新城子实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新城子实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题
1、(2分)若a>-b>0,则关于x的不等式组的解集是()
A. <x<
B. 无解
C. x>
D. x>
【答案】B
【考点】不等式的解及解集,解一元一次不等式组
【解析】【解答】解:原不等式组可化为
因为a>-b>0,所以<0, <0.
而= <1, = >1,
所以< ,所以> ,
所以原不等式组无解,
故答案为:B.
【分析】先求出不等式组中的每一个不等式的解集,再根据a>-b>0,确定不等式组的解集即可。
2、(2分)如果关于x的不等式x>2a﹣1的最小整数解为x=3,则a的取值范围是()
A. 0<a<2
B. a<2
C. ≤a<2
D. a≤2【答案】C
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:∵关于x的不等式x>2a﹣1的最小整数解为x=3,
∴2≤2a﹣1<3,
解得:≤a<2.
故答案为:C.
【分析】由题意可得不等式组2≤2a﹣1<3,解这个不等式组即可求解。
3、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()
A. 5
B. 7
C. 9
D. 11
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设第二份餐的单价为x元,
由题意得,(120+x)×0.9≤200,
解得:x≤102 ,
故前9种餐都可以选择.
故答案为:C
【分析】先利用一元一次不等式求得第二份餐的单价的取值范围,再参照价格表及优惠即可知道可以选餐的种类.
4、(2分)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组
无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a 的值之和是()
A. ﹣3
B. ﹣2
C. ﹣
D.
【答案】B
【考点】解分式方程,解一元一次不等式组
【解析】【解答】解:解得,
∵不等式组无解,
∴a≤1,
解方程﹣=﹣1得x= ,
∵x= 为整数,a≤1,
∴a=﹣3或1,
∴所有满足条件的a的值之和是﹣2,
故答案为:B
【分析】根据题意由不等式组无解,得到a的取值范围;找出最简公分母,分式方程两边都乘以最简公分母,求出分式方程的解,根据分式方程有整数解,求出a的值,得到所有满足条件的a的值之和.
5、(2分)下列说法:
①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,
用式子表示是 =±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】D
【考点】实数的运算,实数的相反数,实数的绝对值
【解析】【解答】①实数和数轴上的点是一一对应的,正确;
②无理数不一定是开方开不尽的数,例如π,错误;
③负数有立方根,错误;
④16的平方根是±4,用式子表示是±=±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,
则其中错误的是3个,
故答案为:D
【分析】①数轴上的点一定有一个实数和它相对应,任何一个实数都可以用数轴上的点来表示,所以实数和数轴上的点是一一对应的;
②无理数是无限不循环小数;
③因为负数的平方是负数,所以负数有立方根;
④如果一个数的平方等于a,那么这个数是a的平方根。
根据定义可得16的平方根是±4,用式子表示是
=±4;
⑤因为只有0的相反数是0,所以绝对值,相反数,算术平方根都是它本身的数是0.
6、(2分)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()
A. 45°
B. 40°
C. 35°
D. 30°
【答案】D
【考点】角的平分线,平行线的性质
【解析】【解答】解:∵AB∥CD,∠A=120°,
∴∠DCA=180°﹣∠A=60°,
∵CE平分∠ACD,
∴∠ECD= ∠DCA=30°,
故答案为:D.
【分析】先根据两直线平行,同旁内角互补,求出∠DCA的度数,再根据角平分线的定义得出∠ECD= ∠DCA,计算即可求解。
7、(2分)一个数若有两个不同的平方根,则这两个平方根的和为()
A.大于0
B.等于0
C.小于0
D.不能确定
【考点】平方根
【解析】【解答】解:∵正数的平方根有两个,一正一负,互为相反数,
∴这两个平方根的和为0。
故答案为:B.
【分析】根据正数平方根的性质,结合题意即可判断。
8、(2分)若x2m-1-8>5是一元一次不等式,则m的值为()
A.0
B.1
C.2
D.3
【答案】B
【考点】一元一次不等式的定义
【解析】【解答】解:根据一元一次不等式的定义得:,故答案为:B.
【分析】一元一次不等式的定义:只含有一个未知数,未知数的最高次数是1,不等号的两边都是整式,且一次项的系数不为0的不等式。
根据定义可知2m-1=1,解方程即可求出m的值。
9、(2分)-2a与-5a的大小关系()
A.-2a<-5a
B.2a>5a
C.-2a=-5b
D.不能确定
【考点】实数大小的比较
【解析】【解答】解:当a>0时,-2a<-5a;当a<0时,-2a>-5a;当a=0时,-2a=-3a;所以,在没有确定a 的值时,-2a与-5a的大小关系不能确定.故答案为:D.
【分析】由题意分三种情况:当a>0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。
当a=0时,根据0乘任何数都得0作出判断即可。
当a<0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。
10、(2分)a与b是两个连续整数,若a<<b,则a,b分别是()
A. 6,8
B. 3,2
C. 2,3
D. 3,4
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵4<7<9,
∴2<<3,
∵a<<b,且a与b是两个连续整数,
∴a=2,b=3.故答案为:C
【分析】根号7的被开方数介于两个完全平方数4和9之间,根据算术平方根的意义,从而得出根号7应该介于2和3之间,从而得出答案。
11、(2分)已知同一平面上的两个角的两条边分别平行,则这两个角()
A. 相等
B. 互补
C. 相等或互补
D. 不能确定
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图:
①∠B和∠ADC的两边分别平行,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠B=∠ADC,
②∠B和∠CDE的两边分别平行,
∵∠ADC+∠CDE=180°,
∴∠B+∠CDE=180°.
∴同一平面上的两个角的两条边分别平行,则这两个角相等或互补。
故答案为:C
【分析】首先根据题意作图,然后由平行线的性质与邻补角的定义,即可求得同一平面上的两个角的两条边分别平行,则这两个角相等或互补。
12、(2分)如图,下列说法中错误的是()
A. ∠GBD和∠HCE是同位角
B. ∠ABD和∠ACE是同位角
C. ∠FBC和∠ACE是内错角
D. ∠GBC和∠BCE是同旁内角
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:A、∠GBD和∠HCE不符合同位角的定义,故本选项正确;
B、∠ABD和∠ACE是同位角,故本选项错误;
C、∠FBC和∠ACE是内错角,故本选项错误;
D、∠GBC和∠BCE是同旁内角,故本选项错误;
故答案为:A.
【分析】】∠GBD和∠HCE是由两条直线被另两条直线所截形成的两个角,一共有四条直线,不是同位角.
二、填空题
13、(1分)两个无理数,它们的和为1,这两个无理数可以是________(只要写出两个就行)
【答案】答案不唯一,例如π,1-π
【考点】无理数的认识
【解析】【解答】答案不唯一,例如π,1-π
【分析】写出两个无理数,让它们的和为1即可.
14、(1分)有一个数值转换机,原理如下:
当输入的x=81时,输出的y=________
分析:把x=81代入数值转换机中计算即可得到输出的数.
【答案】
【考点】算术平方根,无理数
【解析】【解答】解:当x=81时,算术平方根为9,
再输入9,9的算术平方根为3,
再输入3,3的算术平方根为,为无理数,
所以y= .
故答案为:
【分析】根据数值转换机的工作原理,当输入的数是81时,其算数平方根是9,9是有理数,再次输入其算出平方根是3,还是有理数,于是再次输入,其算数平方根是,是无理数了,于是输出,从而得出答案。
15、(1分)当x________时,代数式1- 的值不大于代数式的值.
【答案】≥
【考点】解一元一次不等式,一元一次不等式的应用
【解析】【解答】解:根据题意得:
8-2(x-1)≤3(x+1)
8-2x+2≤3x+3
-5x≤-7
x≥
故答案为:≥
【分析】抓住题中的关键词“不大于”就是≤,列不等式,解不等式即可求解。
16、(1分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是________支.
【答案】150
【考点】扇形统计图
【解析】【解答】解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%,
∴售出雪糕总量为200÷40%=500(支),
∵水果口味的占30%,
∴水果口味的有500×30%=150(支),
故答案为:150.
【分析】求出数据总数是关键:各部分数目除以它占总体的百分数。
17、(2分)如图,b∥a,c∥a,那么________,理由:________
【答案】b∥c;如果两条直线都与第三条直线平行,那么这两条直线也互相平行
【考点】平行公理及推论
【解析】【解答】解:∵b∥a,c∥a,∴b∥c,理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
故答案为:b∥c,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【分析】两条直线都与第三条直线平行,那么这两条直线也互相平行.
18、(1分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为________
【答案】dm
【考点】算术平方根
【解析】【解答】解:∵正方体有6个面且每个面都相等,
∴正方体的一个面的面积=2.
∴正方形的棱长= .
故答案为:dm
【分析】根据正方体共有6个面,而且每个面都是大小相等的正方形,从而得出正方体的一个面的面积,再根据正方形的面积等于边长的平方,反之边长等于面积的算数平方根即可得出答案。
三、解答题
19、(5分)若5a+1和a﹣19是数m的平方根,求m的值.
【答案】解:根据题意得:(5a+1)+(a﹣19)=0,
解得:a=3,
则m=(5a+1)2=162=256
【考点】平方根
【解析】【分析】由平方根的意义可知一个数的平方根互为相反数,所以可根据互为相反数的两个数的和为0可得关于a的方程(5a+1)+(a﹣19)=0,解方程即可求m的值。
20、(5分)随着神舟计划的进行,中国人对宇宙的探索更进一步,但是你知道吗,要想围绕地球旋转,飞船的
速度必须要达到一定的值才行,我们把这个速度称为第一宇宙速度,其计算公式为v= (其中g≈0.009 8 km/s2,是重力加速度;R≈6 370 km,是地球的半径).请你求出第一宇宙速度的值.(结果保留两位小数)
【答案】解:v= ≈ ≈7.90(km/s).
答:第一宇宙速度的值约为7.90 km/s
【考点】算术平方根,实数的运算
【解析】【分析】将g、R代入计算,再求出gR的算术平方根即可。
21、(5分)是关于x、y、z的方程的一个解.试求a、b、c的值.
【答案】由题意,将x=-1,y=1,z=2代入原方程,得
由于,..
因此必有
即
解得a=3,b=1,c=-1.
【考点】三元一次方程组解法及应用
【解析】【分析】由平方、绝对值的非负性可得关于方程组:ax+by+2=0,ay+cz−1=0,bz+cx−3=0;再将x、y、z的值代入方程组中可得关于a、b、c的三元一次方程组,解之即可求得a、b、c的值。
22、(5分)有一个边长为9 cm的正方形和一个长为24 cm、宽为6 cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?
【答案】解:方法1:设正方形的边长为x 厘米,
依题意得:
答:正方形的边长为15厘米
方法2:
由题意可得:原正方形和长方型的面积和为:(cm2)
则作的正方形边长应为:(cm).
答:正方形的边长为15厘米
【考点】算术平方根,一元二次方程的应用
【解析】【分析】此题的等量关系是:边长为9的正方形的面积+长方形的面积=新正方形的面积,建立方程,求出新的正方形的边长即可。
也可以先求出两图形的面积之和,再开算术平方根即可。
23、(5分)如图,把一张长方形纸片ABCD沿EF折叠,使点C落在点C'处,点D落在点D'处,ED'交BC于
点G,已知∠EFG=50°,那么∠DEG和∠BGD'各是多少度?
【答案】解:∵四边形ABCD是长方形,
∴AD∥BC,
∴∠DEF=∠EFG=50°,∠DEG+∠EGF=180°,
由折叠的性质可知∠D'EF=∠DEF=50°,
∴∠DEG=50°+50°=100°,
∴∠EGF=180°-∠DEG=180°-100°=80°,
∵∠BGD'=∠EGF
∴∠BGD'=80°
【考点】平行线的性质,矩形的性质,翻折变换(折叠问题)
【解析】【分析】根据矩形的性质及平行线的性质,可证得∠DEF=∠EFG=50°,∠DEG+∠EGF=180°,再根据折叠的性质可证∠D'EF=∠DEF,然后求出∠DEG、∠EGF的度数,然后根据对顶角相等,可得出结果。
24、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
25、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
26、(5分)已知方程组
求:x:y:z
【答案】解:把z看作已知数,解关于x、y的方程组.
由原方程组得
①-②×2得
y=5z
将③代入②得
x=7z
所以x:y:z=7:5:1
【考点】三元一次方程组解法及应用
【解析】【分析】该题有三个未知数,两个方程,一般不能确定x、y、z的值,但我们可将其中的一个未知数z看作已知数.把x、y用含z的代数式表示,从而求出比z:y:z的值.。