+m 33331=2(1-)m
3n
n n x x x x x =+⋅⋅⋅+=
+⋅⋅⋅+ 当n 取无穷大时, A 、B 停止运动时,B 的总位移2m x =.
17.图为梯形AB =AD =L ,AD 平行于BC 。
角BCD 等于30度。
在空间内有平行于纸面的匀强电场,第一次将质量为m ,电荷量为q >0的某带电粒子由A 点射出。
恰经过B 点,电场力做功为W 且W >0。
第二次将该粒子仍从A 点以相同的初动能射出,恰经过C 点电场力做功为2W ,不计粒子重力。
求:
(1)匀强电场电场强度大小和方向;
(2)若粒子初动能不变,从A 点射出,恰经过D 点,那么电场力做了多少功。
【答案】(1)()
52313W E q L
+=+方向与竖直方向夹角13523
θ=+(213+
【解析】 【详解】
(1)由题意可知2AC AB U U
= ,如图所示过
D 做BC 垂线交BC 于Q ,连接AC ,取AC 终点
P ,连接BP ,则可得AP =BP =PC ,过A 做AN 垂直于BP ,则AN 方向即为电场方向;因为角BCD 等于30度,AB =AD =L ,故QC 3L ,在三角形ABC 中有:
()
2
2
3AC L L L
=++
解得:
(
523AC L =
+
由几何关系可知三角形ABN 与三角形CAB 相似,故有:
AB AN
AC BC
=
解得:
13523
L AN d +==+
而带电粒子A 到B 电场力做功W ,则有:
W qEd =
所以解得:
()
52313W E q L
+=
+设电场方向与AB 方向夹角为θ,则有:
13cos 523
d
L θ==
+ 所以夹角为:
)
13
arccos
523
θ
+
=
+
(2)如图过D点做AN垂线交AN于M,由几何关系可知三角形ADM与三角形ABC相似,所以有:
AM AD
AB AC
=
解得:
523
AM d'
==
+
故当粒子经过D点时,电场力做功为:
()
523
13
13523
W
W qEd q
q L
+
''
===
+
++
答:(1)匀强电场电场强度大小()
523
13
W
E
q L
+
=
+
,方向与竖直方向夹角
13
523
θ=
+
;
(2)恰经过D
13
+
18.如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数
=0.30
μ,BCD是半径为R=0.2m的光滑圆弧轨道,它们相切于B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E = 4.0×103N/C,质量m = 0.20kg的带电滑块从斜面顶端由静止开始滑下.已知斜面AB对应的高度h = 0.24m,滑块带电荷q = -
5.0×10-4C,取重力加速度g = 10m/s2,sin37°= 0.60,cos37°=0.80.求:
(1)滑块从斜面最高点滑到斜面底端B 点时的速度大小; (2)滑块滑到圆弧轨道最低点C 时对轨道的压力. 【答案】(1) 2.4m/s (2) 12N 【解析】 【分析】
(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B 点时的速度大小; (2)滑块从B 到C 点,由动能定理可得C 点速度,由牛顿第二定律和由牛顿第三定律求解. 【详解】
(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力:
()cos370.96N f mg qE μ=+︒=
设到达斜面底端时的速度为v 1,根据动能定理得:
()211
sin 372
h mg qE h f
mv +-= 解得:
v 1=2.4m/s
(2)滑块从B 到C 点,由动能定理可得:
()()22
2111=
1cos3722
m mg q v E v m R +︒-- 当滑块经过最低点时,有:
()2N 2
F mg qE v m R
-+= 由牛顿第三定律:
N N 11.36N F F ==,
方向竖直向下. 【点睛】
本题是动能定理与牛顿定律的综合应用,关键在于研究过程的选择.
19.如图,一对平行金属板水平放置,板间距为d ,上极板始终接地.长度为
2
d
、质量均匀的绝缘杆,上端可绕上板中央的固定轴0在竖直平面内转动,下端固定一带正电的轻质小球,其电荷量为q .当两板间电压为U 1时,杆静止在与竖直方向OO '夹角30θ=的位置;若两金属板在竖直平面内同时绕O 、O ′顺时针旋转15α=至图中虚线位置时,为使杆仍在原位置静止,需改变两板间电压.假定两板间始终为匀强电场.求:
(1)绝缘杆所受的重力G ; (2)两板旋转后板间电压U 2.
(3)在求前后两种情况中带电小球的电势能W 1与W 2时,某同学认为由于在两板旋转过程中带电小球位置未变,电场力不做功,因此带电小球的电势能不变.你若认为该同学的结论正确,计算该电势能;你若认为该同学的结论错误,说明理由并求W 1与W 2. 【答案】(1)12qU G d =;(2)2113U +=;(3)113
W =,2114W qU =。
【解析】 【分析】 【详解】
(1)绝缘杆长度设为L ,则重力作用点在几何中心即距离O 点
4
d
处,重力的力臂为 sin 48
d d θ= 电场力大小为
1
qU qE d
=
电场力的力臂为
sin 24
d d θ= 根据杠杆平衡有
184
qU d d G d ⨯
=⨯ 整理可得1
2qU G d
=
(2)两板旋转后,质点不变,重力不变,重力力臂不变,两个极板之间的距离变为
cos15d
电场力大小为
2
cos15
qU qE d =
力臂变为
2sin 4524
d d
=
根据杠杆平衡则有
228cos154
qu d d
G d ⨯
=⨯
可得
21U =
(3)结论错误.虽然小球位置没有变化,但是在极板旋转前后电场强度发生变化,电势发生变化,所以电势能发生变化.设小球所在位置电势为ϕ,没有旋转时,电场强度
1
U E d =
根据绝缘杆平衡判断电场力竖直向上,即电场线竖直向上,电势逐渐降低,所以
0cos 2
d E ϕθ-=⨯
整理得14
ϕ= 电势能
11W q ϕ==
金属板转动后,电场强度
2
cos15U E d =
电势差
0cos 452
d E ϕ-=⨯
解得
114
U ϕ=
电势能
211
4
W q qU ϕ==
20.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.2m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度0v 沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞,甲乙两球碰撞后,乙恰能通过轨道的最高点D 。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程中甲不带电,乙电荷无转移)求: (1)乙在轨道上的首次落点到B 点的距离;
(2)碰撞前甲球的速度0v 。
【答案】(1)0.4m x =;(2)025m/s v = 【解析】 【分析】
(1)根据乙球恰能通过轨道的最高点,根据牛顿第二定律求出乙球在D 点的速度,离开D 点后做类平抛运动,根据牛顿第二定律求出竖直方向上的加速度,从而求出竖直方向上运动的时间,根据水平方向做匀速直线运动求出水平位移。
(2)因为甲乙发生弹性碰撞,根据动量守恒、机械能守恒求出碰后乙的速度,结合动能定理求出甲的初速度。
【详解】
(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点速度为D v ,乙离开D 点到达水平轨道的时间为t ,乙的落点到B 点的距离为x ,则
2D v m mg qE R
=+ 乙球离开D 点后做类平抛运动,竖直方向
212()2mg qE R t m +=
水平方向
D x v t =
联立解得
0.4m x =
(2)设碰撞后甲、乙的速度分别为v 甲、v 乙,根据动量守恒定律和机械能守恒定律有
0mv mv mv =+甲乙,222
0111222
mv mv mv =+甲乙
联立得
0=v v 乙
由动能定理得
22
112222
D mg R q
E R mv mv -⋅-⋅=-乙
联立解得
05()25m/s mg Eq R
v m
+=
=
21.如图所示,电荷量均为+q 、质量分别为m 和2m 的小球A 和B ,中间连接质量不计的细绳,在竖直方向的匀强电场中做初速度为0,加速度为a =6
g
的匀加速上升运动,当速度为v 0时细绳突然断开.(不考虑电荷间的相互作用)
求:(1)电场强度大小;
(2)自绳断开至球B 速度为零的过程中,两球组成系统的机械能增量为多少?
【答案】(1)74mg q
(2)63m 2
0v 【解析】
受力分析,由牛顿第二定律列式求解;根据运动学公式,及电场力做功导致系统的机械能增加,即可求解.
(1)设电场强度为E ,把小球A 、B 看作一个系统,由于绳未断前两球均做匀加速运动,则有:233qE mg ma -= 解得:74mg
E q
=
(2)细绳断后,根据牛顿第二定律得:
A qE mg ma -= 得34
A g
a =
方向向上; 22B qE mg ma -= 得8
B g
a =-
(负号表示方向向下) 设自绳断开到球B 速度为零的时间为t ,则有:00B v a t =+ ,解得0
8v t g
=
在该时间内A 的位移为:22
00321 2A A v s v t a t g
=+= 由功能关系知,电场力对A 做的功等于物体A 的机械能增量,2
056A A E qEs mv ∆==
同理对球B 得:22
0041 2B B v s v t a t g =+= 207B B E qEs mv ∆==
解得2
063A B E E E mv ∆=∆+∆=。